Difference between revisions of "Team:XJTU-China/Improvement"

Line 45: Line 45:
 
                                     <li><a class="fa fa-plug" href="#2.1"> 2.1 Tryptophan determination</a></li>
 
                                     <li><a class="fa fa-plug" href="#2.1"> 2.1 Tryptophan determination</a></li>
 
                                     <li><a class="fa fa-plug" href="#2.2"> 2.2 Tryptophan yield</a></li>
 
                                     <li><a class="fa fa-plug" href="#2.2"> 2.2 Tryptophan yield</a></li>
                                     <li><a class="fa fa-plug" href="#2.3">2.3 Protein modelling</a></li>
+
                                     <li><a class="fa fa-plug" href="#2.3"> 2.3 Protein modelling</a></li>
 
                                 </ul>
 
                                 </ul>
 
                             </li>
 
                             </li>
                             <li><a class="fa fa-plug" href="#3">3. Characterization of cell roliferation</a></li>
+
                             <li><a class="fa fa-plug" href="#3"> 3. Characterization of cell proliferation</a></li>
                             <li><a class="fa fa-plug" href="#4">4. Conclusions</a></li>
+
                             <li><a class="fa fa-plug" href="#4"> 4. Conclusions</a></li>
 
                     </nav>
 
                     </nav>
 
                 </div>
 
                 </div>
Line 61: Line 61:
 
                                     <a href="http://parts.igem.org/Part:BBa_K1060000">BBa_K1060000</a>), catalyzes the
 
                                     <a href="http://parts.igem.org/Part:BBa_K1060000">BBa_K1060000</a>), catalyzes the
 
                                     following reaction:<br>
 
                                     following reaction:<br>
                                     phosphoenolpyruvate+D-erythrose 4-phosphate+H2O = 3-deoxy-D-arabino-hept-2-ulosonate
+
                                     phosphoenolpyruvate(PEP) + D-erythrose-4-phosphate(E4P) + H<span
                                     7-phosphate +phosphate
+
                                        class="sub">2</span>O = 3-deoxy-D-arabino-hept-2-ulosonate
 +
                                     7-phosphate (DAHP) + phosphate
 
                                 </p>
 
                                 </p>
 
                                 <p>The reaction is a key branching point of the glycolysis and shikimate pathways.
 
                                 <p>The reaction is a key branching point of the glycolysis and shikimate pathways.
Line 81: Line 82:
 
                                 <p>An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG S211F were
 
                                 <p>An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG S211F were
 
                                     constructed to
 
                                     constructed to
                                     characterize and measure the function of AroG-S211F in E.coli DH5alpha(Fig. 1.1).
+
                                     characterize and measure the function of AroG-S211F in <i>E.coli</i> DH5alpha(Fig.
 +
                                    1.1).
 
                                     Firstly
 
                                     Firstly
 
                                     the yield of tryptophan of mutant aroG and the native one respectively were detected
 
                                     the yield of tryptophan of mutant aroG and the native one respectively were detected
Line 91: Line 93:
 
                                     turn affecting the normal cell proliferation, the effect of aroG-S211F on the cell
 
                                     turn affecting the normal cell proliferation, the effect of aroG-S211F on the cell
 
                                     proliferation was also tested by the comparison of growth rate of the wild-type
 
                                     proliferation was also tested by the comparison of growth rate of the wild-type
                                     E.coli and
+
                                     <i>E.coli</i> and
                                     the engineered E.coli with aroG-S211F.</p>
+
                                     the engineered <i>E.coli</i> with aroG-S211F.
 +
                                </p>
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
Line 99: Line 102:
 
                     <h2 class="ml-5">1. Construction and Verification of aroG circuit</h2>
 
                     <h2 class="ml-5">1. Construction and Verification of aroG circuit</h2>
 
                     <p>aroG S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden
 
                     <p>aroG S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden
                         Gate assembly (BsaI). After transformed into E.coli DH5alpha, plasmid extraction and
+
                         Gate assembly (BsaI). After transformed into <i>E.coli</i> DH5alpha, plasmid extraction and
 
                         electrophoresis, PCR amplification
 
                         electrophoresis, PCR amplification
 
                         and sequencing were conducted to confirm its correctness. The results are list in Fig. 1.1 </p>
 
                         and sequencing were conducted to confirm its correctness. The results are list in Fig. 1.1 </p>
Line 115: Line 118:
 
                         indicating the circuit was successfully constructed with functional aroG mutant. The basal
 
                         indicating the circuit was successfully constructed with functional aroG mutant. The basal
 
                         expression of aroG without IPTG induction can be observed due to one copy of native aroG in
 
                         expression of aroG without IPTG induction can be observed due to one copy of native aroG in
                         E.coli genome.</p>
+
                         <i>E.coli</i> genome.
 +
                    </p>
 
                     <div class="imgWrapper centerize">
 
                     <div class="imgWrapper centerize">
 
                         <img src="https://static.igem.org/mediawiki/2021/2/21/T--XJTU-China--improvement3.1.png" width="70%"
 
                         <img src="https://static.igem.org/mediawiki/2021/2/21/T--XJTU-China--improvement3.1.png" width="70%"
Line 152: Line 156:
 
                         compared to native
 
                         compared to native
 
                         AroG</h3>
 
                         AroG</h3>
                     <p>As shown in Fig. 2.1, compared with the E.coli harboring the blank vector and native aroG gene
+
                     <p>As shown in Fig. 2.1, compared with the <i>E.coli</i> harboring the blank vector and native aroG
                         (BBa_K1060000), the yield of tryptophan in the engineered E.coli with aroG-S211F induced by 1 mM
+
                        gene
 +
                         (BBa_K1060000), the yield of tryptophan in the engineered <i>E.coli</i> with aroG-S211F induced
 +
                        by 1 mM
 
                         IPTG continuously increased in the 30 h cultivation (green triangle), reaching a maximal
 
                         IPTG continuously increased in the 30 h cultivation (green triangle), reaching a maximal
 
                         productivity of 160 mg/ml per OD, while the blank controls slowly increased and maintained its
 
                         productivity of 160 mg/ml per OD, while the blank controls slowly increased and maintained its
Line 165: Line 171:
 
                             alt="Fig. 2.1">
 
                             alt="Fig. 2.1">
 
                         <span class="description"><strong>Fig. 2.1 The tryptophan production curve of the engineering
 
                         <span class="description"><strong>Fig. 2.1 The tryptophan production curve of the engineering
                                 E.coli with aroG-S211F and E.coli with native aroG.</strong></span>
+
                                 <i>E.coli</i> with aroG-S211F and <i>E.coli</i> with native aroG.</strong></span>
 
                     </div>
 
                     </div>
 
                     <a class="anchor" id="2.3"></a>
 
                     <a class="anchor" id="2.3"></a>
Line 185: Line 191:
 
                     <p>The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell
 
                     <p>The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell
 
                         growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of
 
                         growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of
                         engineered E.coli and blank strain were continuously monitored, as shown in Fig. The Logistic
+
                         engineered <i>E.coli</i> and blank strain were continuously monitored, as shown in Fig. The
 +
                        Logistic
 
                         equation was used to fit the growth curve, the obvious inhibitory effect of aroG expression on
 
                         equation was used to fit the growth curve, the obvious inhibitory effect of aroG expression on
 
                         cell proliferation was observed, especially with IPTG induction. The growth parameters K
 
                         cell proliferation was observed, especially with IPTG induction. The growth parameters K
 
                         (environmental capacity) and r (intrinsic growth rate) of different experimental groups was also
 
                         (environmental capacity) and r (intrinsic growth rate) of different experimental groups was also
                         obtained from the fitting Logistic curve, and the parameter r decreased dramatically in E.coli
+
                         obtained from the fitting Logistic curve, and the parameter r decreased dramatically in
 +
                        <i>E.coli</i>
 
                         with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell. </p>
 
                         with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell. </p>
 
                     <div class="imgWrapper centerize">
 
                     <div class="imgWrapper centerize">
 
                         <img src="https://static.igem.org/mediawiki/2021/f/f2/T--XJTU-China--POC-Fig2-3.png" width="70%"
 
                         <img src="https://static.igem.org/mediawiki/2021/f/f2/T--XJTU-China--POC-Fig2-3.png" width="70%"
 
                             alt="Fig. 3.1">
 
                             alt="Fig. 3.1">
                         <span class="description"><strong>Fig. 3.1</strong> (a) The population density of E.coli was
+
                         <span class="description"><strong>Fig. 3.1</strong> (a) The population density of <i>E.coli</i>
 +
                            was
 
                             measured at 600nm by
 
                             measured at 600nm by
 
                             colorimetry. The scatter represents the result of the measurement. The Logistic equation was
 
                             colorimetry. The scatter represents the result of the measurement. The Logistic equation was
Line 214: Line 223:
 
                         arms of toggle-switch. (View our design on Team:XJTU-China/Design).</p>
 
                         arms of toggle-switch. (View our design on Team:XJTU-China/Design).</p>
 
                 </div>
 
                 </div>
                <!-- <div class="page xjtuText col-lg-8 col-12 justify-content-center">
 
                    <a class="anchor" id="part-improvement"></a>
 
                    <h1 class="ml-3">Part improvement</h1>
 
                    <a class="anchor" id="introduction"></a>
 
                    <h2 class="ml-5">1. Introduction</h2>
 
                    <p>AroG (3-deoxy-7-phosphoheptulonate synthase, EC 2.5.1.54) is a key enzyme in the metabolism of
 
                        aromatic amino acids, catalysis following reaction:<br>
 
                        phosphoenolpyruvate + D-erythrose-4-phosphate+H2O =
 
                        3-deoxy-D-arabino-hept-2-ulosonate-7-phosphate +phosphate</p>
 
                    <p>Wild aroG functions in the form of tetramer, which can be inhibited by its allosteric inhibitors
 
                        Phenylalanine (Phe). In order to increase the production of downstream products such as
 
                        tryptophan, Ser on site 211 of aroG was mutated to Phe to remove the inhibitory effect of Phe.
 
                        The CDS of the mutant (aroG-S211F, Part:BBa_3832000) is our improvement version of
 
                        Part:BBa_K1060000 which encodes wild-type aroG.</p>
 
                    <p>We used protein structure prediction tool (Alphafold2) to predict the structure of the mutant
 
                        aroG-S211F, and compared its ability to bind to substrates in the presence of Phe with that of
 
                        the wild type. </p>
 
                    <p>In our project, aroG-S211F is used to improve the production of tryptophan. Considering the
 
                        over-expression of aroG-S211F could significantly reduce the amount of substrate (glucose)
 
                        entering the glycolysis reaction, in turn affects the normal process of cell proliferation, the
 
                        expression of aroG is designed under strict control by toggle-switch circuit.</p>
 
                    <a class="anchor" id="construction"></a>
 
                    <h2 class="ml-5">2. Construction</h2>
 
                    <p>An inducible circuit (Part:BBa_K3832008) is constructed to characterize and measure the function
 
                        of aroG-S211F (Fig.2.1). LacUV5 promoter is used while LacI is also contained in our circuit as
 
                        a repressor. </p>
 
                    <div class="imgWrapper centerize">
 
                        <img src="https://static.igem.org/mediawiki/2021/f/fe/T--XJTU-China--POC-Fig2-1.png"
 
                            alt="Design of the inducible circuit for aroG-S211F" width="60%">
 
                        <span class="description"><strong>Fig. 2.1 Design of the inducible circuit for
 
                                aroG-S211F</strong></span>
 
                    </div>
 
                    <p>Both GolgenGate assembly and In-Fusion assembly are used to construct the circuit from basic
 
                        parts and insert into pET28a+ vector (In-Fusion assembly is done with the help of partner team
 
                        NWU-CHINA-A as our collaboration). </p>
 
                    <div class="card card-dark ml-5 mt-5 mb-5" style="width: 90%;">
 
                        <button class="btn btn-default" type="button" data-toggle="collapse" data-target="#GG"
 
                            aria-expanded="false" aria-controls="part">
 
                            Method (for Golden Gate Assembly)
 
                        </button>
 
                        <div class="collapse" id="GG">
 
                            <div class="card card-body card-dark">
 
                                <p>
 
                                    <b>Reaction:</b><br>
 
                                    Insert (purified PCR product)/ng= Length/bp × 1.08×102
 
                                    Vector (purified PCR product)/ng= Length/bp × 2.16×102
 
                                    BsaI-HFv2 (20U/ul) = 1 ul
 
                                    T4 ligase (1000U/ul) = 1 ul
 
                                    T4 ligase buffer (10×) = 2 ul
 
                                    ddH20 = 20 ul
 
                                </p>
 
                                <p><b>Condition:</b></p>
 
                                <table class="ml-5 table table-striped table-light" style="width: 90%;">
 
                                    <thead>
 
                                        <tr>
 
                                            <th scope="col">Temperature</th>
 
                                            <th scope="col">Time</th>
 
                                            <th scope="col">Cycle</th>
 
                                        </tr>
 
                                    </thead>
 
                                    <tbody>
 
                                        <tr>
 
                                            <th scope="row">37 &#8451;</th>
 
                                            <td>15 min</td>
 
                                            <td rowspan="2">10</td>
 
                                        </tr>
 
                                        <tr>
 
                                            <th scope="row">16 &#8451;</th>
 
                                            <td>10 min</td>
 
                                        </tr>
 
                                        <tr>
 
                                            <th scope="row">37 &#8451;</th>
 
                                            <td>10 min</td>
 
                                            <td>1</td>
 
                                        </tr>
 
                                        <tr>
 
                                            <th scope="row">65 &#8451;</th>
 
                                            <td>10 min</td>
 
                                            <td>1</td>
 
                                        </tr>
 
                                        <tr>
 
                                            <th scope="row">80 &#8451;</th>
 
                                            <td>10 min</td>
 
                                            <td>1</td>
 
                                        </tr>
 
                                        <tr>
 
                                            <th scope="row" colspan="3">Store at 4 &#8451;</th>
 
                                        </tr>
 
                                    </tbody>
 
                                </table>
 
                                <p><b>Transformation: </b><br>
 
                                    Using Trelief<span class="sub">TM</span> 5α Chemically Competent Cell (Tsingke
 
                                    Biotechnology Co., Ltd.)
 
                                    Add 20 ul assembly product in 50 ul competent cell, ice bath for 30 min.
 
                                    Heat shock 42&#8451; for 45 sec.
 
                                    Ice bath for 2 min.
 
                                    Recover in 1ml SOC medium, 37&#8451;, 200rpm, for 1 hour.
 
                                    Spread to LB plate with 50 ug/ml kanamycin, 37&#8451; for 10-16 hours.
 
                                </p>
 
                            </div>
 
                        </div>
 
                    </div>
 
                    <div class="imgWrapper centerize">
 
                        <img src="https://static.igem.org/mediawiki/2021/c/c3/T--XJTU-China--aroG.png" alt="AroG-S211F gel">
 
                        <span class="description"><strong>Fig. 2.2 The DNA agarose gel electrophoresis result of
 
                                AroG-S211F circuit, plasmid and PCR product. </strong>(a) The length of the circuit is
 
                            2503bp (b) The length of the plasmid is 4738bp. And the two discrete bands are thought as
 
                            either open-coiled or super-coiled plasmids (c)The amplicon is expected to be 2526bp.
 
                        </span>
 
                    </div>
 
                    <p>The constructed plasmid of AroG-S211F are then subjected to PCR amplification to verify the
 
                        length of circuit, and the expected amplicon is 2526bp in length. Fig.2.2 shows the fragment of
 
                        the inducible circuit (panel a),
 
                        corresponding cloned vector (panel b) and the amplicon (panel c). The result suggests plasmid
 
                        obtained contains an insert with proper length identical to the circuit, thus indicating the
 
                        plasmid to be successfully constructed. The sequencing result (unpublished) also conforms to
 
                        this suggestion.</p>
 
                    <a class="anchor" id="measurement"></a>
 
                    <h2 class="ml-5">3. Measurement</h2>
 
                    <a class="anchor" id="RT-qPCR"></a>
 
                    <h3 class="ml-5">3.1 RT-qPCR</h3>
 
                    <p>RT-qPCR is used to detect the transcription of aroG-S211F as first step.</p>
 
                    <div class="card card-dark ml-5 mt-5 mb-5" style="width: 90%;">
 
                        <button class="btn btn-default" type="button" data-toggle="collapse" data-target="#RT"
 
                            aria-expanded="false" aria-controls="part">
 
                            Method
 
                        </button>
 
                        <div class="collapse" id="RT">
 
                            <div class="card card-body card-dark">
 
                                <p><b>Cultivation:</b> Using LB liquid medium, 37&#8451;, 200rpm. <br>
 
                                    <b>Inducing condition:</b> 1 mM IPTG, over 8 hours.<br>
 
                                    <b>Total RNA extraction:</b> Using RNAsimple Total RNA Kit,DP419 (TIANGEN BIOTECH
 
                                    (BEIJING) CO.,LTD.)<br>
 
                                    <b>cDNA preparation:</b> Using Evo M-MLV RT Mix (Vazyme Biotech Co.,Ltd); template
 
                                    concentration: 50ng RNA/ul; reaction condition: 37&#8451; 15min, 85&#8451;
 
                                    15sec.<br>
 
                                    <b>qPCR:</b> Using ChamQ SYBR qPCR Master Mix (Vazyme Biotech Co.,Ltd).<br>
 
 
                                    Relative Normalized Expression data is calculated by using the equation below,<br>
 
                                    Relative Expression = 2<span class="sup">-[ΔC<span class="sub">t</span>(T)-ΔC<span
 
                                            class="sub">t</span>(C)]</span><br>
 
                                    where ΔC<span class="sub">t</span>(T) represents the difference between C<span
 
                                        class="sub">t</span> value of target gene and internal
 
                                    standard gene in treatment group; ΔC<span class="sub">t</span>(C) represents the
 
                                    difference between C<span class="sub">t</span> value
 
                                    of target gene and internal standard gene in negative control group.
 
                                </p>
 
                            </div>
 
                        </div>
 
                    </div>
 
                    <p><b>Result:</b><br> As in Fig.3.1, expression of aroG-S211F under induction by IPTG is higher than
 
                        that in un-induced
 
                        group and negative control (DH5alpha with blank pET28a+ vector).</p>
 
                    <div class="imgWrapper ceterize">
 
                        <img src="https://static.igem.org/mediawiki/2021/2/21/T--XJTU-China--improvement3.1.png" alt="RTaroG"
 
                            width="60%">
 
                        <span class="description"><strong>Fig.3.1 The relative mRNA level of aroG-S211F in DH5alpha
 
                                strain with
 
                                Part:BBa_K3832008 inserted in pET28a+ vector.</strong></span>
 
                    </div>
 
                    <a class="anchor" id="characterization"></a>
 
                    <h3 class="ml-5">3.2 Characterization</h3>
 
                    <a class="anchor" id="growth-curve"></a>
 
                    <h4 class="ml-5">3.2.1 Growth Curve</h4>
 
                    <p>As is showed in Fig.3.2, by using the Logistic equation to fit the growth curve, the inhibitory
 
                        effect of aroG expression on cell proliferation was verified (as the parameter r decreased in
 
                        <i>E.coli</i> with aroG-S211F and induced by IPTG, which represents the reciprocal of the time
 
                        it takes
 
                        for the population to double). <br>
 
                        Cultivation condition: 20 ml LB medium, 37&#8451;, 200rpm; Inoculation dose: 20 ul (0.1%)
 
                    </p>
 
                    <div class="imgWrapper ceterize">
 
                        <img src="https://static.igem.org/mediawiki/2021/f/f2/T--XJTU-China--POC-Fig2-3.png" alt="Fig. 3.2"
 
                            width="60%">
 
                        <span class="description"><strong>Fig. 3.2</strong> (a) The population density of <i>E.coli</i>
 
                            was
 
                            measured at 600 nm
 
                            by colorimetry. The scatter represents the result of the measurement. The Logistic equation
 
                            was used to fit the growth curve, and the fitting results were shown in the curve. (b) and
 
                            (c) respectively show the growth parameters K (environmental capacity) and r (intrinsic
 
                            growth rate) of different experimental groups obtained from the fitting results in
 
                            (a).</span>
 
                    </div>
 
                    <a class="anchor" id="tryptophan-production"></a>
 
                    <h4 class="ml-5">3.2.2 Tryptophan Production</h4>
 
                    <p>Fig. 3.3 shows the yield of tryptophan. The engineered <i>E.coli</i> with aroG-S211F induced by 1
 
                        mM
 
                        IPTG resents an increased production of tryptophan, comparing in absent of IPTG or aroG-S211F
 
                        (within blank pET28a+ vector).</p>
 
                    <p>Concentration of tryptophan is calculated by standard curve in Fig.3.4. Tryptophan production is
 
                        calculated by removing the concentration of blank medium, and normalized by divided by OD<span
 
                            class="sub">600</span>
 
                        (reflecting cell density).</p>
 
                    <div class="imgWrapper ceterize">
 
                        <img src="https://static.igem.org/mediawiki/2021/2/2c/T--XJTU-China--improvement3.3.png"
 
                            alt="Fig 3.3" width="60%">
 
                        <span class="description"><strong>Fig. 3.3 The relationship between tryptophan concentration in
 
                                culture
 
                                medium and culture time.</strong> The concentration of tryptophan is measured by PDAB
 
                            chromogenic
 
                            method. </span>
 
                    </div>
 
                    <div class="card card-dark ml-5 mt-5 mb-5" style="width: 90%;">
 
                        <button class="btn btn-default" type="button" data-toggle="collapse"
 
                            data-target="#ncharacterization" aria-expanded="false" aria-controls="part">
 
                            Method
 
                        </button>
 
                        <div class="collapse" id="ncharacterization">
 
                            <div class="card card-body card-dark">
 
                                <ol style="color: white; font-family: 'eras';">
 
                                    <li>Freeze-thaw bacterial culture medium with suspension cells for over 3 times.
 
                                    </li>
 
                                    <li>Add 100 ul medium into 400 ul PDAB (p-dimethylaminobezaldehyde) solution (3
 
                                        mg/ml in
 
                                        9 M solution of sulfuric acid). Then keep at 60&#8451; for 20 min.</li>
 
                                    <li>Add 3 ul 0.5% (w/w) solution of sodium nitrite. Then keep at 60&#8451; for
 
                                        15min.
 
                                    </li>
 
                                    <li>Measure absorption under 590 nm wavelength (OD<span class="sub">590</span>).
 
                                    </li>
 
                                </ol>
 
                            </div>
 
                        </div>
 
                    </div>
 
                    <p>The same method should be used to determine the OD<span class="sub">590</span> of a tryptophan
 
                        standard solution at a
 
                        known concentration to obtain a standard curve. Standard curve measured and used in our
 
                        experiment is as Fig.3.4.</p>
 
                    <div class="imgWrapper ceterize">
 
                        <img src="https://static.igem.org/mediawiki/2021/a/ab/T--XJTU-China--improvement3.4.png"
 
                            alt="Fig 3.4" width="60%">
 
                        <span class="description"><strong>Fig.3.4 Standard curve of measuring tryptophan tryptophan by
 
                                PDAB method.</strong></span>
 
                    </div>
 
                </div> -->
 
 
                 <div class="col-lg-1"></div>
 
                 <div class="col-lg-1"></div>
 
             </div>
 
             </div>

Revision as of 11:56, 21 October 2021

Team:XJTU-China/Project

Improvement

Improvement

AroG (3-deoxy-7-phosphoheptulonate synthase, EC 2.5.1.54, BBa_K1060000), catalyzes the following reaction:
phosphoenolpyruvate(PEP) + D-erythrose-4-phosphate(E4P) + H2O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate (DAHP) + phosphate

The reaction is a key branching point of the glycolysis and shikimate pathways. Expression of aroG can lead to more substrate into the shikimate pathway, which can improve the yield of downstream products as tryptophan, phenylalanine, tyrosine and benzazole etc.

AroG-S211F, in which the serine at 211 was replaced by phenylalanine, has also been reported to be able to increase the production of downstream product in shikimate pathway. However the structural mechanism is unclear. And also it is not sure whether it can increase the production of our tryptophan. So In our project, aroG-S211F was overexpressed, attempted to improve the production of tryptophan.

An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG S211F were constructed to characterize and measure the function of AroG-S211F in E.coli DH5alpha(Fig. 1.1). Firstly the yield of tryptophan of mutant aroG and the native one respectively were detected by PDAB method modified by ourselves. Secondly, considering that the over-expression of aroG will significantly reduce the amount of substrate (glucose) entering the glycolysis pathway, in turn affecting the normal cell proliferation, the effect of aroG-S211F on the cell proliferation was also tested by the comparison of growth rate of the wild-type E.coli and the engineered E.coli with aroG-S211F.

1. Construction and Verification of aroG circuit

aroG S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden Gate assembly (BsaI). After transformed into E.coli DH5alpha, plasmid extraction and electrophoresis, PCR amplification and sequencing were conducted to confirm its correctness. The results are list in Fig. 1.1

Fig. 1.1 Fig. 1.1 The DNA agarose gel electrophoresis result of AroG-S211F circuit, plasmid and PCR product. (a) The length of the circuit is 2503bp (b) The length of the plasmid is 4738bp. And the two discrete bands are thought as either open-coiled or super-coiled plasmids (c)The amplicon is expected to be 2526bp.

Meanwhile, the quantitatively assay by RT-qPCR was also performed to verified its mRNA level. As shown in Fig. 1.2, the transcriptional level was increased about two folds after IPTG induction, indicating the circuit was successfully constructed with functional aroG mutant. The basal expression of aroG without IPTG induction can be observed due to one copy of native aroG in E.coli genome.

Fig. 1.2 Fig. 1.2 The relative mRNA level of aroG-S211F in DH5alpha strain with Part:BBa_K3832008 inserted in pET28a+ vector.

2. Characterization the effect of AroG-S211F on tryptophan production

2.1 Tryptophan can be easily determined by modified PDAB chromogenic method

  1. Freeze-thaw bacterial culture medium with suspension cells for over 3 times.
  2. Add 100 ul medium into 400 ul PDAB (p-dimethylaminobezaldehyde) solution (3 mg/ml in 9 M solution of sulfuric acid). Then keep at 60℃ for 20 min.
  3. Add 3 ul 0.5% (w/w) solution of sodium nitrite. Then keep at 60℃ for 15min.
  4. Measure absorption under 590 nm wavelength (OD590).

2.2 The yield of tryptophan was significantly improved in AroG-S211F strain compared to native AroG

As shown in Fig. 2.1, compared with the E.coli harboring the blank vector and native aroG gene (BBa_K1060000), the yield of tryptophan in the engineered E.coli with aroG-S211F induced by 1 mM IPTG continuously increased in the 30 h cultivation (green triangle), reaching a maximal productivity of 160 mg/ml per OD, while the blank controls slowly increased and maintained its production at about 1200 min, arriving about 80 mg/ml per OD, half of the previous one (circle and square). It is the same case in absent of IPTG (blue triangle), indicating the low leaky expression of our circuit. In all, our circuit containing AroG-S211F can efficiently produce tryptophan with the highest productivity of 160 mg/ml per OD, which can be further improved under the control of toggle-switch.

Fig. 2.1 Fig. 2.1 The tryptophan production curve of the engineering E.coli with aroG-S211F and E.coli with native aroG.

2.3 The structural mechanisms was elucidated by protein structure modeling

To explain the concrete mechanisms of the promotion effect by AroG-S211F comparing wild-type AroG, protein structure modeling is used to analyze the thermodynamics and structure of them.

From an energy perspective, our modeling results show that the mutant protein exhibits lower binding free energy with the catalytic substrate in the presence of the inhibitor (Phe), that is, it is able to bind more tightly and stably to the substrate, thus improving catalytic efficiency. On the other hand, structural analysis also reflected that the binding tightness between the mutated site and the inhibitor was reduced, which weakened its inhibitory effect.

By the modeling result, the mutation (S211 to F211) in AroG is proposed to eliminate the allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream product yield.

3. Characterization the effect of aroG-S211F on cell proliferation

The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of engineered E.coli and blank strain were continuously monitored, as shown in Fig. The Logistic equation was used to fit the growth curve, the obvious inhibitory effect of aroG expression on cell proliferation was observed, especially with IPTG induction. The growth parameters K (environmental capacity) and r (intrinsic growth rate) of different experimental groups was also obtained from the fitting Logistic curve, and the parameter r decreased dramatically in E.coli with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell.

Fig. 3.1 Fig. 3.1 (a) The population density of E.coli was measured at 600nm by colorimetry. The scatter represents the result of the measurement. The Logistic equation was used to fit the growth curve, and the fitting results were shown in the curve. (b) shows the growth parameters K (environmental capacity) and r (intrinsic growth rate) of different experimental groups obtained from the fitting results in (a).

4. Conclusions:

A lacUV5 controlled-aroG S211F gene circuit was successfully constructed, and the overexpression of aroG-S211F significantly improved the tryptophan production, with a highest productivity of 160 mg/ml per OD. Protein structure modeling elucidate that the improvement may attribute to the elimination of the allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream product yield. However, because of the inhibition on the glycolysis pathway of aroG, the cell growth was obviously inhibited. The results confirmed our hypothesis that cell proliferation and tryptophan production should be separated, and it has been designed to be strictly controlled by toggle-switch circuit, in which cell proliferation (pykA gene overexpression) and tryptophan production (aroG-S211F overexpression) was constructed in the two arms of toggle-switch. (View our design on Team:XJTU-China/Design).

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by