Difference between revisions of "Team:IISER-Tirupati India/Design"

Line 10: Line 10:
  
  
     <div class="wrapper">
+
     <div class="wrapper" style="background-color: #FDF8D7;">
 
         <header>
 
         <header>
 
             <section class="container-fluid" style="background-color: #8D1063;">
 
             <section class="container-fluid" style="background-color: #8D1063;">
                 <img class="img img-fluid" src="./assets/ihp-01.svg" style="width: 100%;">
+
                 <img class="img img-fluid" src="https://static.igem.org/mediawiki/2021/8/8b/T--IISER-Tirupati_India--safety.svg" style="width: 100%;">
                 <div class=" row  justify-content-center down-arrow" style="width: 100% !important;">SCROLL
+
                 <div class=" row  justify-content-center d-none d-lg-flex" style="width: 100% !important;">       
                    <svg  width="16" height="16" fill="currentColor" class="bi bi-chevron-double-down" viewBox="0 0 16 16">
+
                    <div class="down-arrow" style="color: hsl(320, 80%, 31%);"><strong>SCROLL</strong>
                    <path fill-rule="evenodd" d="M1.646 6.646a.5.5 0 0 1 .708 0L8 12.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/>
+
                        <svg  width="16" height="16" fill="#8D1063" class="bi bi-chevron-double-down" viewBox="0 0 16 16">
                    <path fill-rule="evenodd" d="M1.646 2.646a.5.5 0 0 1 .708 0L8 8.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/>
+
                        <path fill-rule="evenodd" d="M1.646 6.646a.5.5 0 0 1 .708 0L8 12.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/>
                    </svg>  
+
                        <path fill-rule="evenodd" d="M1.646 2.646a.5.5 0 0 1 .708 0L8 8.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/>
 +
                        </svg>
 +
                    </div>
 
                 </div>
 
                 </div>
 
             </section>
 
             </section>
Line 44: Line 46:
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Description">DESCRIPTION</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Description">DESCRIPTION</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Blueprint">BLUEPRINT</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Blueprint">BLUEPRINT</a></li>
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Engineering">ENGINEERING SUCCESS</a></li>
+
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Engineering">ENGINEERING SUCCESS &nbsp; &nbsp;</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Background">BACKGROUND</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Background">BACKGROUND</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Implementation">IMPLEMENTATION</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Implementation">IMPLEMENTATION</a></li>
Line 55: Line 57:
 
                             </a>
 
                             </a>
 
                             <ul class="dropdown-menu fade-down" aria-labelledby="navbarDropdown">
 
                             <ul class="dropdown-menu fade-down" aria-labelledby="navbarDropdown">
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/ProofOfConcept">PROOF OF CONCEPT</a></li>
+
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Proof_Of_Concept">PROOF OF CONCEPT &nbsp; &nbsp;</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Design">DESIGN</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Design">DESIGN</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Parts">PARTS</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Parts">PARTS</a></li>
Line 82: Line 84:
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Communication">COMMUNICATION</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Communication">COMMUNICATION</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Inclusivity">INCLUSIVITY</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Inclusivity">INCLUSIVITY</a></li>
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Sustainable">SUSTAINABLE DEVELOPMENT</a></li>
+
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Sustainable">SUSTAINABLE DEVELOPMENT &nbsp; &nbsp;</a></li>
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
Line 89: Line 91:
 
                             TEAM
 
                             TEAM
 
                             </a>
 
                             </a>
                             <ul class="dropdown-menu fade-down" aria-labelledby="navbarDropdown">
+
                             <ul class="dropdown-menu dropdown-menu-end fade-down" aria-labelledby="navbarDropdown">
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Team">MEMBERS</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Team">MEMBERS</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Attributions">ATTRIBUTION</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Attributions">ATTRIBUTION</a></li>
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Collaborations">COLLABORATIONS</a></li>
+
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Collaborations">COLLABORATIONS &nbsp; &nbsp;</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Partnership">PARTNERSHIP</a></li>
 
                                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:IISER-Tirupati_India/Partnership">PARTNERSHIP</a></li>
 
                             </ul>
 
                             </ul>
Line 102: Line 104:
  
 
         <main>
 
         <main>
             <div class="container">
+
             <div class="container-fluid">
                 <div class="row mt-5 justify-content-end">
+
                 <div class="row">
                     <div class="col-md-8">
+
 
                        <h2>Introduction</h2>
+
                     <div class="col-md-4 col-lg-3 p-2 d-none d-md-block" style="background-color: #FFBD59 !important; color: #8D1063;">
                        <p>Natural systems are highly complex to understand as well as to experiment with. To make predictions of the outcomes,
+
                        <div class="card" style=" max-width: 15.5rem; border: none !important;background-color:#FFBD59;" id="index">
                            we use the available information and the knowledge of physics, mathematics, chemistry, and computer science to build a theoretical model. This page deals with the models built on the different aspects of our project namely :</p>
+
                             <div class="card-body">
                            <ol>
+
                                 <h3 class="card-title text-center mb-3">INDEX</h3>
                                <li>GMO delivery</li>
+
                                 <section id="Index1">  
                                <li>GMO growth and colonisation</li>
+
                                    <ul>
                                <li>Protease production</li>
+
                                        <li><a class="index_link" href="#1">Assembly Design</a></li>
                                <li>Diffusion and ovum Hardening</li>
+
                                        <li><a class="index_link" href="#2">Wetlab Workflow</a></li>
                                <li>Kill switch for reversibility</li>
+
                                        <li><a class="index_link" href="#3">Experimental Workflow</a></li>
                                <li>Kill switch for Biosafety</li>
+
                                     </ul>                        
                                </ol>
+
                                 </section>
                            <h2>Delivery & Colonisation</h2><br>
+
                            </div>
                            <h3>INTRODUCTION: THE JOURNEY OF GMO BEGINS</h3><br>
+
                          </div>
                            <h4>PART A: Delivery</h4><br>
+
                            <h5>OVERVIEW</h5>
+
                            <p>Delivery is an essential part of our project as it determines the audience we reach. We tried to develop multiple
+
                                ways to deliver GMO in a user-friendly way with minimum invasion. Minimum invasion means it should not colonize
+
                                the whole reproductive tract or reach the ovaries. The device should ensure bacterial colonization in the ampulla
+
                                of the fallopian tube.
+
                                One of the constraints that we faced is the high viscosity of the oviductal fluid.</p><P>
+
                                After calculating the time taken for delivery in each method, talking to a couple of IVF experts, and getting their
+
                                inputs into it,we thought hysteroscopic techniques would be the best for our purpose. This method gives us an advantage
+
                                by delivering the bacteria directly into the ampulla region.</p>
+
                            <h5>DEVICE DESIGNING (How to deliver?)</h5>
+
                            <p>GMO will be delivered directly to the ampulla by a process called Hysteroscopy. It’s done with medical assistance and requires
+
                                constant X-Ray monitoring to ensure the catheter is inserted without any issues. The reason is that the Ostia and the Fallopian
+
                                tube are dynamic structures and that there is no chemical or significant physical difference between the ampulla and the other
+
                                components of the Fallopian tube.</p>
+
                               
+
                            <p>A solution of GMO of a specific concentration is prepared. Then the catheter is inserted under medical guidance up to the ampulla.
+
                                Then an injector is projected with narrow long incisions on both sides of it, which ensures that the GMO forms a ring along the
+
                                circumference of the tube. Ovum is now
+
                                360° surrounded by the GMO. </p>
+
                               
+
                            <p>The GMO Lactobacillus Acidophilus has pili which expectantly forms hydrogen bonds at the tube circumference with mucin found in mucus.
+
                                The GMO is now adhered to the walls and multiplies once it adjusts to the introduced environment (lag phase) </p>
+
                            <h5>FUTURE ASPECTS:</h5>
+
                            <p>Since we aim to reach a larger population, the hysteroscopic technique, we believe, is too expensive.
+
                                We also considered using hydrogels for the delivery of bacteria at a pH-specific region.</p><P>
+
                                Why is this system compatible with the delivery of bacteria in the ampulla of the Fallopian tube region?</P><P>
+
                                We found out that the pH in the oviductal Ampulla region is close to 8.0.
+
                                That’s why we considered using hydrogels for bacterial delivery, which swells up at a pH range of 7.8 to 8.0. </P><P>
+
                               
+
                                Amongst the stimuli-responsive hydrogels, pH-sensitive hydrogels are the most studied hydrogels. The rate at
+
                                which hydrogels respond depends upon their size, shape, cross-linking density, number of ionic groups, and composition,
+
                                which can be tailored by varying these factors. The response rate increases with increasing pore size and number of ionic
+
                                groups and decreasing their size and cross-linking density.</P><P>
+
                               
+
                                For a delivery in a basic medium, we planned to use anionic hydrogels, such as carboxymethyl chitosan, which swell at higher
+
                                pH (basic medium) due to ionization of the acidic groups. As a result, the ionized negatively charged pendant groups on the
+
                                polymer chains cause repulsion leading to swelling. This property of hydrogels can be exploited for GMO delivery at pH 7.4
+
                                in the ampulla of the fallopian tube. </p>
+
                            <h5>CELL ENCAPSULATION (What to deliver?)</h5>
+
                            <p>Our goal is to design a live-bacteria entrapment system. More than just encapsulating bacteria, we want to entirely prevent
+
                                their escape from the bead body into the surroundings.</p>
+
                            <p>The Oviductal Fluid is slightly alkaline (ph 7.4 to 7.7), so we need our encapsulating membrane to dissolve away at this pH.
+
                                Potential candidates for hydrogel materials include chitosan, guar gum, and xanthan. Chitosan forms Hydrogen bonds with the
+
                                mucin protein in the mucus allowing for the anchoring at the walls and preventing the hydrogels from getting washed away.</p>
+
                               
+
                               
+
                               
+
                            <h4>PART B: Colonization</h4><br>
+
                            <h5>OVERVIEW (why is it necessary to study growth and colonization)</h5>
+
                            <p>In biosynthesis, growth kinetics is a crucial study to be conducted. The growth of a cell comprises both the size and the number.
+
                                These growths are affected by external factors such as temperature, the chemical composition of the growth nutrient, etc., and by
+
                                different physiological factors such as growth factor proteins[1][2]. The cells in a particular environment extract the nutrients
+
                                from the growth media and produce biomolecules, which humans utilize for different purposes. This phenomenon has applications, from
+
                                producing delicious Italian wine to getting antibiotics which saves millions of lives every year. We will be using this simple
+
                                formula to reach the goals of our project. To have a qualitative understanding of the protein production by the Genetically Modified
+
                                anism(GMO), we need to have a theoretical approach. We need to understand how we can calculate the growth of GMOs [3]. This, in turn,
+
                                will help us figure out protein production. This detailed study of growth kinetics will help us calculate the initial inoculation
+
                                required for the production of a protein that we need.</p>
+
                            <p>For a better understanding, we will be considering two cases. The first comprises the study of the growth of Bacillus Subtilis in
+
                                normal petri dish conditions. This is the known environment and we can have this condition easily in computer simulation and/or lab
+
                                and reconfirm our model. The second case of study is the continuous culture model where we study the growth of Lactobacillus
+
                                Acidophilus in the fallopian tube, which is our target region.  </p>
+
                           
+
                           
+
                            <h6>GROWTH MODELS</h6><br>
+
                            <p>PETRI DISH MODEL (Bacillus Subtilis, curve fitting)</p><br>
+
                            <p>CONTINUOUS CULTURE MODEL (lactobacillus acidophilus + fallopian tube environment)</p><br>
+
                            <h5>INOCULUM CALCULATIONS (connection with 2nd module)</h5><br>
+
                            <h2>Protease production</h2><br>
+
                            <h3>OVERVIEW ( overall picture) </h3>
+
                            <p>Well known for extracellular protease production[1], Bacillus subtilis is our model organism for the proof of concept experiments. Moreover,
+
                                it is a gram-positive bacteria which even if not too close but is closer than e coli (gram-negative) to our proposed bacteria lactobacillus
+
                                Acidophilus. This module deals with the whole mechanism of action ideally the GMO must follow for contraception to be attained. To know how
+
                            this module developed to what it is, please refer to the engineering success (hyperlink).</p>
+
                            <p>Let's create the flow, you must know by now that we plan to produce the protease known as ovastacin,
+
                                an indigenous protease[2] to the human ovum. It is known to cause Zona pellucida hardening naturally
+
                                used by the ovum to prevent polyspermy[3]. To see the mechanism of zona pellucida hardening click here
+
                                (goes to project overview where it is explained).</p>
+
                           
+
                           
+
                            <h5> 1] Total amount of ovastacin required: </h5>
+
                           
+
                            <p>[We assume one active ovastacin cleaves one ZP2 glycoprotein present in the Zona pellucida matrix. To get the number of molecules of ovastacin needed, we calculated the number of ZP2 glycoproteins present on the surface of the ovum. For this, we reached out to studies that looked at the thickness of the ovum with and without the zona pellucida layer to find its overall thickness and the radius of the ovum[4]. </p>
+
                            <br>
+
                            <h6>Constants and calculations:</h6><br>
+
                             <div class="table-responsive-md">
+
                                 <table class="table">
+
                                    <thead>
+
                                        <tr>
+
                                          <th>Parameter (need alternative) </th>
+
                                          <th>Value</th>
+
                                          <th>References</th>
+
                                        </tr>
+
                                    </thead>
+
                                    <tbody>
+
                                        <tr>
+
                                          <td>Zona pellucida thickness</td>
+
                                          <td>18.9 μm</td>
+
                                          <td>Does zona pellucida thickness influence the fertilization rate? E. Bertrand1 , M.Van Den Bergh and Y.Englert</td>
+
                                        </tr>
+
                                        <tr>
+
                                          <td>Oocyte diameter</td>
+
                                          <td>123.5 μm</td>
+
                                          <td>Does zona pellucida thickness influence the fertilization rate? E. Bertrand1 , M.Van Den Bergh and Y.Englert</td>
+
                                        </tr>
+
                                        <tr>
+
                                          <td>Size of ZP2</td>
+
                                          <td>90–110 kDa</td>
+
                                          <td>Characterization of human zona pellucida glycoproteins A R Bauskin 1, D R Franken, U Eberspaecher, P Donner DOI: 10.1093/molehr/5.6.534</td>
+
                                        </tr>
+
                                        <tr>
+
                                          <td>Diameter of ZP2r</td>
+
                                          <td>0.0092 μm</td>
+
                                          <td>Zetasizer Nano Sensitivity Calculator (Classic)</td>
+
                                        </tr>
+
                                    </tbody>
+
                                 </table>
+
                            </div>                           
+
                            <p>Assuming cuboid with all spheres of size same as ZP2 to
+
                            get volume of one unit = 3.1 e-6 μm3 </p>
+
                            <p>Volume occupied by whole ZP matrix = 12.4 e5 μm3 </p>
+
                            <p>Calculated the number of ZP2 glycoproteins present in the ZP matrix = 3.92 x 1011 molecules</p>
+
                            <p>Assuming 1 ovastacin cleaves 1 ZP2</p>
+
                            <p>No. of ovastacin = No. of ZP2 = 12.4 e5 / 3.1 e-6 = 3.92 x 1011  molecules ]</p>
+
                            <p>In order to cause complete hardening __ number of molecules are required to reach the ovum. The next question that arises is how much is produced and how much of produced ovastacin will reach the ovum. So we have two major things left to look at: </p>
+
                            <h5>2] Production and transport of ovastacin by GMO</h5> 
+
                            <p>The production of ovastacin is required for three days pre and post ovulation, please go to “Genetic Circuits” to learn details regarding the genetic circuit. </p> 
+
                            <h4>GENETIC CIRCUIT</h4>
+
                            <p>Progesterone repressible system</p>
+
                            <h4>JOURNEY OF OVASTACIN</h4>
+
                            <p>From the papers, we know that the ovum is propelled by the ciliary motion away from the uterus and that means the ovum is in contact with the wall. Thesize ampulla region of the Fallopian tube (2.5 mm ≤ radius ≤ 5 mm ) is much larger than the radius of the ovum (61.7μm) A molecule under the influence of Brownian motion move according to the equation</p>
+
                            <ul>
+
                                <li>< r <sup>2</sup> >= 4Dt (for 2-D)</li>
+
                                <li>< r <sup>2</sup> >= 6Dt (for 3-D)</li>
+
                                <p>Where,</p>
+
                                <li>< r <sup>2</sup>  > → mean squared (radial) distance travelled by the molecule</li>
+
                                <p>using,</p>
+
                                <ol>
+
                                    <li>k<sub>B</sub> = 1.38064852 ×10<sup>23</sup>  m<sup>2</sup> kg<sup>-2</sup> s<sup>-1</sup> K  [Boltzmann constant]</li>
+
                                    <li>η = 0.799 Pa·s [Viscosity of Oviductal Fluid]</li>
+
                                    <li>T = 35.5 + 273.15 = 308.65 K [Temperature of Oviduct]</li>
+
                                    <li>r = 22kDa = 2.43 nm [Radius of ovastacin molecule]</li>
+
                                    <li>a = 61.7 μm [Radius of the ovum]</li>
+
                                    <li>s = 5 mm [Radius of the ampulla region of the oviduct]</li>
+
                                    <li>N<sub>0</sub> = 3.92 ×10<sup>11</sup> molecules = 0.000650946529392 nanomoles [Number of ovastacin to react with all ZP2]</li>
+
                                     <p>
+
                                        For, Ovastacin D=1.1644194699 ×10<sup>-13</sup>  m<sup>2</sup> s<sup>-1</sup>
+
                                        </p>
+
                                 </ol>
+
                                <li>t → Time elapsed</li>
+
               
+
                            </ul>
+
 
                     </div>
 
                     </div>
                </div>
+
 
                <div class="card d-none d-md-block" style="max-width: 18rem;width: 25%; border: none !important;" id="index">
+
                    <div class="col-md-8 px-5">
                    <div class="card-body">
+
                        <p class="pt-5 pb-2" id="1"></p>
                      <h5 class="card-title">INDEX</h5>
+
                        <p></p>
                      <h6 class="card-subtitle mb-2 text-muted">Card subtitle</h6>
+
                        <h2>Assembly design:</h2>
                      <p class="card-text">Some quick example text to build on the card title and make up the bulk of the card's content.</p>
+
                        <p>Sequence Assembly is one of the most essential and significant processes of recombinant techniques and cloning. It allows multiple components of DNA to be physically linked together, bringing in existence the complete gene cassette.</p>
                      <a href="#" class="card-link">Card link</a>
+
                        <p>Out of the multiple existing assembly techniques, Golden Gate Assembly is one of the more recently developed ones. Relying on the use of Type IIS Restriction Endonucleases and DNA ligase, this powerful and time-saving technique has the capacity to link together multiple parts and components parallelly, thereby enabling one-pot synthesis of the entire gene cassette.</p>
                      <a href="#" class="card-link">Another link</a>
+
                        <p>As a supplement to Golden Gate assembly, the use of Biobrick assembly in the project ensured that we would achieve modularity while building constructs of more complexity.&nbsp;</p>
                      <ul>
+
                        <p id="2">Furthermore, another advantage was the introduction of mixed sites that are inherent in the Biobrick Assembly which served to separate our Level 1 constructs, thereby making the use of spacers redundant.&nbsp;</p>
                          <li><a href="#waste1">waste 1</a></li>
+
                        <p>The use of two independent assemblies significantly increased the extent and modularity of our project.&nbsp;</p>
                          <li><a href="#waste2">waste 2</a></li>
+
                        <h2>Wetlab design:</h2>
                          <li><a href="#waste3">waste 3</a></li>
+
                        <p>We planned the time to be devoted for experiments and the experimental workflow was based on the amount of time we predicted we would have for doing our wet-lab experiments. The experiments had been designed such that they provide an overview of our project&rsquo;s proof of concept with the help of cassettes designed and the aforementioned assembly method.</p>
                          <li><a href="#waste4">waste 4</a></li>
+
                        <p>To do so, we decided to divide our wet lab work into three Phases.&nbsp;</p>
                          <li><a href="#waste1">waste 1</a></li>
+
 
                          <li><a href="#waste2">waste 2</a></li>
+
                        <p>While dividing these phases, the first priority was given to the complexity of the cassette designed. Then it got more oriented towards the priority of the experimental results needed to move to the next parts of the wet lab workflow.</p>
                          <li><a href="#waste3">waste 3</a></li>
+
                        <div class="p-3" style="background-color: #FFBD59;color: #8D1063;">
                          <li><a href="#waste4">waste 4</a></li>
+
                        <h4>Glossary-&nbsp;</h4>
                          <li><a href="#waste1">waste 1</a></li>
+
                        <ul>
                          <li><a href="#waste2">waste 2</a></li>
+
                        <li>srtf1+ mCherry - Steroid-Responsive Transcription Factor 1 linked by the use of Linker with mCherry Red Fluorescence Protein with the help of cloning</li>
                          <li><a href="#waste3">waste 3</a></li>
+
                        <li>ASTL+ sfGFP: Astacin-like metalloendopeptidase (Ovastacin) linked by the use of Linker with Superfolder Green Fluorescence Protein with the help of cloning</li>
                          <li><a href="#waste4">waste 4</a></li>
+
                        <li>p22 repressor+ Azurite: P22 repressor linked by the use of Linker with Azurite Blue Fluorescence Protein with the help of cloning</li>
                      </ul>
+
                        </ul>
 +
                        </div>
 +
 
 +
                        <h3 class="pt-3">Phase 1</h3>
 +
                        <p>Phase 1 was mainly designed to test individual cassettes of srtf1+mcherry, ASTL+sfGFP, Ovastacin A and Ovastacin B and to check the expression of these proteins in our model organism <em>Bacillus subtilis 168</em>. We also designed the cassette in an attempt to improve the termination activity of an existing terminator using the strategy of making a double terminator.&nbsp;</p>
 +
 
 +
                        <p>We decided to express both srtf1+mcherry and ASTL+sfGFP cassette together in a single construct, which will result in the production of SRTF1 and Ovastacin protein. The SRTF1 and Ovastacin yielding cassettes are designed such that they do not interact directly with each other and hence they may not hamper the expression of each other. Thus, it would allow estimation of the production of both the proteins in <em>Bacillus subtilis 168 </em>by detecting fluorescence using a plate reader.&nbsp;</p>
 +
 
 +
                        <p>We planned to independently check the P22 repressor+ Azurite cassette as it will interact with the operator region of respective promoters of the proteins namely SRTF1 and Ovastacin; hence it may cause hindrance in estimating the expression of P22 repressor + Azurite.&nbsp;</p>
 +
 
 +
                        <p>Additionally, we planned to check the expression of Ovastacin A which is phosphomimetic for serine residue and Ovastacin B which is phosphomimetic for serine and tyrosine residue. Here, we planned to do phosphomimetics because we planned to express them in bacteria. Bacterial cells cannot do a post-translational modification like phosphorylation which plays role in the structure which can contribute to its functionality too.&nbsp;</p>
 +
 
 +
                        <p>Simultaneously, Ovastacin B (part hyperlink) purification in <em>Bacillus subtilis168</em> and ZP2 (part hyperlink) expression and purification from BL21 strain of <em>E.coli</em> was planned for performing in-vitro cleavage assay. With this assay, we aimed to confirm the functionality of Ovastacin B to cleave ZP2 protein.&nbsp;</p>
 +
 
 +
                        <p>In this in-vitro cleavage assay, Ovastacin B was preferred as it is phosphomimetic for serine and tyrosine residue. Hence, it has more chances of being purified successfully with its proper structure and functionality as it has an amino acid substitution that mimics the phosphorylated amino acid i.e serine and tyrosine in the original structure of Ovastacin.&nbsp;</p>
 +
 
 +
                        <p>Lastly, ASTL+sfGFP with signal peptide cassette was designed for checking the secretion of folded protein Ovastacin in <em>Bacillus subtilis</em> 168 using 2 signal peptides, YwbN and PhoD.&nbsp;</p>
 +
 
 +
                        <p>From Phase 1, we would confirm the working of our individual cassettes and purify protein to perform an in-vitro cleavage assay. So, that we can conclude that Ovastacin produced by bacteria can cleave hZP2. Hence we can move to Phase 2 of our wet lab workflow.&nbsp;</p>
 +
 
 +
                        <h3>Phase 2</h3>
 +
                        <p>In Phase 2, we aimed to check the interaction between the proteins by combining two cassettes in <em>Bacillus subtilis168</em>.&nbsp;</p>
 +
 
 +
                        <p>One of them was srtf1+mcherry and P22+ Azurite cassettes with which we wanted to check the progesterone sensing. Here, in the absence of progesterone, the expression of SRTF1 occurs, and hence, the expression of the P22 repressor is repressed. Therefore, relatively higher red fluorescence will be detected in the plate reader. While in the presence of progesterone, the binding of SRTF1 to the operator region of the P22 cassette is inhibited. This leads to the expression of the P22 repressor protein. Therefore, due to the presence of progesterone, both red and blue fluorescence will be detected in the plate reader.&nbsp;</p>
 +
                        <p>Similarly, we plan to check the P22 repressor+ Azurite and ASTL+sfGFP cassette expression and interaction of the P22 repressor with its operator region on the Ovastacin cassette, respectively, by detecting fluorescence intensities. In this, the expression of Ovastacin is repressed in the presence of the P22 repressor. Due to which only the blue fluorescence of Azurite will be detected as it is the reported protein for P22 expression.&nbsp;</p>
 +
                        <figure class="col-12 col-md-8 p-5 m-auto">
 +
                            <img src="./assets/c3p2 (1).svg" alt="Trulli" style="width:100%">
 +
                        </figure>
 +
                        <p>From Phase 2, we will be able to show progesterone sensing and confirm the interaction of both srtf1 and ASTL cassette with the P22 cassette correctly.&nbsp;</p>
 +
 
 +
                        <h3>Phase 3</h3>
 +
                        <p>In Phase 3, we aimed to check the working of the genetic circuit as a whole in our model organism <em>Bacillus subtilis168</em>.</p>
 +
 
 +
                        <p>Here we focus on <a href="https://docs.google.com/document/u/0/d/1KzClh2sJ5suFFmjOVSf0kgOcXt48C8NKLc5854M9Hsc/edit">the Ovastacin production circuit</a>, which includes the expression of SRTF1 in the absence of progesterone. Hence, inhibiting the expression of Ovastacin and P22 repressor. While in the presence of progesterone, SRTF1 is blocked from binding to the operator region of the P22 repressor. This blocking leads to the production of Ovastacin and P22 repressor downstream.&nbsp;</p>
 +
 
 +
                        <p>Thus, Phase 3 helps us give our proof of concept that Ovastacin is being produced in a periodic and regulated manner before the fertilisation takes place due to successful progesterone sensing.&nbsp;</p>
 +
                        <p><br /><br /></p>
 +
                        <p>With the plans above, we also designed a cassette for protein expression in <em>Saccharomyces cerevisiae, </em>a eukaryotic model organism, under different inducible promoters to show in-vivo cleavage of eukaryotic proteins, i.e. Ovastacin cleaving ZP2 protein.&nbsp;</p>
 +
                        <p>Here, we also planned to produce Ovastacin and ZP2 in yeast. So, that we could compare the structural difference in the protein produced in <em>Bacillus subtilis </em>and <em>Saccharomyces cerevisiae. </em>As if the in-vitro cleavage assay in <em>Bacillus subtilis</em>, cleavage does not happen and gives a negative result. We will then see the results of the in-vivo cleavage assay in <em>Saccharomyces cerevisiae and</em> compare the expressed proteins in both organisms. We will be able to conclude that maybe for the successful cleavage to happen, post-translation modifications are necessary as post-translational modification happens in <em>Saccharomyces cerevisiae</em> but<p id="3"></p>  not in <em>Bacillus subtilis168. </em>For Ovastacin to functionally be active and cleave ZP2, it has to go through post-translational modifications.&nbsp;</p>
 +
                        <p >To achieve the above aim, we need to design the experimental workflow.&nbsp;</p>
 +
                        <h2>Experimental workflow:</h2>
 +
                        <div class="trable-responsive py-3" style="overflow: scroll;border: 5px ridge #8D1063;">
 +
                            <img style="width: 1500px;" src="https://static.igem.org/mediawiki/2021/7/72/T--IISER-Tirupati_India--WF-Bacillus.svg" alt="Trulli">
 +
                        </div>
 +
                        <div class="py-3"></div>
 +
                        <div class="trable-responsive py-3" style="overflow: scroll;border: 5px ridge #8D1063;">
 +
                            <img style="width: 1500px;" src="https://static.igem.org/mediawiki/2021/7/74/T--IISER-Tirupati_India--WF-Saccharomyces.svg" alt="Trulli">
 +
                        </div>
 +
                        <div class="accordion pt-3" id="accordionExample">
 +
                            <div class="accordion-item">
 +
                              <h2 class="accordion-header" id="headingOne">
 +
                                <button class="accordion-button" type="button" data-bs-toggle="collapse" data-bs-target="#collapseOne" aria-expanded="true" aria-controls="collapseOne">
 +
                                    Initial setup and growth
 +
                                </button>
 +
                              </h2>
 +
                              <div id="collapseOne" class="accordion-collapse collapse" aria-labelledby="headingOne" data-bs-parent="#accordionExample">
 +
                                <div class="accordion-body">
 +
                                    <ul>
 +
                                        <li>
 +
                                        <h4>Culture preparation-</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>Growing bacteria on an LB agar/YPD plate or liquid broth (LB/ YPD).&nbsp;</p>
 +
                                        <ul>
 +
                                        <li>Culture methods on solid growth medium are-&nbsp;</li>
 +
                                        </ul>
 +
                                        <ol>
 +
                                        <li>Streaking - we get single colonies grown from a single parent bacterial cell to pick up for experiments like miniprep.</li>
 +
                                        <li>Spreading- we get bacterial cells evenly spread on a plate. From which, we can take single colony or mass colonies according to the demand of the experiment.&nbsp;</li>
 +
                                        </ol>
 +
                                       
 +
                                        <ul>
 +
                                        <li>Culture method on liquid growth medium-</li>
 +
                                        </ul>
 +
                                        <ol>
 +
                                        <li>Broth- This method helps us to grow and maintain the culture for further experiments. In this, the growth is viewed with the turbidity of the liquid.&nbsp;</li>
 +
                                        </ol>
 +
                                       
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Growth curve-&nbsp;</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>It gives an idea about the growth rate of the bacteria by measuring OD across various time points. The rough idea is helpful in the experiments of competency and protein purification.</p>
 +
                                </div>
 +
                              </div>
 +
                            </div>
 +
                            <div class="accordion-item">
 +
                              <h2 class="accordion-header" id="headingTwo">
 +
                                <button class="accordion-button collapsed" type="button" data-bs-toggle="collapse" data-bs-target="#collapseTwo" aria-expanded="false" aria-controls="collapseTwo">
 +
                                    Cloning
 +
                                </button>
 +
                              </h2>
 +
                              <div id="collapseTwo" class="accordion-collapse collapse" aria-labelledby="headingTwo" data-bs-parent="#accordionExample">
 +
                                <div class="accordion-body">
 +
                                    <ul>
 +
                                        <li>
 +
                                        <h4>Cell competency and transformation:&nbsp;</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>Cell competency is the common methodology for making cells competent to take up the extracellular DNA and the transformation is the natural process by which cells take up foreign DNA from the environment. We have different artificial methods to make cells competent and transform them with vectors like the chemical method and electroporation method. These techniques are used in modern recombinant DNA technology to transform the bacterial cells (e.g. E Coli DH5&alpha; for cloning experiments). Chemical methods and electroporation have their own protocols.&nbsp;</p>
 +
                                        <p>In cloning, the transformation of E Coli is used for the plasmid/vector mass production while other model organisms like <em>Bacillus subtilis</em> and <em>Saccharomyces cerevisiae</em> act as an expression system for as per the demand of our experiments.&nbsp;</p>
 +
                                        <p>We did competency and transformation in E coli DH5&alpha; and BL21 strains.&nbsp;</p>
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Miniprep and Nanodrop:&nbsp;</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>Miniprep is the separation technique where we multiply the vector/plasmid within bacterial cells (here, in E Coli strains like DH5&alpha;, TOP10, DH10&beta;) and purify it with a kit method or manually. This purified plasmid/vector can be used for further downstream processes like sequencing, restriction digestion and ligation.&nbsp;</p>
 +
                                        <p>Nucleic acid concentration is quantified by a device called a nanodrop spectrophotometer. It also provides information about the sample purity. We did quantification after the PCR amplifications and Minipreps.</p>
 +
                                        <p>We did various minipreps using kit methods for our plasmids like pRS426, pRS425, pRS425, pDR111, pDR110, pRSETb.&nbsp;</p>
 +
                                       
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Agarose gel electrophoresis and Gel extraction</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>Basically, the technique is used to analyse the results of cloning experiments. This analysis is done based on the relative separation of DNA fragments with respect to their mass and charge on the agarose gel. The percentage (w/v) of the gel is dependent on the DNA fragment sizes that we are dealing with.&nbsp;</p>
 +
                                        <p>Gel extraction is the technique in which we isolate and purify the desired DNA band on the gel using kit methods following the agarose gel electrophoresis.&nbsp;</p>
 +
                                       
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Restriction digestion and PCR cleanup</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>Restriction digestion is a process in which DNA is cut at specific restriction sites by endonucleases like XbaI, NheI, BamHI, HindIII, SphI, etc. These reactions are carried out at particular temperatures to the enzyme in the thermocycler.</p>
 +
                                        <p>After performing the reactions in the thermocycler, we need to do PCR cleanup to remove impurities from the DNA samples. These iImpurities contain the master mixes, buffers, enzymes, etc., in the reaction.</p>
 +
                                       
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Golden gate Assembly and Ligation</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>This is the in- vitro cloning method in which we can directionally assemble the multiple DNA fragments into one piece using type 2s restriction enzyme (e.g. BsmbI, BsaI) and T4 ligase.</p>
 +
                                        <p>Here, we design the multiple fragments and do a golden gate assembly to join those fragments to form one fragment, which will be the insert/GOI for the vector and then we can perform a ligation reaction.</p>
 +
                                        <p>Ligation reaction can be done separately or within the golden gate assembly reaction.&nbsp;</p>
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>SpeedVac</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>SpeedVac is the vacuum concentrator device in which temperature and vacuum are maintained in the chamber to evaporate the solvent and concentrate the sample. This is used in proteomics as well as in genomics and other various fields.&nbsp;</p>
 +
                                        <p>In cloning, we can use the speedVac to concentrate the DNA samples with excess nuclease-free water so that the concentrated samples can be used for further downstream applications such as ligation reaction in golden gate assembly.</p>
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Patching and Colony PCR</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>Patching is the technique in which we use a sterile toothpick to pick up the colony and transfer it to the new agar plate.</p>
 +
                                        <p>Here, patching can be done to get the colonies for the colony PCR.</p>
 +
                                        <p>Colony PCR is the method used to screen the colonies with the correct vector with GOI, which are grown on selective media.&nbsp;</p>
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Replica plating&nbsp;</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>Replica plating is the procedure by which we just make the secondary replica plates of the master plate.&nbsp;</p>
 +
                                        <p>We used it for the starch tests where we could grow the culture on amylase-containing secondary plates.</p>
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Starch test</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>The starch test is a test that can be done to check the hydrolysis of amylose by amylase enzyme, which is produced by bacteria.&nbsp;</p>
 +
                                        <p>Here, we used the test to check the genomic integration at amyE site in the Bacillus subtilis genome.&nbsp;</p>                                </div>
 +
                              </div>
 +
                            </div>
 +
                            <div class="accordion-item">
 +
                              <h2 class="accordion-header" id="headingThree">
 +
                                <button class="accordion-button collapsed" type="button" data-bs-toggle="collapse" data-bs-target="#collapseThree" aria-expanded="false" aria-controls="collapseThree">
 +
                                    Protein expression & analysis
 +
                                </button>
 +
                              </h2>
 +
                              <div id="collapseThree" class="accordion-collapse collapse" aria-labelledby="headingThree" data-bs-parent="#accordionExample">
 +
                                <div class="accordion-body">
 +
                                    <ul>
 +
                                        <li>
 +
                                        <h4>Cell lysis-&nbsp;</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>There are different ways to do it. Furthermore, according to the experimental organism and protein of interest to be purified appropriate method is selected to lyse the cell. There are many ways that are Mechanical, Liquid Homogenisation, Sonication, Freeze-thaw, Manual grinding and simple chemical method.&nbsp;</p>
 +
                                        <p>We standardised the method to use for our protein by doing a pilot experiment. We performed sonication along with a simple chemical method to ensure that we purify the functional protein. We were sceptical about our desired protein getting denatured due to the amplitude used during sonication. However, the final results confirmed that the sonication method of cell lysis is better for our protein.&nbsp;</p>
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Ni- NTA&nbsp;</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>It is an affinity-based protein purification system for 6xHis-tagged recombinant proteins expressed in bacteria, yeast, insects and mammalian cells.&nbsp;</p>
 +
                                        <p>This method works on the principle of reversible interaction between a His-tagged protein and a specific ligand, i.e. nickel for the Ni-NTA system. It has high selectivity and high resolution.&nbsp;</p>
 +
                                        <p>In our project, we had 2 his-tagged proteins, ZP2 and Ovastacin. Hence, we decided to use the Ni-NTA system to purify them.&nbsp;</p>
 +
                                       
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>SDS PAGE-&nbsp;</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>It is the method to separate the proteins based on their molecular weight. It can be used for the rough idea about the weight of purified protein.&nbsp;</p>
 +
                                        <p>We used it for estimating the rough presence of our desired protein by checking the presence of bands near 90kDa for ZP2 and 22.5 kDa for Ovastacin.&nbsp;</p>
 +
                                       
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Western blotting-</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>Western blotting is done to detect the desired protein with the help of primary and secondary antibodies. Primary antibodies go and bind to the desired protein on the blot. Then secondary antibodies are added, which goes and bind to primary antibodies. At last, the substrate is added, a chemical reagent that goes and reacts with secondary antibodies. After that reaction, it gives out a measurable signal which can be detected under UV light. Hence, it concludes that it has the desired protein.&nbsp;</p>
 +
                                        <p>We use 6X- His tag antibody as primary antibodies for our proteins ZP2 and Ovastacin which were expressed in bacteria. And then we used horseradish peroxidase secondary antibodies. And then added substrate to develop the membrane and confirm the presence of our protein specifically.&nbsp;</p>
 +
                                       
 +
                                        <ul>
 +
                                        <li>
 +
                                        <h4>Plate reader-&nbsp;</h4>
 +
                                        </li>
 +
                                        </ul>
 +
                                        <p>Plate reader is also known as microplate reader. There are different types of microplate readers like Absorbance microplate readers, Fluorescence microplate readers, Luminescence microplate readers and Multimode microplate readers.&nbsp;</p>
 +
                                        <p>For our project, we are using a fluorescence microplate reader to measure the expression of sfGFP, Azurite and mcherry linked protein. Fluorescent molecule emission is filtered, collected, and measured with a better dynamic range than absorbance approaches in a fluorescence microplate reader. This fluorescent molecule emits light upon excitation by a higher energy light source. In this way, we do fluorescence intensity assays with the help of which we get to know the expression level of the promoter or protein. This fluorescence intensity assay can include single or multiple colours in one experiment with a diverse array of fluorophores.&nbsp;</p>                                </div>
 +
                              </div>
 +
                            </div>
 +
                        </div>
 
                     </div>
 
                     </div>
                  </div>
+
                </div>
 
             </div>
 
             </div>
 +
            <button type="button" class="btn button-dark btn-floating btn-lg" id="btn-back-to-top"><svg fill="#FDF8D7" width="20px" height="30px" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M34.9 289.5l-22.2-22.2c-9.4-9.4-9.4-24.6 0-33.9L207 39c9.4-9.4 24.6-9.4 33.9 0l194.3 194.3c9.4 9.4 9.4 24.6 0 33.9L413 289.4c-9.5 9.5-25 9.3-34.3-.4L264 168.6V456c0 13.3-10.7 24-24 24h-32c-13.3 0-24-10.7-24-24V168.6L69.2 289.1c-9.3 9.8-24.8 10-34.3.4z"/></svg></button>
 
         </main>
 
         </main>
  

Revision as of 15:40, 16 October 2021


Ovi-Cloak

SCROLL

Assembly design:

Sequence Assembly is one of the most essential and significant processes of recombinant techniques and cloning. It allows multiple components of DNA to be physically linked together, bringing in existence the complete gene cassette.

Out of the multiple existing assembly techniques, Golden Gate Assembly is one of the more recently developed ones. Relying on the use of Type IIS Restriction Endonucleases and DNA ligase, this powerful and time-saving technique has the capacity to link together multiple parts and components parallelly, thereby enabling one-pot synthesis of the entire gene cassette.

As a supplement to Golden Gate assembly, the use of Biobrick assembly in the project ensured that we would achieve modularity while building constructs of more complexity. 

Furthermore, another advantage was the introduction of mixed sites that are inherent in the Biobrick Assembly which served to separate our Level 1 constructs, thereby making the use of spacers redundant. 

The use of two independent assemblies significantly increased the extent and modularity of our project. 

Wetlab design:

We planned the time to be devoted for experiments and the experimental workflow was based on the amount of time we predicted we would have for doing our wet-lab experiments. The experiments had been designed such that they provide an overview of our project’s proof of concept with the help of cassettes designed and the aforementioned assembly method.

To do so, we decided to divide our wet lab work into three Phases. 

While dividing these phases, the first priority was given to the complexity of the cassette designed. Then it got more oriented towards the priority of the experimental results needed to move to the next parts of the wet lab workflow.

Glossary- 

  • srtf1+ mCherry - Steroid-Responsive Transcription Factor 1 linked by the use of Linker with mCherry Red Fluorescence Protein with the help of cloning
  • ASTL+ sfGFP: Astacin-like metalloendopeptidase (Ovastacin) linked by the use of Linker with Superfolder Green Fluorescence Protein with the help of cloning
  • p22 repressor+ Azurite: P22 repressor linked by the use of Linker with Azurite Blue Fluorescence Protein with the help of cloning

Phase 1

Phase 1 was mainly designed to test individual cassettes of srtf1+mcherry, ASTL+sfGFP, Ovastacin A and Ovastacin B and to check the expression of these proteins in our model organism Bacillus subtilis 168. We also designed the cassette in an attempt to improve the termination activity of an existing terminator using the strategy of making a double terminator. 

We decided to express both srtf1+mcherry and ASTL+sfGFP cassette together in a single construct, which will result in the production of SRTF1 and Ovastacin protein. The SRTF1 and Ovastacin yielding cassettes are designed such that they do not interact directly with each other and hence they may not hamper the expression of each other. Thus, it would allow estimation of the production of both the proteins in Bacillus subtilis 168 by detecting fluorescence using a plate reader. 

We planned to independently check the P22 repressor+ Azurite cassette as it will interact with the operator region of respective promoters of the proteins namely SRTF1 and Ovastacin; hence it may cause hindrance in estimating the expression of P22 repressor + Azurite. 

Additionally, we planned to check the expression of Ovastacin A which is phosphomimetic for serine residue and Ovastacin B which is phosphomimetic for serine and tyrosine residue. Here, we planned to do phosphomimetics because we planned to express them in bacteria. Bacterial cells cannot do a post-translational modification like phosphorylation which plays role in the structure which can contribute to its functionality too. 

Simultaneously, Ovastacin B (part hyperlink) purification in Bacillus subtilis168 and ZP2 (part hyperlink) expression and purification from BL21 strain of E.coli was planned for performing in-vitro cleavage assay. With this assay, we aimed to confirm the functionality of Ovastacin B to cleave ZP2 protein. 

In this in-vitro cleavage assay, Ovastacin B was preferred as it is phosphomimetic for serine and tyrosine residue. Hence, it has more chances of being purified successfully with its proper structure and functionality as it has an amino acid substitution that mimics the phosphorylated amino acid i.e serine and tyrosine in the original structure of Ovastacin. 

Lastly, ASTL+sfGFP with signal peptide cassette was designed for checking the secretion of folded protein Ovastacin in Bacillus subtilis 168 using 2 signal peptides, YwbN and PhoD. 

From Phase 1, we would confirm the working of our individual cassettes and purify protein to perform an in-vitro cleavage assay. So, that we can conclude that Ovastacin produced by bacteria can cleave hZP2. Hence we can move to Phase 2 of our wet lab workflow. 

Phase 2

In Phase 2, we aimed to check the interaction between the proteins by combining two cassettes in Bacillus subtilis168

One of them was srtf1+mcherry and P22+ Azurite cassettes with which we wanted to check the progesterone sensing. Here, in the absence of progesterone, the expression of SRTF1 occurs, and hence, the expression of the P22 repressor is repressed. Therefore, relatively higher red fluorescence will be detected in the plate reader. While in the presence of progesterone, the binding of SRTF1 to the operator region of the P22 cassette is inhibited. This leads to the expression of the P22 repressor protein. Therefore, due to the presence of progesterone, both red and blue fluorescence will be detected in the plate reader. 

Similarly, we plan to check the P22 repressor+ Azurite and ASTL+sfGFP cassette expression and interaction of the P22 repressor with its operator region on the Ovastacin cassette, respectively, by detecting fluorescence intensities. In this, the expression of Ovastacin is repressed in the presence of the P22 repressor. Due to which only the blue fluorescence of Azurite will be detected as it is the reported protein for P22 expression. 

Trulli

From Phase 2, we will be able to show progesterone sensing and confirm the interaction of both srtf1 and ASTL cassette with the P22 cassette correctly. 

Phase 3

In Phase 3, we aimed to check the working of the genetic circuit as a whole in our model organism Bacillus subtilis168.

Here we focus on the Ovastacin production circuit, which includes the expression of SRTF1 in the absence of progesterone. Hence, inhibiting the expression of Ovastacin and P22 repressor. While in the presence of progesterone, SRTF1 is blocked from binding to the operator region of the P22 repressor. This blocking leads to the production of Ovastacin and P22 repressor downstream. 

Thus, Phase 3 helps us give our proof of concept that Ovastacin is being produced in a periodic and regulated manner before the fertilisation takes place due to successful progesterone sensing. 



With the plans above, we also designed a cassette for protein expression in Saccharomyces cerevisiae, a eukaryotic model organism, under different inducible promoters to show in-vivo cleavage of eukaryotic proteins, i.e. Ovastacin cleaving ZP2 protein. 

Here, we also planned to produce Ovastacin and ZP2 in yeast. So, that we could compare the structural difference in the protein produced in Bacillus subtilis and Saccharomyces cerevisiae. As if the in-vitro cleavage assay in Bacillus subtilis, cleavage does not happen and gives a negative result. We will then see the results of the in-vivo cleavage assay in Saccharomyces cerevisiae and compare the expressed proteins in both organisms. We will be able to conclude that maybe for the successful cleavage to happen, post-translation modifications are necessary as post-translational modification happens in Saccharomyces cerevisiae but

not in Bacillus subtilis168. For Ovastacin to functionally be active and cleave ZP2, it has to go through post-translational modifications. 

To achieve the above aim, we need to design the experimental workflow. 

Experimental workflow:

Trulli
Trulli

  • Culture preparation-

Growing bacteria on an LB agar/YPD plate or liquid broth (LB/ YPD). 

  • Culture methods on solid growth medium are- 
  1. Streaking - we get single colonies grown from a single parent bacterial cell to pick up for experiments like miniprep.
  2. Spreading- we get bacterial cells evenly spread on a plate. From which, we can take single colony or mass colonies according to the demand of the experiment. 
  • Culture method on liquid growth medium-
  1. Broth- This method helps us to grow and maintain the culture for further experiments. In this, the growth is viewed with the turbidity of the liquid. 
  • Growth curve- 

It gives an idea about the growth rate of the bacteria by measuring OD across various time points. The rough idea is helpful in the experiments of competency and protein purification.

  • Cell competency and transformation: 

Cell competency is the common methodology for making cells competent to take up the extracellular DNA and the transformation is the natural process by which cells take up foreign DNA from the environment. We have different artificial methods to make cells competent and transform them with vectors like the chemical method and electroporation method. These techniques are used in modern recombinant DNA technology to transform the bacterial cells (e.g. E Coli DH5α for cloning experiments). Chemical methods and electroporation have their own protocols. 

In cloning, the transformation of E Coli is used for the plasmid/vector mass production while other model organisms like Bacillus subtilis and Saccharomyces cerevisiae act as an expression system for as per the demand of our experiments. 

We did competency and transformation in E coli DH5α and BL21 strains. 

  • Miniprep and Nanodrop: 

Miniprep is the separation technique where we multiply the vector/plasmid within bacterial cells (here, in E Coli strains like DH5α, TOP10, DH10β) and purify it with a kit method or manually. This purified plasmid/vector can be used for further downstream processes like sequencing, restriction digestion and ligation. 

Nucleic acid concentration is quantified by a device called a nanodrop spectrophotometer. It also provides information about the sample purity. We did quantification after the PCR amplifications and Minipreps.

We did various minipreps using kit methods for our plasmids like pRS426, pRS425, pRS425, pDR111, pDR110, pRSETb. 

  • Agarose gel electrophoresis and Gel extraction

Basically, the technique is used to analyse the results of cloning experiments. This analysis is done based on the relative separation of DNA fragments with respect to their mass and charge on the agarose gel. The percentage (w/v) of the gel is dependent on the DNA fragment sizes that we are dealing with. 

Gel extraction is the technique in which we isolate and purify the desired DNA band on the gel using kit methods following the agarose gel electrophoresis. 

  • Restriction digestion and PCR cleanup

Restriction digestion is a process in which DNA is cut at specific restriction sites by endonucleases like XbaI, NheI, BamHI, HindIII, SphI, etc. These reactions are carried out at particular temperatures to the enzyme in the thermocycler.

After performing the reactions in the thermocycler, we need to do PCR cleanup to remove impurities from the DNA samples. These iImpurities contain the master mixes, buffers, enzymes, etc., in the reaction.

  • Golden gate Assembly and Ligation

This is the in- vitro cloning method in which we can directionally assemble the multiple DNA fragments into one piece using type 2s restriction enzyme (e.g. BsmbI, BsaI) and T4 ligase.

Here, we design the multiple fragments and do a golden gate assembly to join those fragments to form one fragment, which will be the insert/GOI for the vector and then we can perform a ligation reaction.

Ligation reaction can be done separately or within the golden gate assembly reaction. 

  • SpeedVac

SpeedVac is the vacuum concentrator device in which temperature and vacuum are maintained in the chamber to evaporate the solvent and concentrate the sample. This is used in proteomics as well as in genomics and other various fields. 

In cloning, we can use the speedVac to concentrate the DNA samples with excess nuclease-free water so that the concentrated samples can be used for further downstream applications such as ligation reaction in golden gate assembly.

  • Patching and Colony PCR

Patching is the technique in which we use a sterile toothpick to pick up the colony and transfer it to the new agar plate.

Here, patching can be done to get the colonies for the colony PCR.

Colony PCR is the method used to screen the colonies with the correct vector with GOI, which are grown on selective media. 

  • Replica plating 

Replica plating is the procedure by which we just make the secondary replica plates of the master plate. 

We used it for the starch tests where we could grow the culture on amylase-containing secondary plates.

  • Starch test

The starch test is a test that can be done to check the hydrolysis of amylose by amylase enzyme, which is produced by bacteria. 

Here, we used the test to check the genomic integration at amyE site in the Bacillus subtilis genome. 

  • Cell lysis- 

There are different ways to do it. Furthermore, according to the experimental organism and protein of interest to be purified appropriate method is selected to lyse the cell. There are many ways that are Mechanical, Liquid Homogenisation, Sonication, Freeze-thaw, Manual grinding and simple chemical method. 

We standardised the method to use for our protein by doing a pilot experiment. We performed sonication along with a simple chemical method to ensure that we purify the functional protein. We were sceptical about our desired protein getting denatured due to the amplitude used during sonication. However, the final results confirmed that the sonication method of cell lysis is better for our protein. 

  • Ni- NTA 

It is an affinity-based protein purification system for 6xHis-tagged recombinant proteins expressed in bacteria, yeast, insects and mammalian cells. 

This method works on the principle of reversible interaction between a His-tagged protein and a specific ligand, i.e. nickel for the Ni-NTA system. It has high selectivity and high resolution. 

In our project, we had 2 his-tagged proteins, ZP2 and Ovastacin. Hence, we decided to use the Ni-NTA system to purify them. 

  • SDS PAGE- 

It is the method to separate the proteins based on their molecular weight. It can be used for the rough idea about the weight of purified protein. 

We used it for estimating the rough presence of our desired protein by checking the presence of bands near 90kDa for ZP2 and 22.5 kDa for Ovastacin. 

  • Western blotting-

Western blotting is done to detect the desired protein with the help of primary and secondary antibodies. Primary antibodies go and bind to the desired protein on the blot. Then secondary antibodies are added, which goes and bind to primary antibodies. At last, the substrate is added, a chemical reagent that goes and reacts with secondary antibodies. After that reaction, it gives out a measurable signal which can be detected under UV light. Hence, it concludes that it has the desired protein. 

We use 6X- His tag antibody as primary antibodies for our proteins ZP2 and Ovastacin which were expressed in bacteria. And then we used horseradish peroxidase secondary antibodies. And then added substrate to develop the membrane and confirm the presence of our protein specifically. 

  • Plate reader- 

Plate reader is also known as microplate reader. There are different types of microplate readers like Absorbance microplate readers, Fluorescence microplate readers, Luminescence microplate readers and Multimode microplate readers. 

For our project, we are using a fluorescence microplate reader to measure the expression of sfGFP, Azurite and mcherry linked protein. Fluorescent molecule emission is filtered, collected, and measured with a better dynamic range than absorbance approaches in a fluorescence microplate reader. This fluorescent molecule emits light upon excitation by a higher energy light source. In this way, we do fluorescence intensity assays with the help of which we get to know the expression level of the promoter or protein. This fluorescence intensity assay can include single or multiple colours in one experiment with a diverse array of fluorophores. 

Our Sponsors
Follow Us