Hello, Welcome to PARTS PAGE
PARTS
This year, our team added four new parts on the registry. Below are
links to the registry pages of each of those parts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BBa_K3912000 NA
NA is the single-strand DNA
that pairs with the aptamer and the AP strand. In the RPA reaction, when
p-tau protein is absent, no reaction will start because of the block on
the aptamer; but when p-tau is present and pull away the aptamer from NA
strand, NA will act as the template to make a double-strand DNA molecule
with AP strand as the primer. And then the primer-binding sequence (also
the probe-binding sequence) will exist on the prolonged AP strand for
the primer F to make a prolonged NA strand, with the binding sequence
for primer R on it, thus the complete double-strand DNA molecule is
formed and the RPA reaction will continue.
Source:
Schizosaccharomyces pombe (fission yeast) DNA fragment M26
Reference
1. S. Ashley, S. Bradburn, C. Murgatroyd, A
meta-analysis of peripheral tocopherol levels in age-related cognitive
decline and Alzheimer's disease. Nutr Neurosci, 1-15 (2019).
2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995).
3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013).
4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020).
5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020).
6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019).
7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019).
8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019).
9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018).
10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018).
11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005).
12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018).
13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006).
14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018).
15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019).
16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010).
17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010).
18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012).
19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009).
20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.
2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995).
3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013).
4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020).
5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020).
6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019).
7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019).
8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019).
9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018).
10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018).
11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005).
12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018).
13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006).
14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018).
15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019).
16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010).
17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010).
18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012).
19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009).
20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.
BBa_K3912999 AP
AP is the single-strand DNA
that pairs with NA strand, with the aptamer at the 3’ terminal of it,
but it does not have any chemical bonds with the aptamer. There is a
loop on it, which contains the sequence of primer R and does not pair
with the NA strand. In the RPA reaction, when p-tau protein is absent,
no reaction will start because of the block on the aptamer; but when
p-tau is present and pull away the aptamer from NA strand, AP will act
as the primer to make a double-strand DNA molecule with NA strand as the
template. And then the primer-binding sequence (also the probe-binding
sequence) will exist on the prolonged AP strand for the primer F to make
a prolonged NA strand, with the binding sequence for primer R on it,
thus the complete double-strand DNA molecule is formed and the RPA
reaction will continue.
Source:
Schizosaccharomyces pombe (fission yeast) DNA fragment M26
Reference
1. S. Ashley, S. Bradburn, C. Murgatroyd, A
meta-analysis of peripheral tocopherol levels in age-related cognitive
decline and Alzheimer's disease. Nutr Neurosci, 1-15 (2019).
2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995).
3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013).
4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020).
5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020).
6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019).
7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019).
8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019).
9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018).
10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018).
11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005).
12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018).
13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006).
14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018).
15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019).
16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010).
17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010).
18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012).
19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009).
20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.
2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995).
3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013).
4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020).
5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020).
6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019).
7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019).
8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019).
9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018).
10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018).
11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005).
12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018).
13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006).
14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018).
15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019).
16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010).
17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010).
18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012).
19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009).
20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.
BBa_K3912001 Template 2
Template 2 is the
single-strand DNA that make a loop-stem structure with the Template 1
strand. It has two feature sequences, the aptamer and the Amp-R. The
Amp-R is a loop that contains the sequence of the primer F, while the
aptamer pairs part with Template 1 at its 5’ end and part with the left
sequence of Template 2. And other sequence of Template 2 pairs with
Template 1. In the RPA reaction, when p-tau protein is absent, no
reaction will start; but when p-tau is present, the protein will bind
with the aptamer sequence and pull it away, turning the loop-stem
structure into a linear structure, and Amp-R will act as the template to
make a double-strand DNA molecule with Template 1 strand as the primer.
And then the primer-binding sequence replicated from Amp-R will exist on
the prolonged Template 1 strand for the primer F to make a prolonged
Template 2 strand, with the binding sequence for primer R on it (also
the probe-binding sequence), thus the complete double-strand DNA
molecule is formed and the RPA reaction will continue.
Source:
Schizosaccharomyces pombe (fission yeast) DNA fragment M26
Reference
1. S. Ashley, S. Bradburn, C. Murgatroyd, A
meta-analysis of peripheral tocopherol levels in age-related cognitive
decline and Alzheimer's disease. Nutr Neurosci, 1-15 (2019).
2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995).
3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013).
4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020).
5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020).
6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019).
7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019).
8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019).
9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018).
10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018).
11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005).
12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018).
13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006).
14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018).
15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019).
16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010).
17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010).
18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012).
19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009).
20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.
2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995).
3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013).
4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020).
5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020).
6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019).
7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019).
8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019).
9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018).
10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018).
11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005).
12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018).
13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006).
14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018).
15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019).
16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010).
17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010).
18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012).
19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009).
20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.
BBa_K3912002 Template 1
Template 1 is the
single-strand DNA that make a loop-stem structure with the Template 2
strand. It has two feature sequences, the priming sequence and the
Amp-F. The Amp-F is a loop that contains the sequence of the primer R
(also the probe-binding sequence), while the priming sequence is a
over-hang strand at the 3’ end, acting as the primer at the start of the
reaction. Other sequence of Template 1 pairs with Template 2. In the RPA
reaction, when p-tau protein is absent, no reaction will start; but when
p-tau is present, the protein will bind with the aptamer sequence on
Template 2 and pull it away, turning the loop-stem structure into a
linear structure, and the priming sequence will bind with Template 2,
acting as the primer to make a double-strand DNA molecule with Template
2 strand as the template. And then the primer-binding sequence will
exist on the prolonged Template 1 strand for the primer F to make a
prolonged Template 2 strand, with the binding sequence of primer R
replicated from Amp-F on it, thus the complete double-strand DNA
molecule is formed and the RPA reaction will continue.
Source:
Schizosaccharomyces pombe (fission yeast) DNA fragment M26
Reference
1. S. Ashley, S. Bradburn, C. Murgatroyd, A
meta-analysis of peripheral tocopherol levels in age-related cognitive
decline and Alzheimer's disease. Nutr Neurosci, 1-15 (2019).
2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995).
3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013).
4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020).
5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020).
6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019).
7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019).
8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019).
9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018).
10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018).
11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005).
12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018).
13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006).
14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018).
15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019).
16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010).
17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010).
18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012).
19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009).
20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.
2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995).
3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013).
4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020).
5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020).
6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019).
7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019).
8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019).
9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018).
10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018).
11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005).
12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018).
13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006).
14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018).
15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019).
16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010).
17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010).
18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012).
19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009).
20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.
BBa_K3912003 Tau441
Tau441 is a part that can be
used to express a biomarker in Alzheimer Disease, Tau protein, in your
chassis. The protein it can actually express is a hypotype of Tau
protein numbered 441. It should also be mentioned that when we used it
for in E.coli, the Tau protein seemed to appeared in the inclusion body
instead of the cytoplasm, for we didn't get anything after the Nickel
column purification of the ultrasonic crushed cells.
Source:
Schizosaccharomyces pombe (fission yeast) DNA fragment M26
Reference
1. S. Ashley, S. Bradburn, C. Murgatroyd, A
meta-analysis of peripheral tocopherol levels in age-related cognitive
decline and Alzheimer's disease. Nutr Neurosci, 1-15 (2019).
2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995).
3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013).
4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020).
5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020).
6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019).
7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019).
8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019).
9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018).
10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018).
11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005).
12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018).
13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006).
14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018).
15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019).
16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010).
17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010).
18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012).
19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009).
20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.
2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995).
3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013).
4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020).
5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020).
6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019).
7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019).
8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019).
9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018).
10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018).
11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005).
12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018).
13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006).
14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018).
15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019).
16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010).
17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010).
18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012).
19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009).
20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.