Difference between revisions of "Team:XJTU-China/Improvement"

 
Line 28: Line 28:
 
                 style="background-image: url(https://static.igem.org/mediawiki/2021/f/fd/T--XJTU-China--bg.jpg);">
 
                 style="background-image: url(https://static.igem.org/mediawiki/2021/f/fd/T--XJTU-China--bg.jpg);">
 
             </div>
 
             </div>
             <div class="pageHeadline"><span>Improve</span></div>
+
             <div class="pageHeadline"><span>Improvement</span></div>
 
         </div>
 
         </div>
 
     </section>
 
     </section>
Line 36: Line 36:
 
             <div class="row" id="container">
 
             <div class="row" id="container">
 
                 <div class="side col-lg-3">
 
                 <div class="side col-lg-3">
                    <nav class="dr-menu">
 
                        <h3 class="ml-5">Improve</h3>
 
                        <ul>
 
                            <li><a class="fa fa-plug" href="#1"> 1. Construction and Verification</a>
 
                            </li>
 
                            <li><a class="fa fa-plug" href="#2"> 2. Characterization of trp production</a>
 
                                <ul>
 
                                    <li><a class="fa fa-plug" href="#2.1"> 2.1 Tryptophan determination</a></li>
 
                                    <li><a class="fa fa-plug" href="#2.2"> 2.2 Tryptophan yield</a></li>
 
                                    <li><a class="fa fa-plug" href="#2.3"> 2.3 Protein modelling</a></li>
 
                                </ul>
 
                            </li>
 
                            <li><a class="fa fa-plug" href="#3"> 3. Characterization of cell proliferation</a></li>
 
                            <li><a class="fa fa-plug" href="#4"> 4. Conclusions</a></li>
 
                    </nav>
 
 
                 </div>
 
                 </div>
 
                 <div class="page xjtuText col-lg-8 col-12 justify-content-center">
 
                 <div class="page xjtuText col-lg-8 col-12 justify-content-center">
                    <h1>Improvement</h1>
 
 
                     <div class="row">
 
                     <div class="row">
                         <div class="col-12 d-flex justify-content-center">
+
                         <div class="col-12">
                             <div class="highlightBox mt-5">
+
                             <p class="float-right nav mt-3">This site has been archieved and moved to<a
                                <p>AroG (3-deoxy-7-phosphoheptulonate synthase, <a
+
                                     href="https://2021.igem.org/Team:XJTU-China/Improve">
                                        href="https://www.brenda-enzymes.org/enzyme.php?ecno=2.5.1.54">EC 2.5.1.54</a>,
+
                                     &nbsp;/Team:XJTU-China/Improve&nbsp;&nbsp;</a>. Sorry for the inconvenience caused.</p>
                                     <a href="http://parts.igem.org/Part:BBa_K1060000">BBa_K1060000</a>), catalyzes the
+
                                     following reaction:<br>
+
                                    phosphoenolpyruvate(PEP) + D-erythrose-4-phosphate(E4P) + H<span
+
                                        class="sub">2</span>O = 3-deoxy-D-arabino-hept-2-ulosonate
+
                                    7-phosphate (DAHP) + phosphate
+
                                </p>
+
                                <p>The reaction is a key branching point of the glycolysis and shikimate pathways.
+
                                    Expression of
+
                                    aroG can lead to more substrate into the shikimate pathway, which can improve the
+
                                    yield of
+
                                    downstream products as tryptophan, phenylalanine, tyrosine and benzazole <i>etc.</i>
+
                                </p>
+
                                <p>AroG-S211F, in which the serine at 211 was replaced by phenylalanine, has also been
+
                                    reported
+
                                    to be able to increase the production of downstream product in shikimate pathway.
+
                                    However
+
                                    the structural mechanism is unclear. And also it is not sure whether it can increase
+
                                    the
+
                                    production of our tryptophan. So In our project, aroG-S211F was overexpressed,
+
                                    attempted to
+
                                    improve the production of tryptophan. </p>
+
                                <p>An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG S211F were
+
                                    constructed to
+
                                    characterize and measure the function of AroG-S211F in <i>E.coli</i> DH5alpha(Fig.
+
                                    1.1).
+
                                    Firstly
+
                                    the yield of tryptophan of mutant aroG and the native one respectively were detected
+
                                    by PDAB
+
                                    method modified by ourselves. Secondly, considering that the over-expression of aroG
+
                                    will
+
                                    significantly reduce the amount of substrate (glucose) entering the glycolysis
+
                                    pathway, in
+
                                    turn affecting the normal cell proliferation, the effect of aroG-S211F on the cell
+
                                    proliferation was also tested by the comparison of growth rate of the wild-type
+
                                    <i>E.coli</i> and
+
                                    the engineered <i>E.coli</i> with aroG-S211F.
+
                                </p>
+
                            </div>
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
                    <a class="anchor" id="1"></a>
 
                    <h2 class="ml-5 mt-5">1. Construction and Verification of aroG circuit</h2>
 
                    <p>aroG S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden
 
                        Gate assembly (BsaI). After transformed into <i>E.coli</i> DH5alpha, plasmid extraction and
 
                        electrophoresis, PCR amplification
 
                        and sequencing were conducted to confirm its correctness. The results are list in Fig. 1.1 </p>
 
                    <div class="imgWrapper centerize">
 
                        <img src="https://static.igem.org/mediawiki/2021/c/c3/T--XJTU-China--aroG.png" alt="Fig. 1.1"
 
                            width="70%">
 
                        <span class="description"><strong>Fig. 1.1 The DNA agarose gel electrophoresis result of
 
                                AroG-S211F circuit, plasmid and PCR product. </strong>(a) The length of the circuit is
 
                            2503bp (b) The length of the plasmid is 4738bp. And the two discrete bands are thought as
 
                            either open-coiled or super-coiled plasmids (c)The amplicon is expected to be 2526bp.
 
                        </span>
 
                    </div>
 
                    <p>Meanwhile, the quantitatively assay by RT-qPCR was also performed to verified its mRNA level. As
 
                        shown in Fig. 1.2, the transcriptional level was increased about two folds after IPTG induction,
 
                        indicating the circuit was successfully constructed with functional aroG mutant. The basal
 
                        expression of aroG without IPTG induction can be observed due to one copy of native aroG in
 
                        <i>E.coli</i> genome.
 
                    </p>
 
                    <div class="imgWrapper centerize">
 
                        <img src="https://static.igem.org/mediawiki/2021/2/21/T--XJTU-China--improvement3.1.png" width="70%"
 
                            alt="Fig. 1.2">
 
                        <span class="description"><strong>Fig. 1.2 The relative mRNA level of aroG-S211F in DH5alpha
 
                                strain with Part:BBa_K3832008 inserted in pET28a+ vector.</strong></span>
 
                    </div>
 
                    <a class="anchor" id="2"></a>
 
                    <h2 class="ml-5 mt-5">2. Characterization the effect of AroG-S211F on tryptophan production</h2>
 
                    <a class="anchor" id="2.1"></a>
 
                    <h3 class="ml-5">2.1 Tryptophan can be easily determined by modified PDAB chromogenic method</h3>
 
                    <div class="card card-dark ml-5 mt-5 mb-5" style="width: 90%;">
 
                        <button class="btn btn-default" type="button" data-toggle="collapse"
 
                            data-target="#ncharacterization" aria-expanded="false" aria-controls="part">
 
                            Modified PDAB chromogenic Method
 
                        </button>
 
                        <div class="collapse" id="ncharacterization">
 
                            <div class="card card-body card-dark">
 
                                <ol style="color: white; font-family: 'eras';">
 
                                    <li>Freeze-thaw bacterial culture medium with suspension cells for over 3 times.
 
                                    </li>
 
                                    <li>Add 100 ul medium into 400 ul PDAB (p-dimethylaminobezaldehyde) solution (3
 
                                        mg/ml in
 
                                        9 M solution of sulfuric acid). Then keep at 60&#8451; for 20 min.</li>
 
                                    <li>Add 3 ul 0.5% (w/w) solution of sodium nitrite. Then keep at 60&#8451; for
 
                                        15min.
 
                                    </li>
 
                                    <li>Measure absorption under 590 nm wavelength (OD<span class="sub">590</span>).
 
                                    </li>
 
                                </ol>
 
                            </div>
 
                        </div>
 
                    </div>
 
                    <a class="anchor" id="2.2"></a>
 
                    <h3 class="ml-5">2.2 The yield of tryptophan was significantly improved in AroG-S211F strain
 
                        compared to native
 
                        AroG</h3>
 
                    <p>As shown in Fig. 2.1, compared with the <i>E.coli</i> harboring the blank vector and native aroG
 
                        gene
 
                        (BBa_K1060000), the yield of tryptophan in the engineered <i>E.coli</i> with aroG-S211F induced
 
                        by 1 mM
 
                        IPTG continuously increased in the 30 h cultivation (green triangle), reaching a maximal
 
                        productivity of 160 mg/ml per OD, while the blank controls slowly increased and maintained its
 
                        production at about 1200 min, arriving about 80 mg/ml per OD, half of the previous one (circle
 
                        and square). It is the same case in absent of IPTG (blue triangle), indicating the low leaky
 
                        expression of our circuit. In all, our circuit containing AroG-S211F can efficiently produce
 
                        tryptophan with the highest productivity of 160 mg/ml per OD, which can be further improved
 
                        under the control of toggle-switch. </p>
 
                    <div class="imgWrapper centerize">
 
                        <img src="https://static.igem.org/mediawiki/2021/2/2c/T--XJTU-China--improvement3.3.png" width="70%"
 
                            alt="Fig. 2.1">
 
                        <span class="description"><strong>Fig. 2.1 The tryptophan production curve of the engineering
 
                                <i>E.coli</i> with aroG-S211F and <i>E.coli</i> with native aroG.</strong></span>
 
                    </div>
 
                    <a class="anchor" id="2.3"></a>
 
                    <h3 class="ml-5">2.3 The structural mechanisms was elucidated by protein structure modeling</h3>
 
                    <p>To explain the concrete mechanisms of the promotion effect by AroG-S211F comparing wild-type
 
                        AroG, protein structure modeling is used to analyze the thermodynamics and structure of them.
 
                    </p>
 
 
                    <p>From an energy perspective, our modeling results show that the mutant protein exhibits lower
 
                        binding free energy with the catalytic substrate in the presence of the inhibitor (Phe), that
 
                        is, it is able to bind more tightly and stably to the substrate, thus improving catalytic
 
                        efficiency. On the other hand, structural analysis also reflected that the binding tightness
 
                        between the mutated site and the inhibitor was reduced, which weakened its inhibitory effect.
 
                    </p>
 
                    <div class="imgWrapper centerize">
 
                        <img src="https://static.igem.org/mediawiki/2021/7/7e/T--XJTU-China--binding-energy.png" width="70%" alt="binding-energy">
 
                        <span class="description"><strong>Fig. 2.2 The binding energy of Phe with either AroG or AroG-S211F</strong></span>
 
                    </div>
 
                    <p>By the modeling result, the mutation (S211 to F211) in AroG is proposed to eliminate the
 
                        allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream
 
                        product yield.</p>
 
                        <div class="row">
 
                            <div class="col-12">
 
                                <p class="float-right nav mt-3">For more detail of our protein modelling, see also our<a
 
                                        href="https://2021.igem.org/Team:XJTU-China/protein_model">
 
                                        &nbsp;Protein Modelling&nbsp;&nbsp;<span class="fa fa-wrench"></span></a></p>
 
                            </div>
 
                        </div>
 
                    <a class="anchor" id="3"></a>
 
                    <h2 class="ml-5 mt-5">3. Characterization the effect of aroG-S211F on cell proliferation</h2>
 
                    <p>The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell
 
                        growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of
 
                        engineered <i>E.coli</i> and blank strain were continuously monitored, as shown in Fig. The
 
                        Logistic
 
                        equation was used to fit the growth curve, the obvious inhibitory effect of aroG expression on
 
                        cell proliferation was observed, especially with IPTG induction. The growth parameters K
 
                        (environmental capacity) and r (intrinsic growth rate) of different experimental groups was also
 
                        obtained from the fitting Logistic curve, and the parameter r decreased dramatically in
 
                        <i>E.coli</i>
 
                        with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell.
 
                    </p>
 
                    <div class="imgWrapper centerize">
 
                        <img src="https://static.igem.org/mediawiki/2021/f/f2/T--XJTU-China--POC-Fig2-3.png" width="70%"
 
                            alt="Fig. 3.1">
 
                        <span class="description"><strong>Fig. 3.1</strong> (a) The population density of <i>E.coli</i>
 
                            was
 
                            measured at 600nm by
 
                            colorimetry. The scatter represents the result of the measurement. The Logistic equation was
 
                            used to fit the growth curve, and the fitting results were shown in the curve. (b) shows the
 
                            growth parameters K (environmental capacity) and r (intrinsic growth rate) of different
 
                            experimental groups obtained from the fitting results in (a).</span>
 
                    </div>
 
                    <a class="anchor" id="4"></a>
 
                    <h2 class="ml-5 mt-5">4. Conclusions:</h2>
 
                    <p>A lacUV5 controlled-aroG S211F gene circuit was successfully constructed, and the overexpression
 
                        of aroG-S211F significantly improved the tryptophan production, with a highest productivity of
 
                        160 mg/ml per OD. Protein structure modeling elucidate that the improvement may attribute to the
 
                        elimination of the allosteric inhibition of phenylalanine, thus increasing the catalytic rate
 
                        and downstream product yield. However, because of the inhibition on the glycolysis pathway of
 
                        aroG, the cell growth was obviously inhibited. The results confirmed our hypothesis that cell
 
                        proliferation and tryptophan production should be separated, and it has been designed to be
 
                        strictly controlled by toggle-switch circuit, in which cell proliferation (pykA gene
 
                        overexpression) and tryptophan production (aroG-S211F overexpression) was constructed in the two
 
                        arms of toggle-switch. (View our design on <b><a
 
                                href="https://2021.igem.org/Team:XJTU-China/Design">Team:XJTU-China/Design</a></b>).</p>
 
 
                 </div>
 
                 </div>
 
                 <div class="col-lg-1"></div>
 
                 <div class="col-lg-1"></div>

Latest revision as of 12:27, 21 October 2021

Team:XJTU-China/Project

Improvement

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by