Difference between revisions of "Team:Shanghai Metro Utd/Proof Of Concept"

(Prototype team page)
 
Line 1: Line 1:
{{IGEM_TopBar}}
+
<html lang="en">
{{Shanghai_Metro_Utd}}
+
<html>
+
  
 +
<head>
 +
    <meta charset="UTF-8">
 +
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
 +
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 +
    <title>Shanghai_Metro_Utd</title>
 +
    <link rel="stylesheet"
 +
        href="https://2021.igem.org/wiki/index.php?title=Template:Shanghai_Metro_Utd/Main_CSS&action=raw&ctype=text/css" />
  
<div class="column full_size judges-will-not-evaluate">
+
</head>
<h3>★  ALERT! </h3>
+
<p>This page is used by the judges to evaluate your team for the <a href="https://2021.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2021.igem.org/Judging/Awards"> award listed below</a>. </p>
+
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2021.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
</div>
+
  
 +
<body>
 +
    <nav class="head-nav clearfix">
 +
        <div class="top-block"></div>
 +
        <div class="top-nav-bar">
 +
            <ul class="clearfix">
 +
                <span class="small-logo"></span>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro_Utd">Home</a>
 +
                </li>
 +
                <li class="active">
 +
                    <a href="">Project</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Description"
 +
                                    class="sub-nav-74">Description</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Experiments"
 +
                                    class="sub-nav-74">Experiments</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Results"
 +
                                    class="sub-nav-74">Results</a></li>
 +
                            <li class="current-sub-nav"><a href="#" class="sub-nav-52">Proof Of Concept</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Notebook"
 +
                                    class="sub-nav-52">Notebook</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Safety">Safety</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="">Parts</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Collection"
 +
                                    class="sub-nav-74">Parts
 +
                                    Collection</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Engineering"
 +
                                    class="sub-nav-74">Engineering</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="">Human Practices</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Human_Practices"
 +
                                    class="sub-nav-74">Integrated Human Practice</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Communication"
 +
                                    class="sub-nav-74">Communication</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Fundraising"
 +
                                    class="sub-nav-74">Fundraising</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Implementation">Implementation</a>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Entrepreneurship">Entrepreneurship</a>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Model">Model</a>
 +
                </li>
 +
                <li>
 +
                    <a href="">Team</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Members" class="sub-nav-74">Team
 +
                                    Members</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Attributions"
 +
                                    class="sub-nav-74">Attributions</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro_Utd/Collaborations"
 +
                                    class="sub-nav-74">Collaborations</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
            </ul>
 +
        </div>
 +
    </nav>
 +
    <div class="sub-content">
 +
        <div class="sub-title">Proof of Concept</div>
 +
        <div class="article-title">Overview</div>
 +
        <div class="article-content">Angiogenin has been found to play important roles in various physiological and
 +
            pathological processes, especially in neurodegenerative diseases, such as Alzheimer’s Disease (AD),
 +
            Parkinson’s disease dementia (PDD), and cerebrovascular disease (CVD). </div>
 +
        <div class="article-content">Angiogenin contributes to cell migration, invasion, vessel elongation, and
 +
            neuroprotection. Produced by a spectrum of cell categories, such as the vascular endothelial cells and
 +
            smooth muscle cells, and it can be recognized by the endothelial cells and elicits second messenger systems.
 +
            Angiogenin is also found to be potential in curing neuro-diseases like Parkinson’s Disease and Alzheimer’s
 +
            Disease.</div>
 +
        <div class="article-content">In addition, the interaction between Angiogenin and Heparin remains to be an
 +
            unsolved problem in pharmacological research. </div>
 +
        <div class="article-content">Thus, our project aims at 1) acquiring a recombinant E. coli by introducing the
 +
            plamid pET-28a-rANG that can secret functional ANG protein, which could possibly serve as an in vitro method
 +
            to massive produce ANG for clinical application; 2) initially exploring the relationship between Angiogenin
 +
            and Heparin, consolidating a foundation for future pharmacological research. </div>
 +
        <div class="article-title">Supporting Experiment Results </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/6/62/T--Shanghai_Metro_Utd--Proof_of_Concept01.jpg" alt="" />
 +
            <span>Figure 1: The gel electrophoresis map of PCR</span>
 +
        </div>
 +
        <div class="article-content">Lane 1 to 6 is the result of PCR. We got rANG band at around 400bp (369bp). Enzyme
 +
            digestion was conducted and it was linked with digested pET-28a.</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/0/02/T--Shanghai_Metro_Utd--Proof_of_Concept02.jpg" alt="" />
 +
            <span>Figure 2. E. coil having the desired pET28a-rANG</span>
 +
        </div>
 +
        <div class="article-content">
 +
            The pET28a-rANG was constructed.<br />
 +
            The plates showed monoclonals of pET28a-rANG constructs.
 +
        </div>
 +
        <div class="article-title">Recombination E. coli</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/8/87/T--Shanghai_Metro_Utd--Proof_of_Concept03.jpg" alt="" />
 +
            <span>Figure 3: the scanning gel electrophoresis map of Colony PCR (the top was before and the bottom was
 +
                after)</span>
 +
        </div>
 +
        <div class="article-content">Lane NC to XCN6 and lane XCN7 to N6 are the results of colony PCR. We get the band
 +
            531bp at 500bp around. It indicates that the obtained recombinant monoclonals were positive monoclonals
 +
            containing the pET-28a-rANG recombinant plasmid.</div>
 +
        <div class="article-title">SDS PAGE</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/d/dd/T--Shanghai_Metro_Utd--Proof_of_Concept04.jpg" alt="" />
 +
            <span>Figure 4. SDS-PAGE Analyzing the proteins before and after induction, within inclusion bodies, and in
 +
                supernatants. </span>
 +
        </div>
 +
        <div class="article-content">The results for SDS-PAGE shows that the induction was successful, and the target
 +
            protein (about 15KDa) was mainly in the inclusion body.</div>
 +
        <div class="article-title">Protein Purification</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/a/a3/T--Shanghai_Metro_Utd--Proof_of_Concept05.jpg" alt="" />
 +
            <span>Figure 5. The solution before and after the column chromatography and the corresponding
 +
                concentrated solution run SDS-PAGE and stained with Coomassie Brilliant Blue.</span>
 +
        </div>
 +
        <div class="article-content">Based on figure 5, there was a band at 15 KDa before passing through the column
 +
            but disappeared after passing through the column, indicating that the protein had hung the column. But
 +
            we notice that there is a miscellaneous band with a small amount, so we concentrated the solution before
 +
            and after the chromatography columns and SDS-PAGE was performed simultaneously.</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/3/3b/T--Shanghai_Metro_Utd--Proof_of_Concept06.jpg" alt="" />
 +
            <span>Figure 6. First SDS-PAGE, Coomassie blue staining. Samples from left to right: marker; 1.before
 +
                column(unconcentrated); 2. after column 1(unconcentrated); 3. after column 2(unconcentrated); 4.
 +
                buffer A rinsed; 5 second elution; 6 third elution.</span>
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/f/f0/T--Shanghai_Metro_Utd--Proof_of_Concept07.jpg" alt="" />
 +
            <span>Figure 7. Second SDS-PAGE, Coomassie blue staining. Samples from left to right: marker; 1. second
 +
                elution; 2.third elution; 3.fourth elution; 4. fifth elution.</span>
 +
        </div>
 +
        <div class="article-content">It can be seen from Figure 6 and Figure 7 that there is actually not much
 +
            protein after the third elution.</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/4/4e/T--Shanghai_Metro_Utd--Proof_of_Concept08.jpg" alt="" />
 +
            <span>Figure 8 Lyophilized protein</span>
 +
        </div>
 +
        <div class="article-content">As seen in figure 8, the protein was successfully lyophilized into the form of
 +
            powder.</div>
 +
        <div class="article-title">RNA Extraction</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/c/cf/T--Shanghai_Metro_Utd--Proof_of_Concept09.jpg" alt="" />
 +
            <span>Figure 9. The concentration of the extracted RNA by nanodrop</span>
 +
        </div>
 +
        <div class="article-title">RNA Degradation Experiment</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/5/5a/T--Shanghai_Metro_Utd--Proof_of_Concept10.jpg" alt="" />
 +
            <span>Figure 10. electrophoresis map after RNA degradation tests </span>
 +
        </div>
 +
        <div class="article-content">According to the electrophoresis map, the renatured rANG has ribonuclease
 +
            activity with the capability
 +
            of RNA incomplete degradation and produced a band at about 100 bp, which is consistent with the data in
 +
            the literatures (Ref. 1, 2).</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/c/cb/T--Shanghai_Metro_Utd--Proof_of_Concept11.jpg" alt="" />
 +
            <span>Figure 11. OD<sub>450</sub> curve of the system with heparin and rANG</span>
 +
        </div>
 +
        <div class="article-content">The OD<sub>450</sub> could indicate the interaction ability between heparin and
 +
            angiogenin which means that the higher the OD<sub>450</sub> value, the greater the interaction ability
 +
            between
 +
            heparin and angiogenin. This curve shows the more angiogenin we added, the higher the OD<sub>450</sub>
 +
            value,
 +
            namely the interaction ability between heparin and angiogenin. Therefore, it can be concluded that
 +
            the interaction of heparin has dose-dependent with angiogenin.</div>
 +
        <div class="article-title">Conclusion</div>
 +
        <div class="article-content">According to the experiment results listed above, we successfully obtained a
 +
            recombinant
 +
            E. coli by introducing the plamid pET-28a-rANG that can secret functional ANG protein. Meanwhile, we
 +
            also investigated an initial interaction between angiogenin and heparin.
 +
        </div>
 +
        <div class="article-content">
 +
            [1]孙德森,盛静浩.重组人血管生成素制备和生物活性鉴定[J].中国生物化学与分子生物学报,2015,31(12):1315-1321.
 +
        </div>
 +
        <div class="article-content">[2] Shapiro R, Riordan JF, Vallee BL. Characteristic ribonucleolytic activity
 +
            of human angiogenin.
 +
            Biochemistry. 1986 Jun 17;25(12):3527-32. doi: 10.1021/bi00360a008. Erratum in: Biochemistry 1986 Oct
 +
            21;25(21):6730. PMID: 2424496.</div>
  
<div class="clear"></div>
+
    </div>
 
+
    <footer class="footer">
 
+
        <section class="footer-wrap">
<div class="column full_size">
+
            <p class="margin-bottom-14">Email us at:<i
<h1>Proof of Concept</h1>
+
                    style="color:#0546ff; font-style: normal;">ashleyyang48@gmail.com;alexlin711@gmail.com</i>
<h3>Gold Medal Criterion #4</h3>
+
            </p>
<p>Expand upon your Silver medal work for Proposed Implementation and develop a proof of concept for your project.
+
            <p>Follow us on Wechat: <i style="color:#650000; font-size: 18px;">血管马力Bloody
 
+
                    Marry</i></p>
<br><br>
+
        </section>
Please see the <a href="https://2021.igem.org/Judging/Medals">2021 Medals Page</a> for more information. </p>
+
    </footer>
</div>
+
</body>
 
+
<script>
 +
    let liTags = document.querySelectorAll(".top-nav-bar > ul > li");
 +
    let len = liTags.length;
 +
    for (let i = 0; i < len; i++) {
 +
        liTags[i].onclick = function (e) {
 +
            //先移除所有的点击样式
 +
            for (let j = 0; j < len; j++) {
 +
                liTags[j].classList.remove("active");
 +
            }
 +
            //再添加点击样式
 +
            let li = e.currentTarget;
 +
            li.classList.add("active");
 +
        }
 +
    }
 +
</script>
  
 
</html>
 
</html>

Revision as of 17:32, 14 October 2021

Shanghai_Metro_Utd

Proof of Concept
Overview
Angiogenin has been found to play important roles in various physiological and pathological processes, especially in neurodegenerative diseases, such as Alzheimer’s Disease (AD), Parkinson’s disease dementia (PDD), and cerebrovascular disease (CVD).
Angiogenin contributes to cell migration, invasion, vessel elongation, and neuroprotection. Produced by a spectrum of cell categories, such as the vascular endothelial cells and smooth muscle cells, and it can be recognized by the endothelial cells and elicits second messenger systems. Angiogenin is also found to be potential in curing neuro-diseases like Parkinson’s Disease and Alzheimer’s Disease.
In addition, the interaction between Angiogenin and Heparin remains to be an unsolved problem in pharmacological research.
Thus, our project aims at 1) acquiring a recombinant E. coli by introducing the plamid pET-28a-rANG that can secret functional ANG protein, which could possibly serve as an in vitro method to massive produce ANG for clinical application; 2) initially exploring the relationship between Angiogenin and Heparin, consolidating a foundation for future pharmacological research.
Supporting Experiment Results
Figure 1: The gel electrophoresis map of PCR
Lane 1 to 6 is the result of PCR. We got rANG band at around 400bp (369bp). Enzyme digestion was conducted and it was linked with digested pET-28a.
Figure 2. E. coil having the desired pET28a-rANG
The pET28a-rANG was constructed.
The plates showed monoclonals of pET28a-rANG constructs.
Recombination E. coli
Figure 3: the scanning gel electrophoresis map of Colony PCR (the top was before and the bottom was after)
Lane NC to XCN6 and lane XCN7 to N6 are the results of colony PCR. We get the band 531bp at 500bp around. It indicates that the obtained recombinant monoclonals were positive monoclonals containing the pET-28a-rANG recombinant plasmid.
SDS PAGE
Figure 4. SDS-PAGE Analyzing the proteins before and after induction, within inclusion bodies, and in supernatants.
The results for SDS-PAGE shows that the induction was successful, and the target protein (about 15KDa) was mainly in the inclusion body.
Protein Purification
Figure 5. The solution before and after the column chromatography and the corresponding concentrated solution run SDS-PAGE and stained with Coomassie Brilliant Blue.
Based on figure 5, there was a band at 15 KDa before passing through the column but disappeared after passing through the column, indicating that the protein had hung the column. But we notice that there is a miscellaneous band with a small amount, so we concentrated the solution before and after the chromatography columns and SDS-PAGE was performed simultaneously.
Figure 6. First SDS-PAGE, Coomassie blue staining. Samples from left to right: marker; 1.before column(unconcentrated); 2. after column 1(unconcentrated); 3. after column 2(unconcentrated); 4. buffer A rinsed; 5 second elution; 6 third elution.
Figure 7. Second SDS-PAGE, Coomassie blue staining. Samples from left to right: marker; 1. second elution; 2.third elution; 3.fourth elution; 4. fifth elution.
It can be seen from Figure 6 and Figure 7 that there is actually not much protein after the third elution.
Figure 8 Lyophilized protein
As seen in figure 8, the protein was successfully lyophilized into the form of powder.
RNA Extraction
Figure 9. The concentration of the extracted RNA by nanodrop
RNA Degradation Experiment
Figure 10. electrophoresis map after RNA degradation tests
According to the electrophoresis map, the renatured rANG has ribonuclease activity with the capability of RNA incomplete degradation and produced a band at about 100 bp, which is consistent with the data in the literatures (Ref. 1, 2).
Figure 11. OD450 curve of the system with heparin and rANG
The OD450 could indicate the interaction ability between heparin and angiogenin which means that the higher the OD450 value, the greater the interaction ability between heparin and angiogenin. This curve shows the more angiogenin we added, the higher the OD450 value, namely the interaction ability between heparin and angiogenin. Therefore, it can be concluded that the interaction of heparin has dose-dependent with angiogenin.
Conclusion
According to the experiment results listed above, we successfully obtained a recombinant E. coli by introducing the plamid pET-28a-rANG that can secret functional ANG protein. Meanwhile, we also investigated an initial interaction between angiogenin and heparin.
[1]孙德森,盛静浩.重组人血管生成素制备和生物活性鉴定[J].中国生物化学与分子生物学报,2015,31(12):1315-1321.
[2] Shapiro R, Riordan JF, Vallee BL. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry. 1986 Jun 17;25(12):3527-32. doi: 10.1021/bi00360a008. Erratum in: Biochemistry 1986 Oct 21;25(21):6730. PMID: 2424496.