Difference between revisions of "Team:NCKU Tainan/Improvement"

Line 36: Line 36:
 
             <!--section name:Overview-->
 
             <!--section name:Overview-->
 
                     <h2 id ="Subtitle1">Overview</h2>
 
                     <h2 id ="Subtitle1">Overview</h2>
                         <p>In our project, the superfolder green fluorescent protein (sfGFP) allows better quantification of promoter strength and sensitivity.<sup>[<a href="#ref1">1</a>,<a href="#ref2">2</a>]</sup>. In the oxidative stress sensing system biobrick, we improved the <a href="http://parts.igem.org/Part:BBa_K2610031">biobrick BBa_K2610031</a> from the <a href="https://2019.igem.org/Team:Leiden">2019 iGEM Leiden team</a> by changing GFP (<a href="http://parts.igem.org/Part:BBa_E0040">BBa_E0040</a>)<sup>[<a href="#ref2">2</a>]</sup>. into sfGFP(<a href="http://parts.igem.org/Part:BBa_I746916">BBa_I746916</a>), which is hypothesized to have a higher expression level than GFP [Fig. 1]. We also added transcription activator SoxR to our biobrick for increased function of the oxidative stress sensing system<sup>[<a href="#ref3">3</a>]</sup>.
+
                         <p>   In our project, the superfolder green fluorescent protein (sfGFP) allows better quantification of promoter strength and sensitivity.<sup>[<a href="#ref1">1</a>,<a href="#ref2">2</a>]</sup>. In the oxidative stress sensing system biobrick, we improved the <a href="http://parts.igem.org/Part:BBa_K2610031">biobrick BBa_K2610031</a> from the <a href="https://2019.igem.org/Team:Leiden">2019 iGEM Leiden team</a> by changing GFP (<a href="http://parts.igem.org/Part:BBa_E0040">BBa_E0040</a>)<sup>[<a href="#ref2">2</a>]</sup>. into sfGFP(<a href="http://parts.igem.org/Part:BBa_I746916">BBa_I746916</a>), which is hypothesized to have a higher expression level than GFP [Fig. 1]. We also added transcription activator SoxR to our biobrick for increased function of the oxidative stress sensing system<sup>[<a href="#ref3">3</a>]</sup>.
 
                   <div class="container-fluid p-0">
 
                   <div class="container-fluid p-0">
 
                             <div class="row no-gutters">
 
                             <div class="row no-gutters">
Line 102: Line 102:
 
                         </div>
 
                         </div>
  
                         <p><p>    Then, we carried out SDS-PAGE to check the protein expression of TAL, both with TyrP and without TyrP. The expected protein size of TAL is 54 kDa and the expected protein size of TyrP is 43 kDa. As seen in the results below, however, there’s no distinguishable band around both sizes.</p>
+
                         <p>    With sfGFP, the induced system result can be checked under UV light, making it easier to tell the difference between each inducer. [Fig 2.]</p>
                        <div class="container-fluid p-0">
+
 
 +
                  <div class="container-fluid p-0">
 
                             <div class="row no-gutters">
 
                             <div class="row no-gutters">
 
                                 <div class="col-lg ">
 
                                 <div class="col-lg ">
 
                                     <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                                     <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                                         <!-- put link in href & src , width in a can adjust-->
 
                                         <!-- put link in href & src , width in a can adjust-->
                                         <a href="https://static.igem.org/mediawiki/2019/0/02/T--NCKU_Tainan--Result-SDSPAGE_2.jpg" target="_blank" style="width:50%"><img src="https://static.igem.org/mediawiki/2019/0/02/T--NCKU_Tainan--Result-SDSPAGE_2.jpg" alt="" title="" style="width:100%"></a>
+
                                         <a href="https://static.igem.org/mediawiki/2021/8/88/T--NCKU_Tainan--PsoxS_Disk_Assay.png" target="_blank" style="width:50%"><img src="https://static.igem.org/mediawiki/2021/8/88/T--NCKU_Tainan--PsoxS_Disk_Assay.png" alt="" title="" style="width:100%"></a>
 
                                         <figcaption>Fig. 3. 12% SDS PAGE of <i>E. coli</i> Nissle 1917 with different plasmids. M: Marker; Lane 1: Wild Type; Lane 2: pSB1C3; Lane 3: BBa_K2997009 ; Lane 4: BBa_K2997010; Lane 5: Dual plasmid containing BBa_K2997009 and BBa_K2997000; Lane 6: Dual plasmid containing BBa_K29970010  and BBa_K2997000 ; Lane 7: Positive control (c.d. 3392)</figcaption>
 
                                         <figcaption>Fig. 3. 12% SDS PAGE of <i>E. coli</i> Nissle 1917 with different plasmids. M: Marker; Lane 1: Wild Type; Lane 2: pSB1C3; Lane 3: BBa_K2997009 ; Lane 4: BBa_K2997010; Lane 5: Dual plasmid containing BBa_K2997009 and BBa_K2997000; Lane 6: Dual plasmid containing BBa_K29970010  and BBa_K2997000 ; Lane 7: Positive control (c.d. 3392)</figcaption>
 
                                     </figure>
 
                                     </figure>

Revision as of 15:35, 20 October 2021




Overview

In our project, the superfolder green fluorescent protein (sfGFP) allows better quantification of promoter strength and sensitivity.[1,2]. In the oxidative stress sensing system biobrick, we improved the biobrick BBa_K2610031 from the 2019 iGEM Leiden team by changing GFP (BBa_E0040)[2]. into sfGFP(BBa_I746916), which is hypothesized to have a higher expression level than GFP [Fig. 1]. We also added transcription activator SoxR to our biobrick for increased function of the oxidative stress sensing system[3].

Fig.1. Improvement big picture

Results

Disk assay

Disk assay was used to check the effect of each inducer. The concentration of the different inducers we used are listed below:

Inducer Volume per disk
H2O2s (30%) 10μl
H2O2w (3%) 10μl
MD (menadione)(10mM) 10μl
DMSO (solvent for MD) 10μl
PQ (paraquat)(1mM) 10μl
MQ (solvent for PQ) 10μl
Table 1. Oxidative stress inducers

With sfGFP, the induced system result can be checked under UV light, making it easier to tell the difference between each inducer. [Fig 2.]

Fig. 3. 12% SDS PAGE of E. coli Nissle 1917 with different plasmids. M: Marker; Lane 1: Wild Type; Lane 2: pSB1C3; Lane 3: BBa_K2997009 ; Lane 4: BBa_K2997010; Lane 5: Dual plasmid containing BBa_K2997009 and BBa_K2997000; Lane 6: Dual plasmid containing BBa_K29970010 and BBa_K2997000 ; Lane 7: Positive control (c.d. 3392)

Finally, to confirm the protein activity of TAL and TyrP, we performed a functional test using n-octanol extraction method, which was previously proposed by iGEM_Uppsala 2013 and has been verified by HPLC[3]. The p-Coumaric acid concentration was measured through the absorbance value at 310 nm wavelength under Nanodrop UV-Vis wavelength.

Fig. 4. p-Coumaric acid/OD600 levels of E. coli Nissle with TAL and tyrP in LB with 1mM tyrosine incubated for 48 hours.

We compared the TAL constructs containing the native and B0034 ribosome binding sites, (BBa_K2997009 and BBa_K2997010) to determine if p-Coumaric Acid production is improved by changing the ribosome binding sites. From the results seen in Fig. 4, BBa_K2997010 is able to produce a higher amount of p-Coumaric acid. Hence, we are able to prove that by changing the RBS (from Native to B0034), the conversion of tyrosine into p-Coumaric acid can increase by 1.73-fold. Therefore, we have shown that we have improved a previous BioBrick.

For more information, please visit our Results page.

References

  1. https://2007.igem.org/wiki/index.php/Edinburgh/Team
  2. Chen, H., Bjerknes, M., Kumar, R., & Jay, E. (1994). Determination of the optimal aligned spacing between the Shine – Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Research, 22(23), 4953–4957.
  3. https://2013.igem.org/Team:Uppsala