Difference between revisions of "Team:HUST-China/Design"

(Created page with "<!-- # TODO: #6 Fix table caption font--><!-- # TODO: #7 Fix citations links font size--><html lang="en"><head><meta charset="utf-8"/><meta content="width=device-width,initial...")
 
Line 1: Line 1:
<!-- # TODO: #6 Fix table caption font--><!-- # TODO: #7 Fix citations links font size--><html lang="en"><head><meta charset="utf-8"/><meta content="width=device-width,initial-scale=1" name="viewport"/><link href="https://2021.igem.org/Template:HUST-China/css/contentCSS?action=raw&amp;ctype=text/css" rel="stylesheet"/><title>Design | iGEM HUST-China</title><link href="https://2021.igem.org/Template:HUST-China/css/contentCSS?action=raw&amp;ctype=text/css" rel="stylesheet"/></head><body><!-- # TODO: #6 Fix table caption font--><!-- # TODO: #7 Fix citations links font size--><nav class="navbar navbar-expand-xl fixed-top"><div class="container d-flex justify-content-between"><a class="navbar-brand" href="https://2021.igem.org/Team:HUST-China"><i class="navbar-logo-left"></i><span>HUST-China</span></a><button aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation" class="navbar-toggler" data-target="#navbarNav" data-toggle="collapse" type="button"><span class="navbar-toggler-icon"></span></button><div class="collapse navbar-collapse" id="navbarNav"><ul class="navbar-nav ml-auto"><li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true" class="nav-link dropdown-toggle" data-toggle="dropdown" href="#" id="navbarProjectDropdown" role="button">Project</a><div aria-labelledby="navbarProjectDropdown" class="dropdown-menu"><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Description">Description</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Design">Design</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Proof_Of_Concept">Proof of Concept</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Safety">Safety</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Implementation">Proposed Implementation</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Contribution">Contribution</a></div></li><li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true" class="nav-link dropdown-toggle" data-toggle="dropdown" href="#" id="navbarHuman PracticesDropdown" role="button">Human Practices</a><div aria-labelledby="navbarHuman PracticesDropdown" class="dropdown-menu"><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Human_Practices">Overview</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Human_Practices_01">Part 1</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Human_Practices_02">Part 2</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Collaborations">Part 3</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Education">Part 4</a></div></li><li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true" class="nav-link dropdown-toggle" data-toggle="dropdown" href="#" id="navbarModelingDropdown" role="button">Modeling</a><div aria-labelledby="navbarModelingDropdown" class="dropdown-menu"><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Model">Overview</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Gene_Pathway">Gene Pathway</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Dye_color_forecast">Dye color forecast</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Micronucleus_Counter">Micronucleus Counter</a></div></li><li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true" class="nav-link dropdown-toggle" data-toggle="dropdown" href="#" id="navbarProductsDropdown" role="button">Products</a><div aria-labelledby="navbarProductsDropdown" class="dropdown-menu"><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Products">Overview</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Software">Software</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Hardware">Hardware</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Another_Area">Another Area</a></div></li><li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true" class="nav-link dropdown-toggle" data-toggle="dropdown" href="#" id="navbarExperimentsDropdown" role="button">Experiments</a><div aria-labelledby="navbarExperimentsDropdown" class="dropdown-menu"><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Experiments">Overview</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Parts">Parts</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Engineering">Engineering Success</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Results">Results</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Protocol">Protocol</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Notebook">Notebook</a></div></li><li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true" class="nav-link dropdown-toggle" data-toggle="dropdown" href="#" id="navbarPeopleDropdown" role="button">People</a><div aria-labelledby="navbarPeopleDropdown" class="dropdown-menu"><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Team">Team</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Partnership">Partnership</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Attributions">Attributions</a></div></li><li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true" class="nav-link dropdown-toggle" data-toggle="dropdown" href="#" id="navbarAchievementsDropdown" role="button">Achievements</a><div aria-labelledby="navbarAchievementsDropdown" class="dropdown-menu"><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Judging">Judging</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/https:/video.igem.org/w/aMwNT6eBryGs8xG5avXD51">Promotion Video</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/https:/igem.org/2021_Judging_Form?id=3711">Judging Form</a></div></li></ul></div></div></nav><div class="navbar-extra fixed-top"></div><header class="d-flex justify-content-center align-items-center"><div class="container"><h1 id="Top">Design</h1><p class="lead pl-1"></p><hr class="my-4"/></div></header><main><div class="container"><div class="row"><div class="sidebar col-lg-3"><div class="nav" id="contents"><h5>Contents</h5><ul></ul></div></div><div class="content col-lg-9"><article><h1>Introduction</h1><p>How do we achieve <em>perming and dyeing</em> through synthetic biology methods?</p><p>Engineered yeast producing natural pigments and short peptides with abundant sulfhydryl was designed. A xylose responding system was also created to made the pigment fade and turn the curled hair straight, resuming the hair to its original state.</p><h1>Perm</h1><p>The key in perming lies in re-conformation of disulfide bonds, and pepACS is used to reform the disulfide bonds between fibers within the cortex when the hair is bent by external forces. DsbC is used to straighten the hair following the same principal.</p><div class="image"><img alt="design1" src="https://static.igem.org/mediawiki/2021/b/ba/T--HUST-China--img--design--design1.png" style="width: 100%"/><p>Figure 1: design1</p></div><div class="modal-btn"><button class="btn btn-warning pull-right" data-target="#design1" data-toggle="modal" type="button">Read More</button><div aria-hidden="true" aria-labelledby="design1Label" class="modal fade" data-backdrop="static" data-keyboard="false" id="design1" tabindex="-1"><div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl"><div class="modal-content"><div class="modal-header"><h5 class="modal-title" id="design1Label">design1</h5></div><div class="modal-body"><p>PERM: Various reagents used in traditional perming, such as mercaptoacetic acid, hydrogenperoxide and P-phenylpropanediamine are allergic and carcinogenic in addition to causing serious damage to hair. In order to minimize the damage to health and hair during perming process, short peptides with abundant sulfhydryl were chosen as the reductant[1]. Three short peptides selected based on modeling result, including PepA, PepB and SPB, were connected with Rigid Linker (PepACS). The rigid linker is more prone to form α-helix, which can separate sulfhydryl preventing them from reacting with each other. The complex is small enough to enter the cortex through the cuticle and form dislocated disulfide bonds with α-keratins, which can change the shape of hair.</p><div class="image"><img alt="design2" src="https://static.igem.org/mediawiki/2021/8/86/T--HUST-China--img--design--design2.png" style="width: 100%"/><p>Figure 2: design2</p></div><div class="image"><img alt="design3" src="https://static.igem.org/mediawiki/2021/2/2b/T--HUST-China--img--design--design3.png" style="width: 100%"/><p>Figure 3: design3</p></div></div><div class="modal-footer"><button class="btn btn-danger" data-dismiss="modal" type="button">Close</button></div></div></div></div></div><p>UNDO: Disulfide isomerase has been proven to help open up cuticle and give short peptides easier access into the cortex[2]. Connecting disulfide isomerase and short peptides with GS-linker (DsbC) can therefore allow more short peptides to enter cuticle. When DsbC is applied on hair fixed by external forces, it forms more disulfide bonds without unpaired sulfhydryl thereby straightening the hair.</p><div class="image"><img alt="design4" src="https://static.igem.org/mediawiki/2021/0/06/T--HUST-China--img--design--design4.png" style="width: 100%"/><p>Figure 4: design4</p></div><div class="modal-btn"><button class="btn btn-warning pull-right" data-target="#Design2" data-toggle="modal" type="button">Read More</button><div aria-hidden="true" aria-labelledby="Design2Label" class="modal fade" data-backdrop="static" data-keyboard="false" id="Design2" tabindex="-1"><div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl"><div class="modal-content"><div class="modal-header"><h5 class="modal-title" id="Design2Label">Design2</h5></div><div class="modal-body"><p>The amino acid sequence of GS-linker is GGGGGSGGGGGSGGGGGS, determined by modeling.</p></div><div class="modal-footer"><button class="btn btn-danger" data-dismiss="modal" type="button">Close</button></div></div></div></div></div><h1>Dye</h1><h2><span style="color:blue">BLUE: Indigo</span></h2><p><strong>DYE:</strong> We chose indigo as dye for blue. Indole is oxidized by FMO into leucoindigo[3]. It is reduced to leucoindigo by ethanol and lactic acid produced by Pichia pastoris, which can better adhere to hair. Leucoindigo is then oxidized by oxygen into indigo to turn the hair blue.</p><div class="image"><img alt="design5" src="https://static.igem.org/mediawiki/2021/b/ba/T--HUST-China--img--design--design5.png" style="width: 100%"/><p>Figure 5: design5</p></div><p><strong>UNDO:</strong> Laccase can oxidize indigo into colorless substances[4].</p><div class="image"><img alt="design6" src="https://static.igem.org/mediawiki/2021/3/34/T--HUST-China--img--design--design6.png" style="width: 100%"/><p>Figure 6: design6</p></div><div class="modal-btn"><button class="btn btn-warning pull-right" data-target="#Design3" data-toggle="modal" type="button">Read More</button><div aria-hidden="true" aria-labelledby="Design3Label" class="modal fade" data-backdrop="static" data-keyboard="false" id="Design3" tabindex="-1"><div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl"><div class="modal-content"><div class="modal-header"><h5 class="modal-title" id="Design3Label">Design3</h5></div><div class="modal-body"><p>Indigo is one of the oldest dyes applied in textile dyeing [7], and we explored its efficacy in hair dyeing in our project.</p><p>Indole, the pigment precursor, is oxidized by flavin containing monooxygenase (FMO) into indigo. It is then reduced to leucoindigo since indigo can only adhere to the surface of hair due to its poor water solubility. Compared to indigo, leucoindigo has fine water solubility therefore it can enter the cortex providing better sustainability of hair color, which, after being oxidized into indigo, would endow the hair with blue.</p><div class="image"><img alt="design7" src="https://static.igem.org/mediawiki/2021/6/61/T--HUST-China--img--design--design7.png" style="width: 100%"/><p>Figure 7: design7</p></div></div><div class="modal-footer"><button class="btn btn-danger" data-dismiss="modal" type="button">Close</button></div></div></div></div></div><h2><span style="color:yellow">YELLOW: Curcumin</span></h2><p><strong>DYE:</strong> Curcumin was chosen as the dye for yellow. The ferulic acid is catalyzed into curcumin with the aid of 4CL, ACC and CUS.</p><div class="image"><img alt="design8" src="https://static.igem.org/mediawiki/2021/6/61/T--HUST-China--img--design--design8.png" style="width: 100%"/><p>Figure 8: design8</p></div><p>UNDO: Curcumin reductase(curA) can reduce curcumin to colorless tetrahydrocurcumin[9].</p><div class="image"><img alt="design9" src="https://static.igem.org/mediawiki/2021/b/b2/T--HUST-China--img--design--design9.png" style="width: 100%"/><p>Figure 9: design9</p></div><div class="modal-btn"><button class="btn btn-warning pull-right" data-target="#Design4" data-toggle="modal" type="button">Read More</button><div aria-hidden="true" aria-labelledby="Design4Label" class="modal fade" data-backdrop="static" data-keyboard="false" id="Design4" tabindex="-1"><div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl"><div class="modal-content"><div class="modal-header"><h5 class="modal-title" id="Design4Label">Design4</h5></div><div class="modal-body"><p>Conformed by some paper, curcumin has some health benefit derived from its oxidation resistance and anti-inflammatory effects. What's more, it is also widely used as seasoning and colorant in food industry[8].</p><p>The ferulic acid is catalyzed into p-Coumaroyl-CoA by p-coumaryl-CoA ligase(4CL). Acetyl coenzyme A is turned into malonyl coenzyme by acetyl-CoA carboxylase(ACC), with which p-Coumaroyl-CoA is synthesized into curcumin by curcumin synthase(CUS)[5].</p></div><div class="modal-footer"><button class="btn btn-danger" data-dismiss="modal" type="button">Close</button></div></div></div></div></div><h2><span style="color:red">RED: Lycopene</span></h2><p><strong>DYE:</strong> Lycopene was opted for red dye. FPP can be synthesized into lycopene by crtE, crtB and crtI[6].</p><div class="image"><img alt="design10" src="https://static.igem.org/mediawiki/2021/f/f5/T--HUST-China--img--design--design10.png" style="width: 100%"/><p>Figure 10: design10</p></div><p><strong>UNDO:</strong> LOX2 can oxidize lycopene and make it fade.</p><div class="image"><img alt="design11" src="https://static.igem.org/mediawiki/2021/6/67/T--HUST-China--img--design--design11.png" style="width: 100%"/><p>Figure 11: design11</p></div><div class="modal-btn"><button class="btn btn-warning pull-right" data-target="#Design5" data-toggle="modal" type="button">Read More</button><div aria-hidden="true" aria-labelledby="Design5Label" class="modal fade" data-backdrop="static" data-keyboard="false" id="Design5" tabindex="-1"><div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl"><div class="modal-content"><div class="modal-header"><h5 class="modal-title" id="Design5Label">Design5</h5></div><div class="modal-body"><p>Lycopene has shown a promising potential in inhibiting cancer growth as well as other health benefits[10]. Research has investigated the effectiveness of lycopene being fabric dye and food coloring[12], but rarely do people look into the potentiality of lycopene being a hair colorant.</p><p>GGPP synthetase(crtE) catalyzes FPP into GGPP, which is turned into octahydrolycopene by octahydrolycopene synthase(crtB). With Octahydrolycopene dehydrogenase catalyzing octahydrolycopene, lycopene is produced[6]. Lipoxygenase (LOX2) can oxidize lycopene into colorless linoleic acid.</p></div><div class="modal-footer"><button class="btn btn-danger" data-dismiss="modal" type="button">Close</button></div></div></div></div></div><h1>Choice of chassis organism</h1><p>We chose pichia pastoris as our chassis organism because it possesses multiple advantages other protein expression systems don't. Featuring inducible strong promoters, high expression, high stability, high biological activity of expression product, P. pastoris has another advantage that exogenous genes can be integrated into chromosomes. Moreover, it eliminates our safety concerns. Yeast is classified as biosafety level 1 organism, which poses little threat to human and the environment, and we chose the histidine defect type of pichia pastoris which can't survive outside a certain culture media.</p><h1>Xylose Responding System</h1><p>Mr. Tony project not only can achieve perm and dyeing, but also has the function of resuming the hair to its original state, realized by the xylose responding system in which the xylose induced promoter and genes of corresponding enzymes are introduced.</p><div class="image"><img alt="design12" src="https://static.igem.org/mediawiki/2021/7/75/T--HUST-China--img--design--design12.png" style="width: 100%"/><p>Figure 12: design12</p></div><div class="modal-btn"><button class="btn btn-warning pull-right" data-target="#Design6" data-toggle="modal" type="button">Read More</button><div aria-hidden="true" aria-labelledby="Design6Label" class="modal fade" data-backdrop="static" data-keyboard="false" id="Design6" tabindex="-1"><div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl"><div class="modal-content"><div class="modal-header"><h5 class="modal-title" id="Design6Label">Design6</h5></div><div class="modal-body"><p>When we want to turn the permed hair straight and the colored hair fade, we can add xylose into the system. If the concentration of xylose touches the threshold, xylose acts on xylose-induced promoter Pynr071c to express enzymes that could resume the hair, as well as ROX1. The expressed ROX1 can inhibit the front-end pathway by acting on promoter Panb1, meaning stops producing pigments and short peptides. Meanwhile, corresponding enzymes are produced to make the pigment fade. For indigo, it is laccase; for curcumin, curcumin reductase(curA); for lycopene, lipoxygenase (LOX2). Gene of DsbC is inserted into the pathway to straighten the curled hair.</p></div><div class="modal-footer"><button class="btn btn-danger" data-dismiss="modal" type="button">Close</button></div></div></div></div></div><h1>Hardware</h1><p>We designed a small fermenter and used the filter membrane to separate the product from the yeast for safe use.</p><p>In addition, a hair dyeing comb was designed for applying hair dye cream in real life scenarios. (Please refer to <a href="https://2021.igem.org/Team:HUST-China/Design/Hardware">hardware</a> for detailed information)</p><div class="row g-0"><div class="col-4 girl"><img src="https://static.igem.org/mediawiki/2021/2/28/T--HUST-China--img--girl.png"/></div><div class="col-5"><div class="dialogbox"><p>The design of pathways is truly intriguing, right?! But will it work? If you share the same confusion with me, let's take a look at the <a href="https://2021.igem.org/Team:HUST-China/Design/Proof Of Concept">proof of concept</a>-</p></div></div></div></article><article id="references"><h1>References</h1><ol><li id="citation1"><p class="author">Sun, Y., Wang, C., Sun, M., &amp; Fan, Z. (2021).</p><cite>Bioinspired polymeric pigments to mimic natural hair coloring.</cite><p><span class="journalTitle">RSC Advances</span> <span class="journalInfo">11(3), 1694-1699.</span></p><a class="in-text" href="https://doi.org/10.1039/D0RA09539G" rel="noopener" target="_blank">CrossRef</a><a class="in-text" href="https://scholar.google.com/scholar?q=Bioinspired polymeric pigments to mimic natural hair coloring." rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext1">Back to text</a></li><li id="citation2"><p class="author">Fernandes, M., &amp; Cavaco-Paulo, A. (2011).</p><cite>Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair.</cite><p><span class="journalTitle">Biocatalysis and Biotransformation</span> <span class="journalInfo">30(1), 10-19.</span></p><a class="in-text" href="https://doi.org/10.3109/10242422.2012.644436" rel="noopener" target="_blank">CrossRef</a><a class="in-text" href="https://scholar.google.com/scholar?q=Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair." rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext2">Back to text</a></li><li id="citation3"><p class="author">Liu, Y., Yan, M., Geng, Y., &amp; Huang, J. (2015).</p><cite>ABTS-Modified Silica Nanoparticles as Laccase Mediators for Decolorization of Indigo Carmine Dye.</cite><p><span class="journalTitle">Journal of Chemistry</span> <span class="journalInfo">2015, 1-7.</span></p><a class="in-text" href="https://doi.org/10.1155/2015/670194" rel="noopener" target="_blank">CrossRef</a><a class="in-text" href="https://scholar.google.com/scholar?q=ABTS-Modified Silica Nanoparticles as Laccase Mediators for Decolorization of Indigo Carmine Dye." rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext3">Back to text</a></li><li id="citation4"><p class="author">KATSUYAMA, Y., HIROSE, Y., FUNA, N., OHNISHI, Y., &amp; HORINOUCHI, S. (2010).</p><cite>Precursor-Directed Biosynthesis of Curcumin Analogs inEscherichia coli.</cite><p><span class="journalTitle">Bioscience, Biotechnology, and Biochemistry</span> <span class="journalInfo">74(3), 641-645.</span></p><a class="in-text" href="https://doi.org/10.1271/bbb.90866" rel="noopener" target="_blank">CrossRef</a><a class="in-text" href="https://scholar.google.com/scholar?q=Precursor-Directed Biosynthesis of Curcumin Analogs inEscherichia coli." rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext4">Back to text</a></li><li id="citation5"><p class="author">Yamano, S., Ishii, T., Nakagawa, M., Ikenaga, H., &amp; Misawa, N. (1994). Metabolic Engineering for Production of -Carotene and Lycopene inSaccharomyces cerevisiae. Bioscience, Biotechnology, and Biochemistry, 58(6), 1112-1114.</p><cite>Metabolic Engineering for Production of -Carotene and Lycopene inSaccharomyces cerevisiae.</cite><p><span class="journalTitle">Bioscience, Biotechnology, and Biochemistry</span> <span class="journalInfo">58(6), 1112-1114.</span></p><a class="in-text" href="https://doi.org/10.1271/bbb.58.1112" rel="noopener" target="_blank">CrossRef</a><a class="in-text" href="https://scholar.google.com/scholar?q=Metabolic Engineering for Production of -Carotene and Lycopene inSaccharomyces cerevisiae." rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext5">Back to text</a></li><li id="citation6"><p class="author">Choi, K.-Y. (2020).</p><cite>A review of recent progress in the synthesis of bio-indigoids and their biologically assisted end-use applications.</cite><p><span class="journalTitle">Dyes and Pigments</span> <span class="journalInfo">181, 108570.</span></p><a class="in-text" href="https://doi.org/10.1016/j.dyepig.2020.108570" rel="noopener" target="_blank">CrossRef</a><a class="in-text" href="https://scholar.google.com/scholar?q=A review of recent progress in the synthesis of bio-indigoids and their biologically assisted end-use applications." rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext6">Back to text</a></li><li id="citation7"><p class="author">Esatbeyoglu, T., Huebbe, P., Ernst, I. M. A., Chin, D., Wagner, A. E., &amp; Rimbach, G. (2012). Curcumin vom Molek l zur biologischen Wirkung. Angewandte Chemie, 124(22), 5402-5427.</p><cite>Curcumin -vom Molek l zur biologischen Wirkung.</cite><p><span class="journalTitle">Angewandte Chemie</span> <span class="journalInfo">124(22), 5402-5427.</span></p><a class="in-text" href="https://doi.org/10.1002/ange.201107724" rel="noopener" target="_blank">CrossRef</a><a class="in-text" href="https://scholar.google.com/scholar?q=Curcumin -vom Molek l zur biologischen Wirkung." rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext7">Back to text</a></li><li id="citation8"><p class="author">Siedler, S., Bringer, S., &amp; Bott, M. (2011).</p><cite>Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation.</cite><p><span class="journalTitle">Applied Microbiology and Biotechnology</span> <span class="journalInfo">92(5), 929-937.</span></p><a class="in-text" href="https://doi.org/10.1007/s00253-011-3374-4" rel="noopener" target="_blank">CrossRef</a><a class="in-text" href="https://scholar.google.com/scholar?q=Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation." rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext8">Back to text</a></li><li id="citation9"><p class="author">Rao, A. V., &amp; Agarwal, S. (2000).</p><cite>Role of Antioxidant Lycopene in Cancer and Heart Disease.</cite><p><span class="journalTitle">Journal of the American College of Nutrition</span> <span class="journalInfo">19(5), 563-569.</span></p><a class="in-text" href="https://doi.org/10.1080/07315724.2000.10718953" rel="noopener" target="_blank">CrossRef</a><a class="in-text" href="https://scholar.google.com/scholar?q=Role of Antioxidant Lycopene in Cancer and Heart Disease." rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext9">Back to text</a></li><li id="citation10"><p class="author">CHOUDHARI, S., BAJAJ, I., SINGHAL, R., &amp; KARWE, M. (2011).</p><cite>MICROENCAPSULATED LYCOPENE FOR PRE-EXTRUSION COLORING OF FOODS.</cite><p><span class="journalTitle">Journal of Food Process Engineering</span> <span class="journalInfo">35(1), 91-103.</span></p><a class="in-text" href="https://doi.org/10.1111/j.1745-4530.2010.00562.x" rel="noopener" target="_blank">CrossRef</a><a class="in-text" href="https://scholar.google.com/scholar?q=MICROENCAPSULATED LYCOPENE FOR PRE-EXTRUSION COLORING OF FOODS." rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext10">Back to text</a></li></ol></article></div></div></div></main><footer><div class="container"><div class="row"><div class="col-7"><div class="row justify-content-center"><div class="footer-logo"></div></div><p><span>CONTACT US: </span><a href="mailto:iGEMHUSTChina@163.com">iGEMHUSTChina@163.com</a></p><p>Huazhong University of Sci. &amp; Tech., Wuhan, China</p><p>1037# Luoyu Rd, Wuhan, P.R.China 430074</p><p>Copyright © <span>HUST-China </span>iGEM 2021</p></div><div class="col-5"><div class="row"><div class="footer-xmind"></div></div><div class="row"><div class="footer-snapgene"></div></div><div class="row"><div class="footer-NEBI"></div></div></div></div></div></footer><script src="https://2021.igem.org/Template:HUST-China/content-bundleJS?action=raw&amp;ctype=text/javascript"></script><script src="https://2021.igem.org/Template:HUST-China/mathjax-bundleJS?action=raw&amp;ctype=text/javascript"></script></body></html>
+
<!-- # TODO: #6 Fix table caption font--><!-- # TODO: #7 Fix citations links font size-->
 +
<html lang="en">
 +
<head>
 +
    <meta charset="utf-8"/>
 +
    <meta content="width=device-width,initial-scale=1" name="viewport"/>
 +
    <link href="https://2021.igem.org/Template:HUST-China/css/contentCSS?action=raw&amp;ctype=text/css"
 +
          rel="stylesheet"/>
 +
    <title>Design | iGEM HUST-China</title>
 +
    <link href="https://2021.igem.org/Template:HUST-China/css/contentCSS?action=raw&amp;ctype=text/css"
 +
          rel="stylesheet"/>
 +
</head>
 +
<body><!-- # TODO: #6 Fix table caption font--><!-- # TODO: #7 Fix citations links font size-->
 +
<nav class="navbar navbar-expand-xl fixed-top">
 +
    <div class="container d-flex justify-content-between"><a class="navbar-brand"
 +
                                                            href="https://2021.igem.org/Team:HUST-China"><i
 +
            class="navbar-logo-left"></i><span>HUST-China</span></a>
 +
        <button aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation" class="navbar-toggler"
 +
                data-target="#navbarNav" data-toggle="collapse" type="button"><span class="navbar-toggler-icon"></span>
 +
        </button>
 +
        <div class="collapse navbar-collapse" id="navbarNav">
 +
            <ul class="navbar-nav ml-auto">
 +
                <li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true"
 +
                                                class="nav-link dropdown-toggle" data-toggle="dropdown" href="#"
 +
                                                id="navbarProjectDropdown" role="button">Project</a>
 +
                    <div aria-labelledby="navbarProjectDropdown" class="dropdown-menu"><a class="dropdown-item"
 +
                                                                                          href="https://2021.igem.org/Team:HUST-China/Description">Description</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Design">Design</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Proof_Of_Concept">Proof of
 +
                        Concept</a><a class="dropdown-item"
 +
                                      href="https://2021.igem.org/Team:HUST-China/Safety">Safety</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Implementation">Proposed
 +
                        Implementation</a><a class="dropdown-item"
 +
                                            href="https://2021.igem.org/Team:HUST-China/Contribution">Contribution</a>
 +
                    </div>
 +
                </li>
 +
                <li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true"
 +
                                                class="nav-link dropdown-toggle" data-toggle="dropdown" href="#"
 +
                                                id="navbarHuman PracticesDropdown" role="button">Human Practices</a>
 +
                    <div aria-labelledby="navbarHuman PracticesDropdown" class="dropdown-menu"><a class="dropdown-item"
 +
                                                                                                  href="https://2021.igem.org/Team:HUST-China/Human_Practices">Overview</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Human_Practices_01">Part
 +
                        1</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Human_Practices_02">Part
 +
                        2</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Collaborations">Part
 +
                        3</a><a class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Education">Part 4</a>
 +
                    </div>
 +
                </li>
 +
                <li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true"
 +
                                                class="nav-link dropdown-toggle" data-toggle="dropdown" href="#"
 +
                                                id="navbarModelingDropdown" role="button">Modeling</a>
 +
                    <div aria-labelledby="navbarModelingDropdown" class="dropdown-menu"><a class="dropdown-item"
 +
                                                                                          href="https://2021.igem.org/Team:HUST-China/Model">Overview</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Gene_Pathway">Gene
 +
                        Pathway</a><a class="dropdown-item"
 +
                                      href="https://2021.igem.org/Team:HUST-China/Dye_color_forecast">Dye color
 +
                        forecast</a><a class="dropdown-item"
 +
                                      href="https://2021.igem.org/Team:HUST-China/Micronucleus_Counter">Micronucleus
 +
                        Counter</a></div>
 +
                </li>
 +
                <li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true"
 +
                                                class="nav-link dropdown-toggle" data-toggle="dropdown" href="#"
 +
                                                id="navbarProductsDropdown" role="button">Products</a>
 +
                    <div aria-labelledby="navbarProductsDropdown" class="dropdown-menu"><a class="dropdown-item"
 +
                                                                                          href="https://2021.igem.org/Team:HUST-China/Products">Overview</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Software">Software</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Hardware">Hardware</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Another_Area">Another
 +
                        Area</a></div>
 +
                </li>
 +
                <li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true"
 +
                                                class="nav-link dropdown-toggle" data-toggle="dropdown" href="#"
 +
                                                id="navbarExperimentsDropdown" role="button">Experiments</a>
 +
                    <div aria-labelledby="navbarExperimentsDropdown" class="dropdown-menu"><a class="dropdown-item"
 +
                                                                                              href="https://2021.igem.org/Team:HUST-China/Experiments">Overview</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Parts">Parts</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Engineering">Engineering
 +
                        Success</a><a class="dropdown-item"
 +
                                      href="https://2021.igem.org/Team:HUST-China/Results">Results</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Protocol">Protocol</a><a
 +
                            class="dropdown-item" href="https://2021.igem.org/Team:HUST-China/Notebook">Notebook</a>
 +
                    </div>
 +
                </li>
 +
                <li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true"
 +
                                                class="nav-link dropdown-toggle" data-toggle="dropdown" href="#"
 +
                                                id="navbarPeopleDropdown" role="button">People</a>
 +
                    <div aria-labelledby="navbarPeopleDropdown" class="dropdown-menu"><a class="dropdown-item"
 +
                                                                                        href="https://2021.igem.org/Team:HUST-China/Team">Team</a><a
 +
                            class="dropdown-item"
 +
                            href="https://2021.igem.org/Team:HUST-China/Partnership">Partnership</a><a
 +
                            class="dropdown-item"
 +
                            href="https://2021.igem.org/Team:HUST-China/Attributions">Attributions</a></div>
 +
                </li>
 +
                <li class="nav-item dropdown"><a aria-expanded="false" aria-haspopup="true"
 +
                                                class="nav-link dropdown-toggle" data-toggle="dropdown" href="#"
 +
                                                id="navbarAchievementsDropdown" role="button">Achievements</a>
 +
                    <div aria-labelledby="navbarAchievementsDropdown" class="dropdown-menu"><a class="dropdown-item"
 +
                                                                                              href="https://2021.igem.org/Team:HUST-China/Judging">Judging</a><a
 +
                            class="dropdown-item"
 +
                            href="https://2021.igem.org/Team:HUST-China/https:/video.igem.org/w/aMwNT6eBryGs8xG5avXD51">Promotion
 +
                        Video</a><a class="dropdown-item"
 +
                                    href="https://2021.igem.org/Team:HUST-China/https:/igem.org/2021_Judging_Form?id=3711">Judging
 +
                        Form</a></div>
 +
                </li>
 +
            </ul>
 +
        </div>
 +
    </div>
 +
</nav>
 +
<div class="navbar-extra fixed-top"></div>
 +
<header class="d-flex justify-content-center align-items-center">
 +
    <div class="container"><h1 id="Top">Design</h1>
 +
        <p class="lead pl-1"></p>
 +
        <hr class="my-4"/>
 +
    </div>
 +
</header>
 +
<main>
 +
    <div class="container">
 +
        <div class="row">
 +
            <div class="sidebar col-lg-3">
 +
                <div class="nav" id="contents"><h5>Contents</h5>
 +
                    <ul></ul>
 +
                </div>
 +
            </div>
 +
            <div class="content col-lg-9">
 +
                <article><h1>Introduction</h1>
 +
                    <p>How do we achieve <em>perming and dyeing</em> through synthetic biology methods?</p>
 +
                    <p>Engineered yeast producing natural pigments and short peptides with abundant sulfhydryl was
 +
                        designed. A xylose responding system was also created to made the pigment fade and turn the
 +
                        curled hair straight, resuming the hair to its original state.</p>
 +
                    <h1>Perm</h1>
 +
                    <p>The key in perming lies in re-conformation of disulfide bonds, and pepACS is used to reform the
 +
                        disulfide bonds between fibers within the cortex when the hair is bent by external forces. DsbC
 +
                        is used to straighten the hair following the same principal.</p>
 +
                    <div class="image"><img alt="design1"
 +
                                            src="https://static.igem.org/mediawiki/2021/b/ba/T--HUST-China--img--design--design1.png"
 +
                                            style="width: 100%"/>
 +
                    </div>
 +
                    <div class="modal-btn">
 +
                        <button class="btn btn-warning pull-right" data-target="#design1" data-toggle="modal"
 +
                                type="button">Read More
 +
                        </button>
 +
                        <div aria-hidden="true" aria-labelledby="design1Label" class="modal fade" data-backdrop="static"
 +
                            data-keyboard="false" id="design1" tabindex="-1">
 +
                            <div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl">
 +
                                <div class="modal-content">
 +
                                    <div class="modal-header"><h5 class="modal-title" id="design1Label">design1</h5>
 +
                                    </div>
 +
                                    <div class="modal-body"><p>PERM: Various reagents used in traditional perming, such
 +
                                        as mercaptoacetic acid, hydrogenperoxide and P-phenylpropanediamine are allergic
 +
                                        and carcinogenic in addition to causing serious damage to hair. In order to
 +
                                        minimize the damage to health and hair during perming process, short peptides
 +
                                        with abundant sulfhydryl were chosen as the reductant[1]. Three short peptides
 +
                                        selected based on modeling result, including PepA, PepB and SPB, were connected
 +
                                        with Rigid Linker (PepACS). The rigid linker is more prone to form α-helix,
 +
                                        which can separate sulfhydryl preventing them from reacting with each other. The
 +
                                        complex is small enough to enter the cortex through the cuticle and form
 +
                                        dislocated disulfide bonds with α-keratins, which can change the shape of
 +
                                        hair.</p>
 +
                                        <div class="image"><img alt="design2"
 +
                                                                src="https://static.igem.org/mediawiki/2021/8/86/T--HUST-China--img--design--design2.png"
 +
                                                                style="width: 100%"/>
 +
                                            </div>
 +
                                        <p>The rigid linker is more prone to form α-helix,
 +
                                        which can separate sulfhydryl preventing them from reacting with each other. The
 +
                                        complex is small enough to enter the cortex through the cuticle and form
 +
                                        dislocated disulfide bonds with α-keratins, which can change the shape of
 +
                                        hair.</p>
 +
                                        <div class="image"><img alt="design3"
 +
                                                                src="https://static.igem.org/mediawiki/2021/2/2b/T--HUST-China--img--design--design3.png"
 +
                                                                style="width: 100%"/>
 +
                                            </div>
 +
                                    </div>
 +
                                    <div class="modal-footer">
 +
                                        <button class="btn btn-danger" data-dismiss="modal" type="button">Close</button>
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                    <p>UNDO: Disulfide isomerase has been proven to help open up cuticle and give short peptides easier
 +
                        access into the cortex[2]. Connecting disulfide isomerase and short peptides with GS-linker
 +
                        (DsbC) can therefore allow more short peptides to enter cuticle. When DsbC is applied on hair
 +
                        fixed by external forces, it forms more disulfide bonds without unpaired sulfhydryl thereby
 +
                        straightening the hair.</p>
 +
                    <div class="image"><img alt="design4"
 +
                                            src="https://static.igem.org/mediawiki/2021/0/06/T--HUST-China--img--design--design4.png"
 +
                                            style="width: 100%"/>
 +
                        </div>
 +
                    <div class="modal-btn">
 +
                        <button class="btn btn-warning pull-right" data-target="#Design2" data-toggle="modal"
 +
                                type="button">Read More
 +
                        </button>
 +
                        <div aria-hidden="true" aria-labelledby="Design2Label" class="modal fade" data-backdrop="static"
 +
                            data-keyboard="false" id="Design2" tabindex="-1">
 +
                            <div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl">
 +
                                <div class="modal-content">
 +
                                    <div class="modal-header"><h5 class="modal-title" id="Design2Label">Design2</h5>
 +
                                    </div>
 +
                                    <div class="modal-body"><p>The amino acid sequence of GS-linker is
 +
                                        GGGGGSGGGGGSGGGGGS, determined by modeling.</p></div>
 +
                                    <div class="modal-footer">
 +
                                        <button class="btn btn-danger" data-dismiss="modal" type="button">Close</button>
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                    <h1>Dye</h1>
 +
                    <h2><span style="color:blue">BLUE: Indigo</span></h2>
 +
                    <p><strong>DYE:</strong> We chose indigo as dye for blue. Indole is oxidized by FMO into
 +
                        leucoindigo[3]. It is reduced to leucoindigo by ethanol and lactic acid produced by Pichia
 +
                        pastoris, which can better adhere to hair. Leucoindigo is then oxidized by oxygen into indigo to
 +
                        turn the hair blue.</p>
 +
                    <div class="image"><img alt="design5"
 +
                                            src="https://static.igem.org/mediawiki/2021/b/ba/T--HUST-China--img--design--design5.png"
 +
                                            style="width: 100%"/>
 +
                        </div>
 +
                    <p><strong>UNDO:</strong> Laccase can oxidize indigo into colorless substances[4].</p>
 +
                    <div class="image"><img alt="design6"
 +
                                            src="https://static.igem.org/mediawiki/2021/3/34/T--HUST-China--img--design--design6.png"
 +
                                            style="width: 100%"/>
 +
                        </div>
 +
                    <div class="modal-btn">
 +
                        <button class="btn btn-warning pull-right" data-target="#Design3" data-toggle="modal"
 +
                                type="button">Read More
 +
                        </button>
 +
                        <div aria-hidden="true" aria-labelledby="Design3Label" class="modal fade" data-backdrop="static"
 +
                            data-keyboard="false" id="Design3" tabindex="-1">
 +
                            <div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl">
 +
                                <div class="modal-content">
 +
                                    <div class="modal-header"><h5 class="modal-title" id="Design3Label">Design3</h5>
 +
                                    </div>
 +
                                    <div class="modal-body"><p>Indigo is one of the oldest dyes applied in textile
 +
                                        dyeing [7], and we explored its efficacy in hair dyeing in our project.</p>
 +
                                        <p>Indole, the pigment precursor, is oxidized by flavin containing monooxygenase
 +
                                            (FMO) into indigo. It is then reduced to leucoindigo since indigo can only
 +
                                            adhere to the surface of hair due to its poor water solubility. Compared to
 +
                                            indigo, leucoindigo has fine water solubility therefore it can enter the
 +
                                            cortex providing better sustainability of hair color, which, after being
 +
                                            oxidized into indigo, would endow the hair with blue.</p>
 +
                                        <div class="image"><img alt="design7"
 +
                                                                src="https://static.igem.org/mediawiki/2021/6/61/T--HUST-China--img--design--design7.png"
 +
                                                                style="width: 100%"/>
 +
                                            </div>
 +
                                    </div>
 +
                                    <div class="modal-footer">
 +
                                        <button class="btn btn-danger" data-dismiss="modal" type="button">Close</button>
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                    <h2><span style="color:yellow">YELLOW: Curcumin</span></h2>
 +
                    <p><strong>DYE:</strong> Curcumin was chosen as the dye for yellow. The ferulic acid is catalyzed
 +
                        into curcumin with the aid of 4CL, ACC and CUS.</p>
 +
                    <div class="image"><img alt="design8"
 +
                                            src="https://static.igem.org/mediawiki/2021/6/61/T--HUST-China--img--design--design8.png"
 +
                                            style="width: 100%"/>
 +
                        </div>
 +
                    <p>UNDO: Curcumin reductase(curA) can reduce curcumin to colorless tetrahydrocurcumin[9].</p>
 +
                    <div class="image"><img alt="design9"
 +
                                            src="https://static.igem.org/mediawiki/2021/b/b2/T--HUST-China--img--design--design9.png"
 +
                                            style="width: 100%"/>
 +
                        </div>
 +
                    <div class="modal-btn">
 +
                        <button class="btn btn-warning pull-right" data-target="#Design4" data-toggle="modal"
 +
                                type="button">Read More
 +
                        </button>
 +
                        <div aria-hidden="true" aria-labelledby="Design4Label" class="modal fade" data-backdrop="static"
 +
                            data-keyboard="false" id="Design4" tabindex="-1">
 +
                            <div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl">
 +
                                <div class="modal-content">
 +
                                    <div class="modal-header"><h5 class="modal-title" id="Design4Label">Design4</h5>
 +
                                    </div>
 +
                                    <div class="modal-body"><p>Conformed by some paper, curcumin has some health benefit
 +
                                        derived from its oxidation resistance and anti-inflammatory effects. What's
 +
                                        more, it is also widely used as seasoning and colorant in food industry[8].</p>
 +
                                        <p>The ferulic acid is catalyzed into p-Coumaroyl-CoA by p-coumaryl-CoA
 +
                                            ligase(4CL). Acetyl coenzyme A is turned into malonyl coenzyme by acetyl-CoA
 +
                                            carboxylase(ACC), with which p-Coumaroyl-CoA is synthesized into curcumin by
 +
                                            curcumin synthase(CUS)[5].</p></div>
 +
                                    <div class="modal-footer">
 +
                                        <button class="btn btn-danger" data-dismiss="modal" type="button">Close</button>
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                    <h2><span style="color:red">RED: Lycopene</span></h2>
 +
                    <p><strong>DYE:</strong> Lycopene was opted for red dye. FPP can be synthesized into lycopene by
 +
                        crtE, crtB and crtI[6].</p>
 +
                    <div class="image"><img alt="design10"
 +
                                            src="https://static.igem.org/mediawiki/2021/f/f5/T--HUST-China--img--design--design10.png"
 +
                                            style="width: 100%"/>
 +
                        </div>
 +
                    <p><strong>UNDO:</strong> LOX2 can oxidize lycopene and make it fade.</p>
 +
                    <div class="image"><img alt="design11"
 +
                                            src="https://static.igem.org/mediawiki/2021/6/67/T--HUST-China--img--design--design11.png"
 +
                                            style="width: 100%"/>
 +
                        </div>
 +
                    <div class="modal-btn">
 +
                        <button class="btn btn-warning pull-right" data-target="#Design5" data-toggle="modal"
 +
                                type="button">Read More
 +
                        </button>
 +
                        <div aria-hidden="true" aria-labelledby="Design5Label" class="modal fade" data-backdrop="static"
 +
                            data-keyboard="false" id="Design5" tabindex="-1">
 +
                            <div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl">
 +
                                <div class="modal-content">
 +
                                    <div class="modal-header"><h5 class="modal-title" id="Design5Label">Design5</h5>
 +
                                    </div>
 +
                                    <div class="modal-body"><p>Lycopene has shown a promising potential in inhibiting
 +
                                        cancer growth as well as other health benefits[10]. Research has investigated
 +
                                        the effectiveness of lycopene being fabric dye and food coloring[12], but rarely
 +
                                        do people look into the potentiality of lycopene being a hair colorant.</p>
 +
                                        <p>GGPP synthetase(crtE) catalyzes FPP into GGPP, which is turned into
 +
                                            octahydrolycopene by octahydrolycopene synthase(crtB). With
 +
                                            Octahydrolycopene dehydrogenase catalyzing octahydrolycopene, lycopene is
 +
                                            produced[6]. Lipoxygenase (LOX2) can oxidize lycopene into colorless
 +
                                            linoleic acid.</p></div>
 +
                                    <div class="modal-footer">
 +
                                        <button class="btn btn-danger" data-dismiss="modal" type="button">Close</button>
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                    <h1>Choice of chassis organism</h1>
 +
                    <p>We chose pichia pastoris as our chassis organism because it possesses multiple advantages other
 +
                        protein expression systems don't. Featuring inducible strong promoters, high expression, high
 +
                        stability, high biological activity of expression product, P. pastoris has another advantage
 +
                        that exogenous genes can be integrated into chromosomes. Moreover, it eliminates our safety
 +
                        concerns. Yeast is classified as biosafety level 1 organism, which poses little threat to human
 +
                        and the environment, and we chose the histidine defect type of pichia pastoris which can't
 +
                        survive outside a certain culture media.</p>
 +
                    <h1>Xylose Responding System</h1>
 +
                    <p>Mr. Tony project not only can achieve perm and dyeing, but also has the function of resuming the
 +
                        hair to its original state, realized by the xylose responding system in which the xylose induced
 +
                        promoter and genes of corresponding enzymes are introduced.</p>
 +
                    <div class="image"><img alt="design12"
 +
                                            src="https://static.igem.org/mediawiki/2021/7/75/T--HUST-China--img--design--design12.png"
 +
                                            style="width: 100%"/>
 +
                        </div>
 +
                    <div class="modal-btn">
 +
                        <button class="btn btn-warning pull-right" data-target="#Design6" data-toggle="modal"
 +
                                type="button">Read More
 +
                        </button>
 +
                        <div aria-hidden="true" aria-labelledby="Design6Label" class="modal fade" data-backdrop="static"
 +
                            data-keyboard="false" id="Design6" tabindex="-1">
 +
                            <div class="modal-dialog modal-dialog-scrollable modal-dialog-centered modal-xl">
 +
                                <div class="modal-content">
 +
                                    <div class="modal-header"><h5 class="modal-title" id="Design6Label">Design6</h5>
 +
                                    </div>
 +
                                    <div class="modal-body"><p>When we want to turn the permed hair straight and the
 +
                                        colored hair fade, we can add xylose into the system. If the concentration of
 +
                                        xylose touches the threshold, xylose acts on xylose-induced promoter Pynr071c to
 +
                                        express enzymes that could resume the hair, as well as ROX1. The expressed ROX1
 +
                                        can inhibit the front-end pathway by acting on promoter Panb1, meaning stops
 +
                                        producing pigments and short peptides. Meanwhile, corresponding enzymes are
 +
                                        produced to make the pigment fade. For indigo, it is laccase; for curcumin,
 +
                                        curcumin reductase(curA); for lycopene, lipoxygenase (LOX2). Gene of DsbC is
 +
                                        inserted into the pathway to straighten the curled hair.</p></div>
 +
                                    <div class="modal-footer">
 +
                                        <button class="btn btn-danger" data-dismiss="modal" type="button">Close</button>
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                    <h1>Hardware</h1>
 +
                    <p>We designed a small fermenter and used the filter membrane to separate the product from the yeast
 +
                        for safe use.</p>
 +
                    <p>In addition, a hair dyeing comb was designed for applying hair dye cream in real life scenarios.
 +
                        (Please refer to <a href="https://2021.igem.org/Team:HUST-China/Design/Hardware">hardware</a>
 +
                        for detailed information)</p>
 +
                    <div class="row g-0">
 +
                        <div class="col-4 girl"><img
 +
                                src="https://static.igem.org/mediawiki/2021/2/28/T--HUST-China--img--girl.png"/></div>
 +
                        <div class="col-5">
 +
                            <div class="dialogbox"><p>The design of pathways is truly intriguing, right?! But will it
 +
                                work? If you share the same confusion with me, let's take a look at the <a
 +
                                        href="https://2021.igem.org/Team:HUST-China/Design/Proof Of Concept">proof of
 +
                                    concept</a>-</p></div>
 +
                        </div>
 +
                    </div>
 +
                </article>
 +
                <article id="references"><h1>References</h1>
 +
                    <ol>
 +
                        <li id="citation1"><p class="author">Sun, Y., Wang, C., Sun, M., &amp; Fan, Z. (2021).</p><cite>Bioinspired
 +
                            polymeric pigments to mimic natural hair coloring.</cite>
 +
                            <p><span class="journalTitle">RSC Advances</span> <span class="journalInfo">11(3), 1694-1699.</span>
 +
                            </p><a class="in-text" href="https://doi.org/10.1039/D0RA09539G" rel="noopener"
 +
                                  target="_blank">CrossRef</a><a class="in-text"
 +
                                                                  href="https://scholar.google.com/scholar?q=Bioinspired polymeric pigments to mimic natural hair coloring."
 +
                                                                  rel="noopener" target="_blank">Google Scholar</a><a
 +
                                    class="in-text" href="#intext1">Back to text</a></li>
 +
                        <li id="citation2"><p class="author">Fernandes, M., &amp; Cavaco-Paulo, A. (2011).</p><cite>Protein
 +
                            disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached
 +
                            hair.</cite>
 +
                            <p><span class="journalTitle">Biocatalysis and Biotransformation</span> <span
 +
                                    class="journalInfo">30(1), 10-19.</span></p><a class="in-text"
 +
                                                                                  href="https://doi.org/10.3109/10242422.2012.644436"
 +
                                                                                  rel="noopener" target="_blank">CrossRef</a><a
 +
                                    class="in-text"
 +
                                    href="https://scholar.google.com/scholar?q=Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair."
 +
                                    rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext2">Back
 +
                                to text</a></li>
 +
                        <li id="citation3"><p class="author">Liu, Y., Yan, M., Geng, Y., &amp; Huang, J. (2015).</p>
 +
                            <cite>ABTS-Modified Silica Nanoparticles as Laccase Mediators for Decolorization of Indigo
 +
                                Carmine Dye.</cite>
 +
                            <p><span class="journalTitle">Journal of Chemistry</span> <span class="journalInfo">2015, 1-7.</span>
 +
                            </p><a class="in-text" href="https://doi.org/10.1155/2015/670194" rel="noopener"
 +
                                  target="_blank">CrossRef</a><a class="in-text"
 +
                                                                  href="https://scholar.google.com/scholar?q=ABTS-Modified Silica Nanoparticles as Laccase Mediators for Decolorization of Indigo Carmine Dye."
 +
                                                                  rel="noopener" target="_blank">Google Scholar</a><a
 +
                                    class="in-text" href="#intext3">Back to text</a></li>
 +
                        <li id="citation4"><p class="author">KATSUYAMA, Y., HIROSE, Y., FUNA, N., OHNISHI, Y., &amp;
 +
                            HORINOUCHI, S. (2010).</p><cite>Precursor-Directed Biosynthesis of Curcumin Analogs
 +
                            inEscherichia coli.</cite>
 +
                            <p><span class="journalTitle">Bioscience, Biotechnology, and Biochemistry</span> <span
 +
                                    class="journalInfo">74(3), 641-645.</span></p><a class="in-text"
 +
                                                                                    href="https://doi.org/10.1271/bbb.90866"
 +
                                                                                    rel="noopener" target="_blank">CrossRef</a><a
 +
                                    class="in-text"
 +
                                    href="https://scholar.google.com/scholar?q=Precursor-Directed Biosynthesis of Curcumin Analogs inEscherichia coli."
 +
                                    rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext4">Back
 +
                                to text</a></li>
 +
                        <li id="citation5"><p class="author">Yamano, S., Ishii, T., Nakagawa, M., Ikenaga, H., &amp;
 +
                            Misawa, N. (1994). Metabolic Engineering for Production of -Carotene and Lycopene
 +
                            inSaccharomyces cerevisiae. Bioscience, Biotechnology, and Biochemistry, 58(6),
 +
                            1112-1114.</p><cite>Metabolic Engineering for Production of -Carotene and Lycopene
 +
                            inSaccharomyces cerevisiae.</cite>
 +
                            <p><span class="journalTitle">Bioscience, Biotechnology, and Biochemistry</span> <span
 +
                                    class="journalInfo">58(6), 1112-1114.</span></p><a class="in-text"
 +
                                                                                      href="https://doi.org/10.1271/bbb.58.1112"
 +
                                                                                      rel="noopener" target="_blank">CrossRef</a><a
 +
                                    class="in-text"
 +
                                    href="https://scholar.google.com/scholar?q=Metabolic Engineering for Production of -Carotene and Lycopene inSaccharomyces cerevisiae."
 +
                                    rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext5">Back
 +
                                to text</a></li>
 +
                        <li id="citation6"><p class="author">Choi, K.-Y. (2020).</p><cite>A review of recent progress in
 +
                            the synthesis of bio-indigoids and their biologically assisted end-use applications.</cite>
 +
                            <p><span class="journalTitle">Dyes and Pigments</span> <span class="journalInfo">181, 108570.</span>
 +
                            </p><a class="in-text" href="https://doi.org/10.1016/j.dyepig.2020.108570" rel="noopener"
 +
                                  target="_blank">CrossRef</a><a class="in-text"
 +
                                                                  href="https://scholar.google.com/scholar?q=A review of recent progress in the synthesis of bio-indigoids and their biologically assisted end-use applications."
 +
                                                                  rel="noopener" target="_blank">Google Scholar</a><a
 +
                                    class="in-text" href="#intext6">Back to text</a></li>
 +
                        <li id="citation7"><p class="author">Esatbeyoglu, T., Huebbe, P., Ernst, I. M. A., Chin, D.,
 +
                            Wagner, A. E., &amp; Rimbach, G. (2012). Curcumin vom Molek l zur biologischen Wirkung.
 +
                            Angewandte Chemie, 124(22), 5402-5427.</p><cite>Curcumin -vom Molek l zur biologischen
 +
                            Wirkung.</cite>
 +
                            <p><span class="journalTitle">Angewandte Chemie</span> <span class="journalInfo">124(22), 5402-5427.</span>
 +
                            </p><a class="in-text" href="https://doi.org/10.1002/ange.201107724" rel="noopener"
 +
                                  target="_blank">CrossRef</a><a class="in-text"
 +
                                                                  href="https://scholar.google.com/scholar?q=Curcumin -vom Molek l zur biologischen Wirkung."
 +
                                                                  rel="noopener" target="_blank">Google Scholar</a><a
 +
                                    class="in-text" href="#intext7">Back to text</a></li>
 +
                        <li id="citation8"><p class="author">Siedler, S., Bringer, S., &amp; Bott, M. (2011).</p><cite>Increased
 +
                            NADPH availability in Escherichia coli: improvement of the product per glucose ratio in
 +
                            reductive whole-cell biotransformation.</cite>
 +
                            <p><span class="journalTitle">Applied Microbiology and Biotechnology</span> <span
 +
                                    class="journalInfo">92(5), 929-937.</span></p><a class="in-text"
 +
                                                                                    href="https://doi.org/10.1007/s00253-011-3374-4"
 +
                                                                                    rel="noopener" target="_blank">CrossRef</a><a
 +
                                    class="in-text"
 +
                                    href="https://scholar.google.com/scholar?q=Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation."
 +
                                    rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext8">Back
 +
                                to text</a></li>
 +
                        <li id="citation9"><p class="author">Rao, A. V., &amp; Agarwal, S. (2000).</p><cite>Role of
 +
                            Antioxidant Lycopene in Cancer and Heart Disease.</cite>
 +
                            <p><span class="journalTitle">Journal of the American College of Nutrition</span> <span
 +
                                    class="journalInfo">19(5), 563-569.</span></p><a class="in-text"
 +
                                                                                    href="https://doi.org/10.1080/07315724.2000.10718953"
 +
                                                                                    rel="noopener" target="_blank">CrossRef</a><a
 +
                                    class="in-text"
 +
                                    href="https://scholar.google.com/scholar?q=Role of Antioxidant Lycopene in Cancer and Heart Disease."
 +
                                    rel="noopener" target="_blank">Google Scholar</a><a class="in-text" href="#intext9">Back
 +
                                to text</a></li>
 +
                        <li id="citation10"><p class="author">CHOUDHARI, S., BAJAJ, I., SINGHAL, R., &amp; KARWE, M.
 +
                            (2011).</p><cite>MICROENCAPSULATED LYCOPENE FOR PRE-EXTRUSION COLORING OF FOODS.</cite>
 +
                            <p><span class="journalTitle">Journal of Food Process Engineering</span> <span
 +
                                    class="journalInfo">35(1), 91-103.</span></p><a class="in-text"
 +
                                                                                    href="https://doi.org/10.1111/j.1745-4530.2010.00562.x"
 +
                                                                                    rel="noopener" target="_blank">CrossRef</a><a
 +
                                    class="in-text"
 +
                                    href="https://scholar.google.com/scholar?q=MICROENCAPSULATED LYCOPENE FOR PRE-EXTRUSION COLORING OF FOODS."
 +
                                    rel="noopener" target="_blank">Google Scholar</a><a class="in-text"
 +
                                                                                        href="#intext10">Back to
 +
                                text</a></li>
 +
                    </ol>
 +
                </article>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</main>
 +
<footer>
 +
    <div class="container">
 +
        <div class="row">
 +
            <div class="col-7">
 +
                <div class="row justify-content-center">
 +
                    <div class="footer-logo"></div>
 +
                </div>
 +
                <p><span>CONTACT US: </span><a href="mailto:iGEMHUSTChina@163.com">iGEMHUSTChina@163.com</a></p>
 +
                <p>Huazhong University of Sci. &amp; Tech., Wuhan, China</p>
 +
                <p>1037# Luoyu Rd, Wuhan, P.R.China 430074</p>
 +
                <p>Copyright © <span>HUST-China </span>iGEM 2021</p></div>
 +
            <div class="col-5">
 +
                <div class="row">
 +
                    <div class="footer-xmind"></div>
 +
                </div>
 +
                <div class="row">
 +
                    <div class="footer-snapgene"></div>
 +
                </div>
 +
                <div class="row">
 +
                    <div class="footer-NEBI"></div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</footer>
 +
<script src="https://2021.igem.org/Template:HUST-China/content-bundleJS?action=raw&amp;ctype=text/javascript"></script>
 +
<script src="https://2021.igem.org/Template:HUST-China/mathjax-bundleJS?action=raw&amp;ctype=text/javascript"></script>
 +
</body>
 +
</html>

Revision as of 00:15, 22 October 2021

Design | iGEM HUST-China

Design


Introduction

How do we achieve perming and dyeing through synthetic biology methods?

Engineered yeast producing natural pigments and short peptides with abundant sulfhydryl was designed. A xylose responding system was also created to made the pigment fade and turn the curled hair straight, resuming the hair to its original state.

Perm

The key in perming lies in re-conformation of disulfide bonds, and pepACS is used to reform the disulfide bonds between fibers within the cortex when the hair is bent by external forces. DsbC is used to straighten the hair following the same principal.

design1

UNDO: Disulfide isomerase has been proven to help open up cuticle and give short peptides easier access into the cortex[2]. Connecting disulfide isomerase and short peptides with GS-linker (DsbC) can therefore allow more short peptides to enter cuticle. When DsbC is applied on hair fixed by external forces, it forms more disulfide bonds without unpaired sulfhydryl thereby straightening the hair.

design4

Dye

BLUE: Indigo

DYE: We chose indigo as dye for blue. Indole is oxidized by FMO into leucoindigo[3]. It is reduced to leucoindigo by ethanol and lactic acid produced by Pichia pastoris, which can better adhere to hair. Leucoindigo is then oxidized by oxygen into indigo to turn the hair blue.

design5

UNDO: Laccase can oxidize indigo into colorless substances[4].

design6

YELLOW: Curcumin

DYE: Curcumin was chosen as the dye for yellow. The ferulic acid is catalyzed into curcumin with the aid of 4CL, ACC and CUS.

design8

UNDO: Curcumin reductase(curA) can reduce curcumin to colorless tetrahydrocurcumin[9].

design9

RED: Lycopene

DYE: Lycopene was opted for red dye. FPP can be synthesized into lycopene by crtE, crtB and crtI[6].

design10

UNDO: LOX2 can oxidize lycopene and make it fade.

design11

Choice of chassis organism

We chose pichia pastoris as our chassis organism because it possesses multiple advantages other protein expression systems don't. Featuring inducible strong promoters, high expression, high stability, high biological activity of expression product, P. pastoris has another advantage that exogenous genes can be integrated into chromosomes. Moreover, it eliminates our safety concerns. Yeast is classified as biosafety level 1 organism, which poses little threat to human and the environment, and we chose the histidine defect type of pichia pastoris which can't survive outside a certain culture media.

Xylose Responding System

Mr. Tony project not only can achieve perm and dyeing, but also has the function of resuming the hair to its original state, realized by the xylose responding system in which the xylose induced promoter and genes of corresponding enzymes are introduced.

design12

Hardware

We designed a small fermenter and used the filter membrane to separate the product from the yeast for safe use.

In addition, a hair dyeing comb was designed for applying hair dye cream in real life scenarios. (Please refer to hardware for detailed information)

The design of pathways is truly intriguing, right?! But will it work? If you share the same confusion with me, let's take a look at the proof of concept-

References

  1. Sun, Y., Wang, C., Sun, M., & Fan, Z. (2021).

    Bioinspired polymeric pigments to mimic natural hair coloring.

    RSC Advances 11(3), 1694-1699.

    CrossRefGoogle ScholarBack to text
  2. Fernandes, M., & Cavaco-Paulo, A. (2011).

    Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair.

    Biocatalysis and Biotransformation 30(1), 10-19.

    CrossRefGoogle ScholarBack to text
  3. Liu, Y., Yan, M., Geng, Y., & Huang, J. (2015).

    ABTS-Modified Silica Nanoparticles as Laccase Mediators for Decolorization of Indigo Carmine Dye.

    Journal of Chemistry 2015, 1-7.

    CrossRefGoogle ScholarBack to text
  4. KATSUYAMA, Y., HIROSE, Y., FUNA, N., OHNISHI, Y., & HORINOUCHI, S. (2010).

    Precursor-Directed Biosynthesis of Curcumin Analogs inEscherichia coli.

    Bioscience, Biotechnology, and Biochemistry 74(3), 641-645.

    CrossRefGoogle ScholarBack to text
  5. Yamano, S., Ishii, T., Nakagawa, M., Ikenaga, H., & Misawa, N. (1994). Metabolic Engineering for Production of -Carotene and Lycopene inSaccharomyces cerevisiae. Bioscience, Biotechnology, and Biochemistry, 58(6), 1112-1114.

    Metabolic Engineering for Production of -Carotene and Lycopene inSaccharomyces cerevisiae.

    Bioscience, Biotechnology, and Biochemistry 58(6), 1112-1114.

    CrossRefGoogle ScholarBack to text
  6. Choi, K.-Y. (2020).

    A review of recent progress in the synthesis of bio-indigoids and their biologically assisted end-use applications.

    Dyes and Pigments 181, 108570.

    CrossRefGoogle ScholarBack to text
  7. Esatbeyoglu, T., Huebbe, P., Ernst, I. M. A., Chin, D., Wagner, A. E., & Rimbach, G. (2012). Curcumin vom Molek l zur biologischen Wirkung. Angewandte Chemie, 124(22), 5402-5427.

    Curcumin -vom Molek l zur biologischen Wirkung.

    Angewandte Chemie 124(22), 5402-5427.

    CrossRefGoogle ScholarBack to text
  8. Siedler, S., Bringer, S., & Bott, M. (2011).

    Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation.

    Applied Microbiology and Biotechnology 92(5), 929-937.

    CrossRefGoogle ScholarBack to text
  9. Rao, A. V., & Agarwal, S. (2000).

    Role of Antioxidant Lycopene in Cancer and Heart Disease.

    Journal of the American College of Nutrition 19(5), 563-569.

    CrossRefGoogle ScholarBack to text
  10. CHOUDHARI, S., BAJAJ, I., SINGHAL, R., & KARWE, M. (2011).

    MICROENCAPSULATED LYCOPENE FOR PRE-EXTRUSION COLORING OF FOODS.

    Journal of Food Process Engineering 35(1), 91-103.

    CrossRefGoogle ScholarBack to text

CONTACT US: iGEMHUSTChina@163.com

Huazhong University of Sci. & Tech., Wuhan, China

1037# Luoyu Rd, Wuhan, P.R.China 430074

Copyright © HUST-China iGEM 2021