Difference between revisions of "Team:NCTU Formosa/Prediction Model"

 
(84 intermediate revisions by 4 users not shown)
Line 16: Line 16:
 
             <ul>
 
             <ul>
 
                 <li class="mark" id="mark1">Introduction</li>
 
                 <li class="mark" id="mark1">Introduction</li>
                 <li class="mark" id="mark2">E.coli Simulation</li>
+
                 <li class="mark" id="mark2"><i>E. coli</i> Simulation</li>
                 <li class="mark" id="mark3">P.gingivalis Simulation</li>
+
                 <li class="mark" id="mark3"><i>P. gingivalis</i> Simulation</li>
                 <li class="mark" id="mark4">Sterilization System of LL37</li>
+
                 <li class="mark" id="mark4">Inhibition System of LL-37</li>
 
                 <li class="mark" id="mark5">Bacteria Growth Simulation with DenTeeth</li>
 
                 <li class="mark" id="mark5">Bacteria Growth Simulation with DenTeeth</li>
                 <li class="mark" id="mark6">LL37 tetR RFP Production Simulation</li>
+
                 <li class="mark" id="mark6">Quorum Sensing System</li>
                 <li class="mark" id="mark7">BMP2 STATH GFP Production Simulation</li>
+
                <li class="mark" id="mark7">LL-37 tetR RFP Production Simulation</li>
 +
                 <li class="mark" id="mark8">BMP2 STATH GFP Production Simulation</li>
 +
                <li class="mark" id="mark9">Model Validation</li>
 
             </ul>
 
             </ul>
 
         </div>
 
         </div>
Line 28: Line 30:
 
                 <h1 class="topic" id="topic1">Introduction</h1>
 
                 <h1 class="topic" id="topic1">Introduction</h1>
 
                 <p id="p1">
 
                 <p id="p1">
                     &#8195;&#8195;The Prediction Model simulates and predicts the results of DenTeeth. First, we simulate the growth curve of <i>E.coli</i> and <i>P.gingivalis</i> in dogs’ oral environments. Then, we predict the production of peptide LL37, protein BMP2 and STATH. Next, we quantify the sterilization effect of LL37 and the repair of BMP2 and STATH . In this way, we can predict the effect of DenTeeth.   
+
                     &#8195;&#8195;The Prediction Model simulated and predicted the results of DenTeeth. First, we simulated the growth curve of <i>E. coli</i> and <i>P. gingivalis</i> in dogs’ oral environments. Then, we predicted the production of peptide LL-37, protein BMP2 and STATH. Next, we quantified the inhibition effect of LL-37 and predict the expression of BMP2 and STATH . In this way, we could predict the effect of DenTeeth.   
 
                 </p>
 
                 </p>
 
                  
 
                  
 
             </div>
 
             </div>
 
             <div class="section s2">
 
             <div class="section s2">
                 <h1 class="topic" id="topic2"><i>E.coli</i> Simulation</h1>
+
                 <h1 class="topic" id="topic2"><i>E. coli</i> Simulation</h1>
 
                 <p id="p3-1">
 
                 <p id="p3-1">
                     &#8195;&#8195;In order to complete these simulations, we first construct logical ODEs (Ordinary Differential Equations) to describe the growth curves of <i>E.coli</i> at 40℃ and pH value equal to 8. While this is close to the environment in dogs’ oral cavities.  
+
                     &#8195;&#8195;In order to complete these simulations, we first constructed logical ODEs (Ordinary Differential Equations) to describe the growth curves of <i>E. coli</i> at 40℃ and pH value equal to 8. While this was close to the environment in dogs’ oral cavities.  
  
 
                 </p>
 
                 </p>
Line 42: Line 44:
 
                     <ol class="list">
 
                     <ol class="list">
 
                         <li>The nutrition of growth is sufficient to maintain a steady nutrition uptake rate.</li>
 
                         <li>The nutrition of growth is sufficient to maintain a steady nutrition uptake rate.</li>
                         <li>The cultivation environment is finite, and there is a stationary phase for the growth of <i>E. coli</i>.</li>
+
                         <li>The cultivation environment is finite, and there is a stationary phase for the growth of <i>E. coli</i>.</li>
 
                         <li>The bacteria mutation does not affect the growth curve.</li>
 
                         <li>The bacteria mutation does not affect the growth curve.</li>
 
                     </ol>  
 
                     </ol>  
 
                 </p>
 
                 </p>
 
                 <p id="p3-3" style="margin-top:50px;">
 
                 <p id="p3-3" style="margin-top:50px;">
                     Under these assumptions we can use the logistic function to describe the growth of bacteria(Eq.1) <sub>[1]</sub>.
+
                     Under these assumptions we could use the logistic function to describe the growth of bacteria(Eq.1) <sub>[1]</sub>.
                     <p class="equations">$$\frac{d[E.coli]}{dt}= g_{E.coli}[E.coli](1-\frac{[E.coli]}{E.coli_{Max}})$$</p>
+
                     <p class="equations">$$\frac{d[E. coli]}{dt}= g_{E. coli}[E. coli](1-\frac{[E. coli]}{E. coli_{Max}})$$</p>
                     <div class="sub">Equation 1. Final ODE system of the growth of <i>E.coli</i> </div>
+
                     <div class="sub">Equation 1. Final ODE system of the growth of <i>E. coli</i> </div>
 
                 </p>
 
                 </p>
 
                 <div class="table-scroll" style="margin-top: 50px;">
 
                 <div class="table-scroll" style="margin-top: 50px;">
Line 60: Line 62:
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
                             <td>g<sub><i>E.coli</i><sub></td>
+
                             <td>g<sub><i>E. coli</i><sub></td>
                             <td>growth rate of <i>E.coli</i> <sub>[2]</sub></td>
+
                             <td>growth rate of <i>E. coli</i> <sub>[2]</sub></td>
 
                             <td>0.0417</td>
 
                             <td>0.0417</td>
 
                             <td>min<sup>-1</sup></td>
 
                             <td>min<sup>-1</sup></td>
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
                             <td><i>E.coli</i><sub>Max<sub></td>
+
                             <td><i>E. coli</i><sub>Max<sub></td>
                             <td>Maximum <i>E.coli</i> concentration <sub>[2]</sub></td>
+
                             <td>Maximum <i>E. coli</i> concentration <sub>[2]</sub></td>
 
                             <td>1.5 </td>
 
                             <td>1.5 </td>
 
                             <td>O.D.</td>
 
                             <td>O.D.</td>
Line 73: Line 75:
 
                 </table>
 
                 </table>
 
                 </div>
 
                 </div>
                 <div class="sub">Table 1. Parameters of the growth of <i>E.coli</i></div>
+
                 <div class="sub">Table 1. Parameters of the growth of <i>E. coli</i></div>
  
 
                 <p id="p4">
 
                 <p id="p4">
                     &#8195;&#8195;The logistic differential equation assumed the dynamic equilibrium of bacteria in the end. In order to visualize our derivation ODEs, we simulate the growth curve of <i>E.coli.</i> at 40℃ and PH value equal to 8.
+
                     &#8195;&#8195;The logistic differential equation assumed the dynamic equilibrium of bacteria in the end. In order to visualize our derivation ODEs, we simulated the growth curve of <i>E. coli.</i> at 40℃ and pH value equal to 8.
 
                 </p>
 
                 </p>
             
+
            </div>
 
             <div class="section s3">
 
             <div class="section s3">
                 <h1 class="topic" id="topic3"><i>P.gingivalis</i> Simulation</h1>
+
                 <h1 class="topic" id="topic3"><i>P. gingivalis</i> Simulation</h1>
 
                 <p id="p5">
 
                 <p id="p5">
                     &#8195;&#8195;Next, in order to know how <i>P.gingivalis</i> grows under the sterilization of our dental bones, we use logical ODEs again to stimulate the growth curves of P.gingivalis. <sub>[2]</sub>All the situations are the same as <i>E.coli</i>. Thus, the final ODE system(Eq.2) and its parameters (Tab2) of <i>P.gingivalis</i> can be seen below:
+
                     &#8195;&#8195;Next, in order to know how <i>P. gingivalis</i> grew under the inhibition of our dental bones, we used logical ODEs again to stimulate the growth curves of <i>P. gingivalis</i> <sub>[2]</sub>All the situations were the same as <i>E. coli</i>. Thus, the final ODE system(Eq.2) and its parameters (Tab2) of <i>P. gingivalis</i> can be seen below:
 
                     <p class="equations">$$\frac{d[P]}{dt}= g_{P}[P](1-\frac{[P]}{P_{Max}})$$</p>
 
                     <p class="equations">$$\frac{d[P]}{dt}= g_{P}[P](1-\frac{[P]}{P_{Max}})$$</p>
                     <div class="sub">Equation 2. Final ODE system of the growth of <i>P.gingivalis</i></div>
+
                     <div class="sub">Equation 2. Final ODE system of the growth of <i>P. gingivalis</i></div>
 
                 </p>
 
                 </p>
 
                 <div class="table-scroll" style="margin-top: 50px;">
 
                 <div class="table-scroll" style="margin-top: 50px;">
Line 96: Line 98:
 
                         <tr>
 
                         <tr>
 
                             <td>g<sub>P<sub></th>
 
                             <td>g<sub>P<sub></th>
                             <td>growth rate of <i>P.gingivalis</i> <sub>[3]</sub></th>
+
                             <td>growth rate of <i>P. gingivalis</i> <sub>[3]</sub></th>
 
                             <td>0.0025</th>
 
                             <td>0.0025</th>
 
                             <td>min<sup>-1</sup></td>
 
                             <td>min<sup>-1</sup></td>
Line 102: Line 104:
 
                         <tr>
 
                         <tr>
 
                             <td>P<sub>Max<sub></td>
 
                             <td>P<sub>Max<sub></td>
                             <td>Maximum <i>P.gingivalis</i> concentration <sub>[3]</sub></td>
+
                             <td>Maximum <i>P. gingivalis</i> concentration <sub>[3]</sub></td>
 
                             <td>0.7</td>
 
                             <td>0.7</td>
 
                             <td>O.D.</td>
 
                             <td>O.D.</td>
Line 108: Line 110:
 
                 </table>
 
                 </table>
 
                 </div>
 
                 </div>
                 <div class="sub">Table 2. Parameters of the growth of <i>P.gingivalis</i></div>
+
                 <div class="sub">Table 2. Parameters of the growth of <i>P. gingivalis</i></div>
 
                  
 
                  
                 <img src="https://static.igem.org/mediawiki/2021/8/8f/T--NCTU_Formosa--bacteria_V.S._time.png" class="images" id=" Growth_P.gingivalis" alt=" growth curve of E.coli and P.gingivalis"/>
+
                 <img src="https://static.igem.org/mediawiki/2021/archive/8/8f/20211020190936%21T--NCTU_Formosa--bacteria_V.S._time.png" class="images" id=" Growth_P. gingivalis" alt=" growth curve of E. coli and P. gingivalis"/>
 
                 <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                 <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                     role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 
                     role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
Line 116: Line 118:
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                     </path>
 
                     </path>
                 </svg>Figure 1. The growth curve of <i>E.coli</i> and <i>P.gingivalis</i></div>
+
                 </svg>Figure 1. The growth curve of <i>E. coli</i> and <i>P. gingivalis</i></div>
 +
 
 
             </div>
 
             </div>
  
 
             <div class="section s4">
 
             <div class="section s4">
                 <h1 class="topic" id="topic3">Sterilization System of LL37</h1>
+
                 <h1 class="topic" id="topic4">Inhibition System of LL-37</h1>
 
                 <p id="p6">
 
                 <p id="p6">
                     &#8195;&#8195;To know how the bacteria in dogs’ oral cavities grow under the effect of our dental bones, we need to calculate the sterilization amount of LL37.<br>
+
                     &#8195;&#8195;To know how the bacteria in dogs’ oral cavities grew under the effect of our dental bones, we needed to calculate the inhibition amount of LL-37.<br>
                     &#8195;&#8195;LL37 kill growing bacteria with a rate k<sub>k</sub>, and afterwards each dead cell quickly takes up N [LL37]. These [LL37] are bound to the membrane as well as to the cytoplasm of the cell and are not recycled to attack other cells. The killing formula of LL37 (1) and the time evolution of concentrations of available [LL37] (2) is described by the following equations:
+
                     &#8195;&#8195;LL-37 killed growing bacteria with a rate k<sub>k</sub>, and afterwards each dead cell quickly took up N [LL-37]. These [LL-37] were bound to the membrane as well as to the cytoplasm of the cell and are not recycled to attack other cells. The killing formula of LL-37 (1) and the time evolution of concentrations of available [LL-37] (2) was described by the following equations:
  
 
                     <p class="equations">$$(1)\frac{d[B]}{dt}= −k_{k}⋅[B][LL-37]$$</p>
 
                     <p class="equations">$$(1)\frac{d[B]}{dt}= −k_{k}⋅[B][LL-37]$$</p>
Line 155: Line 158:
 
                 </table>
 
                 </table>
 
                 </div>
 
                 </div>
                 <div class="sub">Table 3. Parameters of the sterilization system of LL37</div>
+
                 <div class="sub">Table 3. Parameters of the Inhibition System of LL-37</div>
 
                  
 
                  
 
             </div>
 
             </div>
Line 162: Line 165:
 
                 <h1 class="topic" id="topic5">Bacteria Growth Simulation with DenTeeth</h1>
 
                 <h1 class="topic" id="topic5">Bacteria Growth Simulation with DenTeeth</h1>
 
                 <p id="p8">
 
                 <p id="p8">
                     &#8195;&#8195;Consider the previous growth model plus the killing formula of LL37. We can write down the growth model of <i>E.coli</i> and <i>P.gingivalis</i> under the sterilization action of DenTeeth(Eq.3):
+
                     &#8195;&#8195;Considered the previous growth model plus the killing formula of LL-37. We could write down the growth model of <i>E. coli</i> and <i>P. gingivalis</i> under the inhibition action of DenTeeth(Eq.3):
  
                     <p class="equations">$$\frac{d[E.coli]}{dt}= g_{E.coli}(1-\frac{[E.coli]}{[E.coli_{Max}]})-k_{k}[B][LL-37]$$</p>
+
                     <p class="equations">$$\frac{d[E. coli]}{dt}= g_{E. coli}(1-\frac{[E. coli]}{[E. coli_{Max}]})-k_{k}[B][LL-37]$$</p>
 
                     <p class="equations">$$\frac{d[P]}{dt}= g_{P}[P](1-\frac{[P]}{P_{Max}})-N⋅k_{k} [B][LL-37] $$</p>
 
                     <p class="equations">$$\frac{d[P]}{dt}= g_{P}[P](1-\frac{[P]}{P_{Max}})-N⋅k_{k} [B][LL-37] $$</p>
                 <div class="sub">Equation 3. <i>E.coli</i> and <i>P.gingivalis</i> growth with DenTeeth</div>
+
                 <div class="sub">Equation 3. <i>E. coli</i> and <i>P. gingivalis</i> growth with DenTeeth</div>
 
          
 
          
                 <img src="https://static.igem.org/mediawiki/2021/2/2a/T--NCTU_Formosa--bacteria_with_DenTeeth.png" class="images" id=" Growth_PE" alt=" growth curve of E.coli and P.gingivalis"/>
+
                 <img src="https://static.igem.org/mediawiki/2021/2/2a/T--NCTU_Formosa--bacteria_with_DenTeeth.png" class="images" id=" Growth_PE" alt=" growth curve of E. coli and P. gingivalis"/>
 
                 <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                 <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                     role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 
                     role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
Line 174: Line 177:
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                     </path>
 
                     </path>
                 </svg>Figure 2. The growth curve of <i>E.coli</i> and <i>P.gingivalis</i> with DenTeeth</div>
+
                 </svg>Figure 2. The growth curve of <i>E. coli</i> and <i>P. gingivalis</i> with DenTeeth</div>
 
                 <p id="p9">
 
                 <p id="p9">
                 &#8195;&#8195;As we can see above, the concentration of <i>P.gingivalis</i> and <i>E.coli</i> are reduced. And finally they will achieve dynamic balance.
+
                 &#8195;&#8195;As we can see above, the concentration of <i>P. gingivalis</i> and <i>E. coli</i> were reduced. And finally they achieved dynamic balance.
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
Line 182: Line 185:
  
 
             <div class="section s6">
 
             <div class="section s6">
                 <h1 class="topic" id="topic4">Quorum Sensing System</h1>
+
                 <h1 class="topic" id="topic6">Quorum Sensing System</h1>
 
                 <p id="p10">
 
                 <p id="p10">
                     &#8195;&#8195;In order to make the functions of sterilization and repair don’t interfere with each one, DenTeeth would produce different proteins with different amounts of bacteria in dogs’ oral cavities by using the Quorum Sensing system(QS system).[5]
+
                     &#8195;&#8195;In order to make the functions of inhibition and repair don’t interfere with each one, DenTeeth would produce different proteins with different amounts of bacteria in dogs’ oral cavities by using the Quorum Sensing system(QS system).[5]
 
                 </p>
 
                 </p>
 
                <img src="" class="images" id=" Growth_P.gingivalis" alt=" growth curve of E.coli and P.gingivalis"/>
 
                <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                    role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 
                    <path fill="currentColor"
 
                        d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                    </path>
 
                </svg>Figure 3. Quorum Sensing System</div>
 
  
 
                 <p id="p11-1">
 
                 <p id="p11-1">
                     &#8195;&#8195;Through predicting the Quorum Sensing system of DenTeeth, we can predict which function is working. Owing to the red and green fluorescence sequence in the DenTeeth, the fluorescence intensity experiment would validate the prediction.
+
                     &#8195;&#8195;Through predicting the Quorum Sensing system of DenTeeth, we could predict which function is working. Owing to the red and green fluorescence sequence in the DenTeeth, the fluorescence intensity experiment would validate the prediction.<br>
                     &#8195;&#8195;The QS system involves much interaction of compounds in and out of the cell. Thus, we use the following three assumptions for our model and use differential equations to describe the rate of change of each compound. With those assumptions, we can get the correlation with fluorescence intensity.
+
                     &#8195;&#8195;The QS system involved much interaction of compounds in and out of the cell. Thus, we used the following three assumptions for our model and used differential equations to describe the rate of change of each compound. With those assumptions, we could get the correlation with fluorescence intensity.
 
                 </p>
 
                 </p>
 
                 <p id="p11-2">
 
                 <p id="p11-2">
Line 215: Line 210:
  
 
                 <p id="p11-4" style="margin-top:50px;">
 
                 <p id="p11-4" style="margin-top:50px;">
                     &#8195;&#8195;Furthermore, considering the change of (A-R)2 complex decided by reversible reaction and degradation. We derive and get the differential equation of AHL-LuxR dimer below:
+
                     &#8195;&#8195;Furthermore, considering the change of (A-R)<sub>2</sub> complex decided by reversible reaction and degradation. We derived and got the differential equation of AHL-LuxR dimer below:
 
                     <p class="equations">$$\frac{d[A-R_{2}]}{dt}=-D_{(A-R)_{2}}[(A-R)_{2}]+k_{(A-R)_{2}}[A-R]^2-k'_{(A-R)_{2}}[(A-R)_{2}]-k_{Plux-(A-R)_{2}}[A-R][Plux]+k'_{Plux-(A-R)_{2}}[Plux-(A-R)_{2}]$$</p>
 
                     <p class="equations">$$\frac{d[A-R_{2}]}{dt}=-D_{(A-R)_{2}}[(A-R)_{2}]+k_{(A-R)_{2}}[A-R]^2-k'_{(A-R)_{2}}[(A-R)_{2}]-k_{Plux-(A-R)_{2}}[A-R][Plux]+k'_{Plux-(A-R)_{2}}[Plux-(A-R)_{2}]$$</p>
 
                 </p>
 
                 </p>
  
 
                 <p id="p11-5" style="margin-top:50px;">
 
                 <p id="p11-5" style="margin-top:50px;">
                     &#8195;&#8195;Then, we write down the differential equation of Plux-(A-R)2 complex:
+
                     &#8195;&#8195;Then, we write down the differential equation of Plux-(A-R)<sub>2</sub> complex:
 
                     <p class="equations">$$\frac{d[Plux-(A-R)_{2}]}{dt}=+k_{Plux-(A-R)_{2}}[A-R][Plux]-k'_{Plux-(A-R)_{2}}[Plux-(A-R)_{2}]$$</p>
 
                     <p class="equations">$$\frac{d[Plux-(A-R)_{2}]}{dt}=+k_{Plux-(A-R)_{2}}[A-R][Plux]-k'_{Plux-(A-R)_{2}}[Plux-(A-R)_{2}]$$</p>
 
                 </p>
 
                 </p>
            </div>
 
  
             <img src="https://static.igem.org/mediawiki/2021/archive/4/49/20211014181145%21T--NCTU_Formosa--QS_system_V.S._time.png" class="images" id=" growth curve of E.coli and P.gingivalis"/>
+
 
 +
             <img src="https://static.igem.org/mediawiki/2021/4/49/T--NCTU_Formosa--QS_system_V.S._time.png" class="images" id=" growth curve of E. coli and P. gingivalis"/>
 
                 <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                 <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                     role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 
                     role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
Line 231: Line 226:
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                     </path>
 
                     </path>
             </svg>Figure 4. The simulation of LuxI, LuxR, AR, and AR<sub>2</sub> reaction</div>
+
             </svg>Figure 3. The simulation of LuxI, LuxR, AR, and AR<sub>2</sub> reaction</div>
  
 
                 <p id="p11-6" style="margin-top:50px;">
 
                 <p id="p11-6" style="margin-top:50px;">
Line 302: Line 297:
 
                 </div>
 
                 </div>
 
                 <div class="sub">Table 4. Parameters of Quorum Sensing System</div>
 
                 <div class="sub">Table 4. Parameters of Quorum Sensing System</div>
 +
        </div>
  
           
+
       
 
+
 
+
 
             <div class="section s7">
 
             <div class="section s7">
                 <h1 class="topic" id="topic6"> LL37 tetR Production Simulation</h1>
+
                 <h1 class="topic" id="topic7"> LL-37 tetR RFP Production Simulation</h1>
 
                 <p id="p16-1">
 
                 <p id="p16-1">
                     &#8195;&#8195;Because <i>E.coli</i> itself will also be affected by LL37, in order to test whether this will further affect the concentration of the target product, we then use the analysis above to predict the concentration of these products over time.  
+
                     &#8195;&#8195;Because <i>E. coli</i> itself would also be affected by LL-37, in order to test whether this will further affect the concentration of the target product, we then used the analysis above to predict the concentration of these products over time. <br>
                     &#8195;&#8195;The total amount of AHL is composed of the initial AHL from the quorum sensing  model. The AHL-LuxR complex will activate the Plux promoter , which can lead to the production of LL37, tetR and mRFP.
+
                     &#8195;&#8195;The total amount of AHL was composed of the initial AHL from the quorum sensing  model. The AHL-LuxR complex would activate the Plux promoter , which could lead to the production of LL-37, tetR and mRFP.<br>
                     &#8195;&#8195;The prediction formula of LL37 tetR RFP are shown below(Eq.4) <sub>[6]</sub>:
+
                     &#8195;&#8195;The prediction formula of LL-37 tetR RFP are shown below(Eq.4) <sub>[6]</sub>:
  
                     <p class="equations">$$\frac{d[mLL37]}{dt}= K_{mLuxI}·β·[(A-R)_{2}]-deg_{mLL37}[mLL37]$$</p>
+
                     <p class="equations">$$\frac{d[mLL-37]}{dt}= K_{mLuxI}·β·[(A-R)_{2}]-deg_{mLL-37}[mLL-37]$$</p>
 
                     <p class="equations">$$\frac{d[mtetR]}{dt}= K_{mLuxI}·β·[(A-R)_{2}]-deg_{mtetR}[mtetR]$$</p>
 
                     <p class="equations">$$\frac{d[mtetR]}{dt}= K_{mLuxI}·β·[(A-R)_{2}]-deg_{mtetR}[mtetR]$$</p>
 
                     <p class="equations">$$\frac{d[mRFP]}{dt}= K_{mLuxI}·β·[(A-R)_{2}]-deg_{mRFP}[mRFP]$$</p>
 
                     <p class="equations">$$\frac{d[mRFP]}{dt}= K_{mLuxI}·β·[(A-R)_{2}]-deg_{mRFP}[mRFP]$$</p>
                     <p class="equations">$$\frac{d[LL37]}{dt}= k_{LL37}·[mLL37]-deg_{LL37}[LL37]$$</p>
+
                     <p class="equations">$$\frac{d[LL-37]}{dt}= k_{LL-37}·[mLL-37]-deg_{LL-37}[LL-37]$$</p>
 
                     <p class="equations">$$\frac{d[tetR]}{dt}= k_{tetR}·[tetR]-deg_{tetR}[tetR]$$</p>
 
                     <p class="equations">$$\frac{d[tetR]}{dt}= k_{tetR}·[tetR]-deg_{tetR}[tetR]$$</p>
 
                     <p class="equations">$$\frac{d[RFP]}{dt}= k_{RFP}·[RFP]-deg_{RFP}[RFP]$$</p>
 
                     <p class="equations">$$\frac{d[RFP]}{dt}= k_{RFP}·[RFP]-deg_{RFP}[RFP]$$</p>
 
                     <p class="equations">$$β=\frac{k_{a}+α[LuxR-AHL_{in}]_{2}}{k_{a}+[LuxR-AHL_{in}]_{2}}$$</p>
 
                     <p class="equations">$$β=\frac{k_{a}+α[LuxR-AHL_{in}]_{2}}{k_{a}+[LuxR-AHL_{in}]_{2}}$$</p>
                     <div class="sub">Equation 4. LL37, tetR and mRFP production simulation formula</div>
+
                     <div class="sub">Equation 4. LL-37, tetR and mRFP production simulation formula</div>
 
                 </p>
 
                 </p>
 
                 <p id="p16-2" style="margin-top:50px;">
 
                 <p id="p16-2" style="margin-top:50px;">
Line 352: Line 346:
 
                         </tr>
 
                         </tr>
 
                       <tr>
 
                       <tr>
                             <td>k<sub>LL37</sub></td>
+
                             <td>k<sub>LL-37</sub></td>
                             <td>translation rate of mLL37</td>
+
                             <td>translation rate of mLL-37</td>
 
                             <td>6.52</td>
 
                             <td>6.52</td>
 
                             <td>min<sup>-1</sup></td>
 
                             <td>min<sup>-1</sup></td>
Line 370: Line 364:
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
                             <td>d<sub>mLL37</sub></td>
+
                             <td>d<sub>mLL-37</sub></td>
                             <td>degradation rate of mLL37</td>
+
                             <td>degradation rate of mLL-37</td>
 
                             <td>0.24</td>
 
                             <td>0.24</td>
 
                             <td>min<sup>-1</sup></td>
 
                             <td>min<sup>-1</sup></td>
Line 388: Line 382:
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
                             <td>d<sub>LL37</sub></td>
+
                             <td>d<sub>LL-37</sub></td>
                             <td>degradation rate of LL37</td>
+
                             <td>degradation rate of LL-37</td>
 
                             <td>0.011</td>
 
                             <td>0.011</td>
 
                             <td>min<sup>-1</sup></td>
 
                             <td>min<sup>-1</sup></td>
Line 408: Line 402:
 
                 </table>
 
                 </table>
 
                 </div>
 
                 </div>
                 <div class="sub">Table 5. Parameters of LL37 tetR mRFP production simulation</div>
+
                 <div class="sub">Table 5. Parameters of LL-37 tetR RFP production simulation</div>
                 <img src="https://static.igem.org/mediawiki/2021/b/bb/T--NCTU_Formosa--LL.png" class="images" id=" Growth_PE" alt=" growth curve of E.coli and P.gingivalis"/>
+
                 <img src="https://static.igem.org/mediawiki/2021/e/eb/T--NCTU_Formosa--LL37_tetR_RFP_V.S._time.png" class="images" id=" Growth_PE" alt=" growth curve of E. coli and P. gingivalis"/>
 
                 <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                 <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                     role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 
                     role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
Line 415: Line 409:
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                     </path>
 
                     </path>
                 </svg>Figure 5. The simulation of LL37 and tetR</div>
+
                 </svg>Figure 4. The simulation of LL-37 and tetR</div>
 
             </div>
 
             </div>
  
 
             <div class="section s8">
 
             <div class="section s8">
                 <h1 class="topic" id="topic7">BMP2 STATH GFP Production Simulation</h1>
+
                 <h1 class="topic" id="topic8">BMP2 STATH GFP Production Simulation</h1>
 
                 <p id="p17-1">
 
                 <p id="p17-1">
                     &#8195;&#8195;When the concentration of bacteria is low, DenTeeth will start to produce BMP2, STATH and GFP. Thus, we want to predict the production of these proteins. Considering the Quorum Sensing Model, we can write down the formula(Eq.5) <sub>[7]</sub>:
+
                     &#8195;&#8195;When the concentration of bacteria was low, DenTeeth would start to produce BMP2, STATH and GFP. Thus, we wanted to predict the production of these proteins. Considering the Quorum Sensing Model, we could write down the formula(Eq.5) <sub>[7]</sub>:
 
                     <p class="equations">$$\frac{d[BMP2]}{dt}= C_{ptet} ·({l_{ptet}+\frac{1-l_{ptet}}{1+(\frac{[tet]}{k_{tet}})^{n_{tet}} } })-(d_{BMP2} ·[BMP2])$$</p>
 
                     <p class="equations">$$\frac{d[BMP2]}{dt}= C_{ptet} ·({l_{ptet}+\frac{1-l_{ptet}}{1+(\frac{[tet]}{k_{tet}})^{n_{tet}} } })-(d_{BMP2} ·[BMP2])$$</p>
 
                     <p class="equations">$$\frac{d[STATH]}{dt}= C_{ptet} ·({l_{ptet}+\frac{1-l_{ptet}}{1+(\frac{[tet]}{k_{tet}})^{n_{tet}} } })-(d_{STATH} ·[STATH])$$</p>
 
                     <p class="equations">$$\frac{d[STATH]}{dt}= C_{ptet} ·({l_{ptet}+\frac{1-l_{ptet}}{1+(\frac{[tet]}{k_{tet}})^{n_{tet}} } })-(d_{STATH} ·[STATH])$$</p>
Line 428: Line 422:
 
                 </p>
 
                 </p>
 
                 <p id="p17-2" style="margin-top:50px;">
 
                 <p id="p17-2" style="margin-top:50px;">
                     And the parameters (Tab5) can be seen below <sub>[7]</sub>:
+
                     And the parameters (Tab.5) can be seen below <sub>[7]</sub>:
 
                 </p>
 
                 </p>
 
                 <div class="table-scroll">
 
                 <div class="table-scroll">
Line 483: Line 477:
 
                 </div>
 
                 </div>
 
                 <div class="sub">Table 6. Parameters of BMP2, STATH and GFP production simulation</div>
 
                 <div class="sub">Table 6. Parameters of BMP2, STATH and GFP production simulation</div>
                 <img src="https://static.igem.org/mediawiki/2021/archive/9/95/20211013194309%21T--NCTU_Formosa--BMP2_STATH_GFP_V.S._time.png" class="images" id=" Concen_BSG" alt=" Concentration simulation of BSG"/>
+
                 <img src="https://static.igem.org/mediawiki/2021/9/95/T--NCTU_Formosa--BMP2_STATH_GFP_V.S._time.png" class="images" id=" Concen_BSG" alt=" Concentration simulation of BSG"/>
 
                 <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                 <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 
                     role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 
                     role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
Line 489: Line 483:
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                     </path>
 
                     </path>
                 </svg>Figure 6. The simulation of BMP2 and STATH</div>
+
                 </svg>Figure 5. The simulation of BMP2 and STATH</div>
                </div>
+
  
 
                 <p id="p18" style="margin-top:50px;">
 
                 <p id="p18" style="margin-top:50px;">
                     &#8195;&#8195;In order to observe the switching between sterilization and restoration of our engineered bacteria, we add RFP after the sterilization sequence and GFP after the restoration sequence. Next, we simulate the relative fluorescence intensity of RFP and GFP to know the actual operation of our engineering <i>bacteria</i>. The result is shown in the figure below. (Fig.7):
+
                     &#8195;&#8195;In order to observe the switching between inhibition and restoration of DenTeeth, we added RFP after the inhibition sequence and GFP after the restoration sequence. Next, we simulated the relative fluorescence intensity of RFP and GFP to know the actual operation of DenTeeth. The result is shown in the figure below. (Fig.6):
 
                 </p>
 
                 </p>
  
Line 502: Line 495:
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                         d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 
                     </path>
 
                     </path>
                 </svg>Figure 7. The relative intensity of GFP and RFP</div>
+
                 </svg>Figure 6. The relative intensity of GFP and RFP</div>
 +
            </div>
 +
 
 +
            <div class="section s9">
 +
                <h1 class="topic" id="topic9">Model Validation</h1>
 +
                <p id="p19">
 +
                    &#8195;&#8195;In order to ensure that our model’s predictions match the real situation, we did the experiment to verify the model. We used DenTeeth as the experimental group and <i>E. coli</i> without engineered as the control group. Then, incubated them at 37 degrees Celsius and measured the O.D. value, GFP and RFP expression an hour at a time in the time of 24 hours.<br>
 +
                    &#8195;&#8195;After the experiment, we found that it was necessary to consider the dead <i>E. coli</i> because it influenced the O.D. value. The following picture(Fig.7) is the adjusted growth curve of <i>E. coli</i>.
 +
 
 +
                </p>
 +
             
 +
                <img src="https://static.igem.org/mediawiki/2021/archive/9/93/20211021175709%21T--NCTU_Formosa--E.coli_validation.png" class="images" id=" Concen_BSG" alt=" Concentration simulation of BSG"/>
 +
                <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 +
                    role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 +
                    <path fill="currentColor"
 +
                        d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 +
                    </path>
 +
                </svg>Figure 7. The fitting result of the growth of <i>E. coli</i></div>
 +
 
 +
                <p id="p20">
 +
                    &#8195;&#8195;As you can see, the red line is the prediction growth curve of dead <i>E. coli</i> [<i>deadE. coli</i>(prediction)]. The blue line is the <i>E. coli</i> which is still alive [<i>liveE. coli</i>(prediction)]. And the black line is all the <i>E. coli</i> include living and dead, which is the prediction O.D. value [<i>totalE. coli</i>(predict)].
 +
                </p>
 +
 
 +
                <p id="p21">
 +
                    &#8195;&#8195;Next, we considered the expression of RFP. We subtracted the control group data from the experimental group and verified with the model. We found that the environment of the Erlenmeyer Flask was different from the paper. The degradation of RFP was lower than expected. Thus, we lowered the degradation rate and verified it with the experimental results again. The following picture(Fig.8) is the result.
 +
                </p>
 +
             
 +
                <img src="https://static.igem.org/mediawiki/2021/archive/c/cd/20211021203218%21T--NCTU_Formosa--RFP_validation.png" class="images" id=" Concen_BSG" alt=" Concentration simulation of BSG"/>
 +
                <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 +
                    role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 +
                    <path fill="currentColor"
 +
                        d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 +
                    </path>
 +
                </svg>Figure 8. The fitting result of the intensity of RFP</div>
 +
 
 +
                <p id="p22">
 +
                    &#8195;&#8195;Then, we fit the data of GFP. We also subtracted the control group data from the experimental group and verified with the model. We found that the expression of GFP exceeded expectations. So, we raised the translation rate of GFP and lowered the degradation rate. Although we did the same experiment for 24 hours, since the GFP expression had exceeded the detection range of the machine, the measured values were maintained at the maximum. Therefore, we only took the fata for the first 10 hours. The result is shown below. (Fig.9)
 +
                </p>
 +
             
 +
                <img src="https://static.igem.org/mediawiki/2021/archive/a/ab/20211021203046%21T--NCTU_Formosa--GFP_validation.png" class="images" id=" Concen_BSG" alt=" Concentration simulation of BSG"/>
 +
                <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 +
                    role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 +
                    <path fill="currentColor"
 +
                        d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 +
                    </path>
 +
                </svg>Figure 9. The fitting result of the intensity of GFP</div>
 +
 
 +
                <p id="p23">
 +
                    &#8195;&#8195;After the validation, we compared the expression of GFP and RFP. As you can see in the picture (Fig.10), because <i>E. coli</i> concentration was low at the beginning of the experiment, DenTeeth expressed GFP first. As <i>E. coli</i> continued to grow over time, it started to inhibit the expression of RFP. Then, the concentration of <i>E. coli</i> decreased due to the inhibition. DenTeeth turned to express GFP and started the restoration function. According to this experiment, we confirmed that the Quorum Sensing System of DenTeeth worked successfully.
 +
                </p>
 +
             
 +
                <img src="https://static.igem.org/mediawiki/2021/archive/1/18/20211021194255%21T--NCTU_Formosa--GFP_RFP_validation.png" class="images" id=" Concen_BSG" alt=" Concentration simulation of BSG"/>
 +
                <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 +
                    role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 +
                    <path fill="currentColor"
 +
                        d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 +
                    </path>
 +
                </svg>Figure 10. The fitting result of the intensity of GFP and RFP</div>
 +
 
 +
                <p id="p24">
 +
                    &#8195;&#8195;After finishing the whole validation, we predicted the LL-37, BMP2, and STATH expression again (Fig.11~Fig.12). 
 +
 
 +
                <img src="https://static.igem.org/mediawiki/2021/f/f4/T--NCTU_Formosa--LL37_validation.png" class="images" id=" Concen_BSG" alt=" Concentration simulation of BSG"/>
 +
                <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 +
                    role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 +
                    <path fill="currentColor"
 +
                        d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 +
                    </path>
 +
                </svg>Figure 11. The prediction of LL-37</div>
 +
 
 +
                <img src="https://static.igem.org/mediawiki/2021/9/91/T--NCTU_Formosa--BMP2_STATH_validation.png" class="images" id=" Concen_BSG" alt=" Concentration simulation of BSG"/>
 +
                <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 +
                    role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 +
                    <path fill="currentColor"
 +
                        d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 +
                    </path>
 +
                </svg>Figure 12. The prediction of BMP2 and STATH</div>
 +
 
 +
                <p id="p25">
 +
                    &#8195;&#8195;And we also predicted the new growth curve of <i>E. coli</i> and <i>P. gingivalis</i> with DenTeeth. As you can see in the picture (Fig.13), compared to the growth of P. gingivalis without DenTeeth (Fig.1), the final O.D. value of <i>P. gingivalis</i> <b>decreased from 0.7 to 0.08</b>, which showed that our DenTeeth could effectively kill <b>88%</b> of the pathogenic bacteria in dogs' oral cavities.
 +
 
 +
                <img src="https://static.igem.org/mediawiki/2021/2/2a/T--NCTU_Formosa--bacteria_with_DenTeeth.png" class="images" id=" Concen_BSG" alt=" Concentration simulation of BSG"/>
 +
                <div class="explanation"><svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up"
 +
                    role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512">
 +
                    <path fill="currentColor"
 +
                        d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z">
 +
                    </path>
 +
                </svg>Figure 13. The prediction of the growth of bacteria</div>
 +
 
 +
                <div class="numberList">
 +
                    <h class="number">+<span class="animateNum" data-animatetarget="88">0</span>%</h>
 +
                </div>
 +
 
 +
                                <p>DenTeeth can kill up to 88% of the pathogenic bacteria in dogs' oral cavities.</p> 
 +
 
 +
 
 +
 
 +
            </div>
 +
 
  
 
                 <hr />
 
                 <hr />
Line 508: Line 599:
 
                 <h1 class="topic-r">Reference</h1>
 
                 <h1 class="topic-r">Reference</h1>
 
                 <ol>
 
                 <ol>
                     <li class="ref">https://2020.igem.org/Team:NCTU_Formosa/Model</li>
+
                     <li class="ref">https://2020.igem.org/Team:NCTU_Formosa/Model </li>
 
                     <li class="ref"> Kim C, Wilkins K, Bowers M, Wynn C and Ndegwa E., et al. (2018). "Influence of Ph and Temperature on Growth Characteristics of Leading Foodborne Pathogens in a Laboratory Medium and Select Food Beverages.” Austin Food Sci. 2018; 3(1): 1031
 
                     <li class="ref"> Kim C, Wilkins K, Bowers M, Wynn C and Ndegwa E., et al. (2018). "Influence of Ph and Temperature on Growth Characteristics of Leading Foodborne Pathogens in a Laboratory Medium and Select Food Beverages.” Austin Food Sci. 2018; 3(1): 1031
 
                     </li>
 
                     </li>
                     <li class="ref">Kriebel K, Biedermann A, Kreikemeyer B, Lang H , et al(2013). “Anaerobic Co-Culture of Mesenchymal Stem Cells and Anaerobic Pathogens - A New In Vitro
+
                     <li class="ref">Kriebel K, Biedermann A, Kreikemeyer B, Lang H , et al(2013). “Anaerobic Co-Culture of Mesenchymal Stem Cells and Anaerobic Pathogens - A New In Vitro Model System.” PLoS ONE 8(11): e78226. doi:10.1371/journal.pone.0078226
Model System.” PLoS ONE 8(11): e78226. doi:10.1371/journal.pone.0078226
+
 
                     </li>
 
                     </li>
                     <li class="ref">Snoussi, M., Talledo, J. P., Del Rosario, N. A., Mohammadi, S., Ha, B. Y., Košmrlj, A., &amp; Taheri-Araghi, S., et al (2018). Heterogeneous absorption of antimicrobial peptide LL37 in Escherichia coli cells enhances population survivability. eLife, 7, e38174.
+
                     <li class="ref">Snoussi, M., Talledo, J. P., Del Rosario, N. A., Mohammadi, S., Ha, B. Y., Košmrlj, A., &amp; Taheri-Araghi, S., et al (2018). Heterogeneous absorption of antimicrobial peptide LL-37 in Escherichia coli cells enhances population survivability. eLife, 7, e38174.
 
                     </li>
 
                     </li>
                     <li class="ref">https://2019.igem.org/Team:NCTU_Formosa/QS_Model</li>
+
                     <li class="ref">https://2019.igem.org/Team:NCTU_Formosa/QS_Model </li>
                     <li class="ref">https://2019.igem.org/Team:HZAU-China/Model</li>
+
                     <li class="ref">https://2019.igem.org/Team:HZAU-China/Model </li>
                     <li class="ref">https://2013.igem.org/Team:TU-Delft/Timer_Plus_Sumo</li>
+
                     <li class="ref">https://2013.igem.org/Team:TU-Delft/Timer_Plus_Sumo </li>
 
                 </ol>
 
                 </ol>
 
                 </div>
 
                 </div>
Line 576: Line 666:
 
         margin-bottom: 2%;
 
         margin-bottom: 2%;
 
     }
 
     }
 +
 +
    .numberList {
 +
        width: 55%;
 +
        display: flex;
 +
        text-align: center;
 +
        justify-content: center;
 +
        align-items: center;
 +
        margin-left: auto;
 +
        margin-right: auto;
 +
        padding-left: 30%;
 +
        margin-top: 3%;
 +
        margin-bottom: 3%;
 +
 +
    }
 +
 +
 +
    .number span {
 +
        font-size: 4vw;
 +
        font-family: "OtomanopeeOne";
 +
        color: RGB(253, 172, 83);
 +
    }
 +
 +
    .numberList {
 +
            width: 80%;
 +
            justify-content: space-between;
 +
        }
 +
 +
        .numberList-left {
 +
            padding: 5%;
 +
        }
 +
 +
        .numberList-right {
 +
            padding: 5%;
 +
        }
 +
 +
        .number span {
 +
            font-size: 7vw;
 +
        }
 
     #headerbackground{
 
     #headerbackground{
 
         width: 100%;
 
         width: 100%;
Line 648: Line 776:
 
     }
 
     }
 
     .section p i{
 
     .section p i{
 +
        font-size: 1.5vw !important;
 +
    }
 +
    .section p b{
 
         font-size: 1.5vw !important;
 
         font-size: 1.5vw !important;
 
     }
 
     }
Line 665: Line 796:
 
     .ref{
 
     .ref{
 
         font-size: 1vw;
 
         font-size: 1vw;
 +
        /*overflow: auto;*/
 +
        text-align: justify;
 
         font-family: 'Noto Sans JP', sans-serif;
 
         font-family: 'Noto Sans JP', sans-serif;
 
         color: #696969;
 
         color: #696969;
Line 771: Line 904:
 
     }
 
     }
 
     .section p i{
 
     .section p i{
 +
        font-size: 5vw !important;
 +
    }
 +
    .section p b{
 
         font-size: 5vw !important;
 
         font-size: 5vw !important;
 
     }
 
     }
Line 802: Line 938:
 
     }
 
     }
 
</style>
 
</style>
 +
<link rel="stylesheet"
 +
    href="https://2021.igem.org/wiki/index.php?title= Template:NCTU_Formosa/runing.css &amp;action=raw&amp;ctype=text/css">
 +
<script type="text/javascript"
 +
    src="https://2021.igem.org/wiki/index.php?title=%20Template:NCTU_Formosa/runing.js%20&amp;action=raw&amp;ctype=text/javascript">
 +
</script>
 
<script type="text/javascript">
 
<script type="text/javascript">
 
     jq3("document").ready(function () {
 
     jq3("document").ready(function () {
Line 842: Line 983:
 
             jq3("html,body").animate({
 
             jq3("html,body").animate({
 
                 scrollTop: jq3("#topic7").offset().top
 
                 scrollTop: jq3("#topic7").offset().top
 +
            }, 800)
 +
        });
 +
        jq3("#mark8").click(function () {
 +
            jq3("html,body").animate({
 +
                scrollTop: jq3("#topic8").offset().top
 +
            }, 800)
 +
        });
 +
        jq3("#mark9").click(function () {
 +
            jq3("html,body").animate({
 +
                scrollTop: jq3("#topic9").offset().top
 
             }, 800)
 
             }, 800)
 
         });
 
         });

Latest revision as of 03:48, 22 October 2021


Loading...

dark_mode Dark Mode
  • Introduction
  • E. coli Simulation
  • P. gingivalis Simulation
  • Inhibition System of LL-37
  • Bacteria Growth Simulation with DenTeeth
  • Quorum Sensing System
  • LL-37 tetR RFP Production Simulation
  • BMP2 STATH GFP Production Simulation
  • Model Validation

Introduction

  The Prediction Model simulated and predicted the results of DenTeeth. First, we simulated the growth curve of E. coli and P. gingivalis in dogs’ oral environments. Then, we predicted the production of peptide LL-37, protein BMP2 and STATH. Next, we quantified the inhibition effect of LL-37 and predict the expression of BMP2 and STATH . In this way, we could predict the effect of DenTeeth.

E. coli Simulation

  In order to complete these simulations, we first constructed logical ODEs (Ordinary Differential Equations) to describe the growth curves of E. coli at 40℃ and pH value equal to 8. While this was close to the environment in dogs’ oral cavities.

Assumption:

  1. The nutrition of growth is sufficient to maintain a steady nutrition uptake rate.
  2. The cultivation environment is finite, and there is a stationary phase for the growth of E. coli.
  3. The bacteria mutation does not affect the growth curve.

Under these assumptions we could use the logistic function to describe the growth of bacteria(Eq.1) [1].

$$\frac{d[E. coli]}{dt}= g_{E. coli}[E. coli](1-\frac{[E. coli]}{E. coli_{Max}})$$

Equation 1. Final ODE system of the growth of E. coli

Parameters Description Values Units
gE. coli growth rate of E. coli [2] 0.0417 min-1
E. coliMax Maximum E. coli concentration [2] 1.5 O.D.
Table 1. Parameters of the growth of E. coli

  The logistic differential equation assumed the dynamic equilibrium of bacteria in the end. In order to visualize our derivation ODEs, we simulated the growth curve of E. coli. at 40℃ and pH value equal to 8.

P. gingivalis Simulation

  Next, in order to know how P. gingivalis grew under the inhibition of our dental bones, we used logical ODEs again to stimulate the growth curves of P. gingivalis [2]All the situations were the same as E. coli. Thus, the final ODE system(Eq.2) and its parameters (Tab2) of P. gingivalis can be seen below:

$$\frac{d[P]}{dt}= g_{P}[P](1-\frac{[P]}{P_{Max}})$$

Equation 2. Final ODE system of the growth of P. gingivalis

Parameters Description Values Units
gP growth rate of P. gingivalis [3] 0.0025 min-1
PMax Maximum P. gingivalis concentration [3] 0.7 O.D.
Table 2. Parameters of the growth of P. gingivalis
 growth curve of E. coli and P. gingivalis
Figure 1. The growth curve of E. coli and P. gingivalis

Inhibition System of LL-37

  To know how the bacteria in dogs’ oral cavities grew under the effect of our dental bones, we needed to calculate the inhibition amount of LL-37.
  LL-37 killed growing bacteria with a rate kk, and afterwards each dead cell quickly took up N [LL-37]. These [LL-37] were bound to the membrane as well as to the cytoplasm of the cell and are not recycled to attack other cells. The killing formula of LL-37 (1) and the time evolution of concentrations of available [LL-37] (2) was described by the following equations:

$$(1)\frac{d[B]}{dt}= −k_{k}⋅[B][LL-37]$$

$$(2)\frac{d[LL-37]}{dt}= −N⋅k_{k}[B][LL-37]$$

And the parameters (Tab3) of this system can be seen below:

Parameters Description Values Units
kk killing rate [4] 0.04 1/μM·min
N LL-37 absorbed per dead cell [4] 0.35 μM/O.D
Table 3. Parameters of the Inhibition System of LL-37

Bacteria Growth Simulation with DenTeeth

  Considered the previous growth model plus the killing formula of LL-37. We could write down the growth model of E. coli and P. gingivalis under the inhibition action of DenTeeth(Eq.3):

$$\frac{d[E. coli]}{dt}= g_{E. coli}(1-\frac{[E. coli]}{[E. coli_{Max}]})-k_{k}[B][LL-37]$$

$$\frac{d[P]}{dt}= g_{P}[P](1-\frac{[P]}{P_{Max}})-N⋅k_{k} [B][LL-37] $$

Equation 3. E. coli and P. gingivalis growth with DenTeeth
 growth curve of E. coli and P. gingivalis
Figure 2. The growth curve of E. coli and P. gingivalis with DenTeeth

  As we can see above, the concentration of P. gingivalis and E. coli were reduced. And finally they achieved dynamic balance.

Quorum Sensing System

  In order to make the functions of inhibition and repair don’t interfere with each one, DenTeeth would produce different proteins with different amounts of bacteria in dogs’ oral cavities by using the Quorum Sensing system(QS system).[5]

  Through predicting the Quorum Sensing system of DenTeeth, we could predict which function is working. Owing to the red and green fluorescence sequence in the DenTeeth, the fluorescence intensity experiment would validate the prediction.
  The QS system involved much interaction of compounds in and out of the cell. Thus, we used the following three assumptions for our model and used differential equations to describe the rate of change of each compound. With those assumptions, we could get the correlation with fluorescence intensity.

Assumption:

  1. The processes obey the law of mass action.
  2. Mean cell volume is a constant.
  3. Cell volume is much smaller than the total volume.

  Next, the change of (A-R)2 complex is decided by two reversible reaction and degradation.

$$AHL+LuxR⇌A-R$$

$$2(A-R)⇌(A-R)_{2}$$

  Furthermore, considering the change of (A-R)2 complex decided by reversible reaction and degradation. We derived and got the differential equation of AHL-LuxR dimer below:

$$\frac{d[A-R_{2}]}{dt}=-D_{(A-R)_{2}}[(A-R)_{2}]+k_{(A-R)_{2}}[A-R]^2-k'_{(A-R)_{2}}[(A-R)_{2}]-k_{Plux-(A-R)_{2}}[A-R][Plux]+k'_{Plux-(A-R)_{2}}[Plux-(A-R)_{2}]$$

  Then, we write down the differential equation of Plux-(A-R)2 complex:

$$\frac{d[Plux-(A-R)_{2}]}{dt}=+k_{Plux-(A-R)_{2}}[A-R][Plux]-k'_{Plux-(A-R)_{2}}[Plux-(A-R)_{2}]$$

Figure 3. The simulation of LuxI, LuxR, AR, and AR2 reaction

  And the parameters we use can seen below (Tab.4) [5]

Parameters Description Values Units
CLuxI generation rate of LuxI 0.5 min-1
CLuxR generation rate of LuxR 0.5 min-1
DLuxI degradation rate of LuxI 0.05 min-1
DLuxR degradation rate of LuxR 0.05 min-1
D(A-R)2 rate constant about AHL-LuxR complex 0.2 -
k(A-R)2 rate constant of forward reaction 0.003 -
k'(A-R)2 rate constant of reverse reaction 0.03 -
kPlux-(A-R)2 rate constant of forward reaction 0.05 -
k'Plux-(A-R)2 rate constant of reverse reaction 0.0062 -
Table 4. Parameters of Quorum Sensing System

LL-37 tetR RFP Production Simulation

  Because E. coli itself would also be affected by LL-37, in order to test whether this will further affect the concentration of the target product, we then used the analysis above to predict the concentration of these products over time.
  The total amount of AHL was composed of the initial AHL from the quorum sensing model. The AHL-LuxR complex would activate the Plux promoter , which could lead to the production of LL-37, tetR and mRFP.
  The prediction formula of LL-37 tetR RFP are shown below(Eq.4) [6]:

$$\frac{d[mLL-37]}{dt}= K_{mLuxI}·β·[(A-R)_{2}]-deg_{mLL-37}[mLL-37]$$

$$\frac{d[mtetR]}{dt}= K_{mLuxI}·β·[(A-R)_{2}]-deg_{mtetR}[mtetR]$$

$$\frac{d[mRFP]}{dt}= K_{mLuxI}·β·[(A-R)_{2}]-deg_{mRFP}[mRFP]$$

$$\frac{d[LL-37]}{dt}= k_{LL-37}·[mLL-37]-deg_{LL-37}[LL-37]$$

$$\frac{d[tetR]}{dt}= k_{tetR}·[tetR]-deg_{tetR}[tetR]$$

$$\frac{d[RFP]}{dt}= k_{RFP}·[RFP]-deg_{RFP}[RFP]$$

$$β=\frac{k_{a}+α[LuxR-AHL_{in}]_{2}}{k_{a}+[LuxR-AHL_{in}]_{2}}$$

Equation 4. LL-37, tetR and mRFP production simulation formula

And the parameters (Tab.5) can be seen below [6]:

Parameters Description Values Units
KmLuxI Plasmid copy number times LuxI transcription rate 23.3230 nM*min-1
ka Dissociation rate of LuxR-AHLin2 200 nM
α Basal expression of LuxI 0.01 -
kLL-37 translation rate of mLL-37 6.52 min-1
ktetR translation rate of mtetR 0.14 min-1
kRFP translation rate of mRFP 0.54 min-1
dmLL-37 degradation rate of mLL-37 0.24 min-1
dmtetR degradation rate of mtetR 0.35 min-1
dmRFP degradation rate of mRFP 0.258 min-1
dLL-37 degradation rate of LL-37 0.011 min-1
dtetR degradation rate of tetR 0.1386 min-1
dRFP degradation rate of RFP 0.498 min-1
Table 5. Parameters of LL-37 tetR RFP production simulation
 growth curve of E. coli and P. gingivalis
Figure 4. The simulation of LL-37 and tetR

BMP2 STATH GFP Production Simulation

  When the concentration of bacteria was low, DenTeeth would start to produce BMP2, STATH and GFP. Thus, we wanted to predict the production of these proteins. Considering the Quorum Sensing Model, we could write down the formula(Eq.5) [7]:

$$\frac{d[BMP2]}{dt}= C_{ptet} ·({l_{ptet}+\frac{1-l_{ptet}}{1+(\frac{[tet]}{k_{tet}})^{n_{tet}} } })-(d_{BMP2} ·[BMP2])$$

$$\frac{d[STATH]}{dt}= C_{ptet} ·({l_{ptet}+\frac{1-l_{ptet}}{1+(\frac{[tet]}{k_{tet}})^{n_{tet}} } })-(d_{STATH} ·[STATH])$$

$$\frac{d[GFP]}{dt}= C_{ptet} ·({l_{ptet}+\frac{1-l_{ptet}}{1+(\frac{[tet]}{k_{tet}})^{n_{tet}} } })-(d_{GFP} ·[GFP])$$

Equation 5. BMP2, STATH and GFP production simulation formula

And the parameters (Tab.5) can be seen below [7]:

Parameters Description Values Units
Ctet maximum transcription rate of ptet 2.79 min-1
Iptet leakage factor of ptet 0.002 -
ktet dissociation constant of ptet 6 -
ntet hills coefficient 3 -
dBMP2 degradation rate of BMP2 0.05 min-1
dSTATH degradation rate of STATH 0.0000248 min-1
dGFP degradation rate of GFP 0.347 min-1
Table 6. Parameters of BMP2, STATH and GFP production simulation
 Concentration simulation of BSG
Figure 5. The simulation of BMP2 and STATH

  In order to observe the switching between inhibition and restoration of DenTeeth, we added RFP after the inhibition sequence and GFP after the restoration sequence. Next, we simulated the relative fluorescence intensity of RFP and GFP to know the actual operation of DenTeeth. The result is shown in the figure below. (Fig.6):

 Concentration simulation of BSG
Figure 6. The relative intensity of GFP and RFP

Model Validation

  In order to ensure that our model’s predictions match the real situation, we did the experiment to verify the model. We used DenTeeth as the experimental group and E. coli without engineered as the control group. Then, incubated them at 37 degrees Celsius and measured the O.D. value, GFP and RFP expression an hour at a time in the time of 24 hours.
  After the experiment, we found that it was necessary to consider the dead E. coli because it influenced the O.D. value. The following picture(Fig.7) is the adjusted growth curve of E. coli.

 Concentration simulation of BSG
Figure 7. The fitting result of the growth of E. coli

  As you can see, the red line is the prediction growth curve of dead E. coli [deadE. coli(prediction)]. The blue line is the E. coli which is still alive [liveE. coli(prediction)]. And the black line is all the E. coli include living and dead, which is the prediction O.D. value [totalE. coli(predict)].

  Next, we considered the expression of RFP. We subtracted the control group data from the experimental group and verified with the model. We found that the environment of the Erlenmeyer Flask was different from the paper. The degradation of RFP was lower than expected. Thus, we lowered the degradation rate and verified it with the experimental results again. The following picture(Fig.8) is the result.

 Concentration simulation of BSG
Figure 8. The fitting result of the intensity of RFP

  Then, we fit the data of GFP. We also subtracted the control group data from the experimental group and verified with the model. We found that the expression of GFP exceeded expectations. So, we raised the translation rate of GFP and lowered the degradation rate. Although we did the same experiment for 24 hours, since the GFP expression had exceeded the detection range of the machine, the measured values were maintained at the maximum. Therefore, we only took the fata for the first 10 hours. The result is shown below. (Fig.9)

 Concentration simulation of BSG
Figure 9. The fitting result of the intensity of GFP

  After the validation, we compared the expression of GFP and RFP. As you can see in the picture (Fig.10), because E. coli concentration was low at the beginning of the experiment, DenTeeth expressed GFP first. As E. coli continued to grow over time, it started to inhibit the expression of RFP. Then, the concentration of E. coli decreased due to the inhibition. DenTeeth turned to express GFP and started the restoration function. According to this experiment, we confirmed that the Quorum Sensing System of DenTeeth worked successfully.

 Concentration simulation of BSG
Figure 10. The fitting result of the intensity of GFP and RFP

  After finishing the whole validation, we predicted the LL-37, BMP2, and STATH expression again (Fig.11~Fig.12).  Concentration simulation of BSG

Figure 11. The prediction of LL-37
 Concentration simulation of BSG
Figure 12. The prediction of BMP2 and STATH

  And we also predicted the new growth curve of E. coli and P. gingivalis with DenTeeth. As you can see in the picture (Fig.13), compared to the growth of P. gingivalis without DenTeeth (Fig.1), the final O.D. value of P. gingivalis decreased from 0.7 to 0.08, which showed that our DenTeeth could effectively kill 88% of the pathogenic bacteria in dogs' oral cavities.  Concentration simulation of BSG

Figure 13. The prediction of the growth of bacteria
+0%

DenTeeth can kill up to 88% of the pathogenic bacteria in dogs' oral cavities.


Reference

  1. https://2020.igem.org/Team:NCTU_Formosa/Model
  2. Kim C, Wilkins K, Bowers M, Wynn C and Ndegwa E., et al. (2018). "Influence of Ph and Temperature on Growth Characteristics of Leading Foodborne Pathogens in a Laboratory Medium and Select Food Beverages.” Austin Food Sci. 2018; 3(1): 1031
  3. Kriebel K, Biedermann A, Kreikemeyer B, Lang H , et al(2013). “Anaerobic Co-Culture of Mesenchymal Stem Cells and Anaerobic Pathogens - A New In Vitro Model System.” PLoS ONE 8(11): e78226. doi:10.1371/journal.pone.0078226
  4. Snoussi, M., Talledo, J. P., Del Rosario, N. A., Mohammadi, S., Ha, B. Y., Košmrlj, A., & Taheri-Araghi, S., et al (2018). Heterogeneous absorption of antimicrobial peptide LL-37 in Escherichia coli cells enhances population survivability. eLife, 7, e38174.
  5. https://2019.igem.org/Team:NCTU_Formosa/QS_Model
  6. https://2019.igem.org/Team:HZAU-China/Model
  7. https://2013.igem.org/Team:TU-Delft/Timer_Plus_Sumo
footer_bg footer_nctu footer_fox
FOLLOW US
fb ig
CONTACT US
mail
LOCATION
location