Difference between revisions of "Team:XJTU-China/Improvement"

Line 39: Line 39:
 
                         <h3 class="ml-5">Improvement</h3>
 
                         <h3 class="ml-5">Improvement</h3>
 
                         <ul>
 
                         <ul>
                             <li><a class="fa fa-plug" href="#part-improvement"> Part Improvement</a>
+
                             <li><a class="fa fa-plug" href="#1"> 1. Construction and Verification of aroG circuit</a>
 +
                            </li>
 +
                            <li><a class="fa fa-plug" href="#2"> 2. Characterization the effect of AroG-S211F on
 +
                                    tryptophan production</a>
 
                                 <ul>
 
                                 <ul>
                                     <li><a class="fa fa-plug" href="#introduction"> 1. Introduction</a></li>
+
                                     <li><a class="fa fa-plug" href="#2.1"> 2.1 Tryptophan can be easily determined by
                                     <li><a class="fa fa-plug" href="#construction"> 2. Construction</a></li>
+
                                            modified PDAB chromogenic method</a></li>
                                    <li><a class="fa fa-plug" href="#measurement"> 3. Measurement</a>
+
                                     <li><a class="fa fa-plug" href="#2.2"> 2.2 The yield of tryptophan was significantly
                                        <ul>
+
                                            improved in AroG-S211F strain
                                             <li><a class="fa fa-plug" href="#RT-qPCR"> 3.1 RT-qPCR</a></li>
+
                                            compared to native
                                            <li><a class="fa fa-plug" href="#characterization"> 3.2 Characterization</a>
+
                                             AroG</a></li>
                                                <ul>
+
                                    <li><a class="fa fa-plug" href="#2.3">2.3 The structural mechanisms was elucidated
                                                    <li><a class="fa fa-plug" href="#growth-curve"> 3.2.1 Growth
+
                                            by protein structure modeling</a></li>
                                                            Cueve</a></li>
+
                                                    <li><a class="fa fa-plug" href="#tryptophan-production"> 3.2.2
+
                                                            Tryptophan<br>Production</a></li>
+
                                                </ul>
+
                                            </li>
+
                                        </ul>
+
                                    </li>
+
 
                                 </ul>
 
                                 </ul>
 
                             </li>
 
                             </li>
 
+
                            <li><a class="fa fa-plug" href="#3">3. Characterization the effect of aroG-S211F on cell
                        </ul>
+
                                    proliferation</a></li>
 +
                            <li><a class="fa fa-plug" href="#4">4. Conclusions</a></li>
 
                     </nav>
 
                     </nav>
 
                 </div>
 
                 </div>
 
                 <div class="page xjtuText col-lg-8 col-12 justify-content-center">
 
                 <div class="page xjtuText col-lg-8 col-12 justify-content-center">
 
                     <h1>Improvement</h1>
 
                     <h1>Improvement</h1>
                     <div class="highlightBox">
+
                     <div class="row">
                         <p>AroG (3-deoxy-7-phosphoheptulonate synthase, <a
+
                         <div class="col-12 d-flex justify-content-center">
                                href="https://www.brenda-enzymes.org/enzyme.php?ecno=2.5.1.54">EC 2.5.1.54</a>,
+
                            <div class="highlightBox">
                            <a href="http://parts.igem.org/Part:BBa_K1060000">BBa_K1060000</a>), catalyzes the
+
                                <p>AroG (3-deoxy-7-phosphoheptulonate synthase, <a
                            following reaction:<br>
+
                                        href="https://www.brenda-enzymes.org/enzyme.php?ecno=2.5.1.54">EC 2.5.1.54</a>,
                            phosphoenolpyruvate+D-erythrose 4-phosphate+H2O = 3-deoxy-D-arabino-hept-2-ulosonate
+
                                    <a href="http://parts.igem.org/Part:BBa_K1060000">BBa_K1060000</a>), catalyzes the
                            7-phosphate +phosphate
+
                                    following reaction:<br>
                        </p>
+
                                    phosphoenolpyruvate+D-erythrose 4-phosphate+H2O = 3-deoxy-D-arabino-hept-2-ulosonate
                        <p>The reaction is a key branching point of the glycolysis and shikimate pathways. Expression of
+
                                    7-phosphate +phosphate
                            aroG can lead to more substrate into the shikimate pathway, which can improve the yield of
+
                                </p>
                            downstream products as tryptophan, phenylalanine, tyrosine and benzazole <i>etc.</i></p>
+
                                <p>The reaction is a key branching point of the glycolysis and shikimate pathways.
                        <p>AroG-S211F, in which the serine at 211 was replaced by phenylalanine, has also been reported
+
                                    Expression of
                            to be able to increase the production of downstream product in shikimate pathway. However
+
                                    aroG can lead to more substrate into the shikimate pathway, which can improve the
                            the structural mechanism is unclear. And also it is not sure whether it can increase the
+
                                    yield of
                            production of our tryptophan. So In our project, aroG-S211F was overexpressed, attempted to
+
                                    downstream products as tryptophan, phenylalanine, tyrosine and benzazole <i>etc.</i>
                            improve the production of tryptophan. </p>
+
                                </p>
                        <p>An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG S211F were constructed to
+
                                <p>AroG-S211F, in which the serine at 211 was replaced by phenylalanine, has also been
                            characterize and measure the function of AroG-S211F in E.coli DH5alpha(Fig. 1.1). Firstly
+
                                    reported
                            the yield of tryptophan of mutant aroG and the native one respectively were detected by PDAB
+
                                    to be able to increase the production of downstream product in shikimate pathway.
                            method modified by ourselves. Secondly, considering that the over-expression of aroG will
+
                                    However
                            significantly reduce the amount of substrate (glucose) entering the glycolysis pathway, in
+
                                    the structural mechanism is unclear. And also it is not sure whether it can increase
                            turn affecting the normal cell proliferation, the effect of aroG-S211F on the cell
+
                                    the
                            proliferation was also tested by the comparison of growth rate of the wild-type E.coli and
+
                                    production of our tryptophan. So In our project, aroG-S211F was overexpressed,
                            the engineered E.coli with aroG-S211F.</p>
+
                                    attempted to
 +
                                    improve the production of tryptophan. </p>
 +
                                <p>An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG S211F were
 +
                                    constructed to
 +
                                    characterize and measure the function of AroG-S211F in E.coli DH5alpha(Fig. 1.1).
 +
                                    Firstly
 +
                                    the yield of tryptophan of mutant aroG and the native one respectively were detected
 +
                                    by PDAB
 +
                                    method modified by ourselves. Secondly, considering that the over-expression of aroG
 +
                                    will
 +
                                    significantly reduce the amount of substrate (glucose) entering the glycolysis
 +
                                    pathway, in
 +
                                    turn affecting the normal cell proliferation, the effect of aroG-S211F on the cell
 +
                                    proliferation was also tested by the comparison of growth rate of the wild-type
 +
                                    E.coli and
 +
                                    the engineered E.coli with aroG-S211F.</p>
 +
                            </div>
 +
                        </div>
 
                     </div>
 
                     </div>
                     <h2>1. Construction and Verification of aroG circuit</h2>
+
                    <a class="anchor" id="1"></a>
 +
                     <h2 class="ml-5">1. Construction and Verification of aroG circuit</h2>
 
                     <p>aroG S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden
 
                     <p>aroG S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden
 
                         Gate assembly (BsaI). After transformed into E.coli DH5alpha, plasmid extraction and
 
                         Gate assembly (BsaI). After transformed into E.coli DH5alpha, plasmid extraction and
Line 95: Line 110:
 
                         and sequencing were conducted to confirm its correctness. The results are list in Fig. 1.1 </p>
 
                         and sequencing were conducted to confirm its correctness. The results are list in Fig. 1.1 </p>
 
                     <div class="imgWrapper centerize">
 
                     <div class="imgWrapper centerize">
                         <img src="https://static.igem.org/mediawiki/2021/c/c3/T--XJTU-China--aroG.png" alt="Fig. 1.1" width="70%">
+
                         <img src="https://static.igem.org/mediawiki/2021/c/c3/T--XJTU-China--aroG.png" alt="Fig. 1.1"
 +
                            width="70%">
 
                         <span class="description"><strong>Fig. 1.1 The DNA agarose gel electrophoresis result of
 
                         <span class="description"><strong>Fig. 1.1 The DNA agarose gel electrophoresis result of
 
                                 AroG-S211F circuit, plasmid and PCR product. </strong>(a) The length of the circuit is
 
                                 AroG-S211F circuit, plasmid and PCR product. </strong>(a) The length of the circuit is
Line 103: Line 119:
 
                     </div>
 
                     </div>
 
                     <p>Meanwhile, the quantitatively assay by RT-qPCR was also performed to verified its mRNA level. As
 
                     <p>Meanwhile, the quantitatively assay by RT-qPCR was also performed to verified its mRNA level. As
                         shown in Fig. 2.2, the transcriptional level was increased about two folds after IPTG induction,
+
                         shown in Fig. 1.2, the transcriptional level was increased about two folds after IPTG induction,
 
                         indicating the circuit was successfully constructed with functional aroG mutant. The basal
 
                         indicating the circuit was successfully constructed with functional aroG mutant. The basal
 
                         expression of aroG without IPTG induction can be observed due to one copy of native aroG in
 
                         expression of aroG without IPTG induction can be observed due to one copy of native aroG in
Line 110: Line 126:
 
                         <img src="https://static.igem.org/mediawiki/2021/2/21/T--XJTU-China--improvement3.1.png" width="70%"
 
                         <img src="https://static.igem.org/mediawiki/2021/2/21/T--XJTU-China--improvement3.1.png" width="70%"
 
                             alt="Fig. 1.2">
 
                             alt="Fig. 1.2">
                         <span class="description"><strong>Fig.3.1 The relative mRNA level of aroG-S211F in DH5alpha
+
                         <span class="description"><strong>Fig. 1.2 The relative mRNA level of aroG-S211F in DH5alpha
 
                                 strain with Part:BBa_K3832008 inserted in pET28a+ vector.</strong></span>
 
                                 strain with Part:BBa_K3832008 inserted in pET28a+ vector.</strong></span>
 
                     </div>
 
                     </div>
                     <h2>2. Characterization the effect of AroG-S211F on tryptophan production</h2>
+
                    <a class="anchor" id="2"></a>
                     <h3>2.1 Tryptophan can be easily determined by modified PDAB chromogenic method</h3>
+
                     <h2 class="ml-5">2. Characterization the effect of AroG-S211F on tryptophan production</h2>
 +
                    <a class="anchor" id="2.1"></a>
 +
                     <h3 class="ml-5">2.1 Tryptophan can be easily determined by modified PDAB chromogenic method</h3>
 
                     <div class="card card-dark ml-5 mt-5 mb-5" style="width: 90%;">
 
                     <div class="card card-dark ml-5 mt-5 mb-5" style="width: 90%;">
 
                         <button class="btn btn-default" type="button" data-toggle="collapse"
 
                         <button class="btn btn-default" type="button" data-toggle="collapse"
Line 137: Line 155:
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
                     <h3>2.2 The yield of tryptophan was significantly improved in AroG-S211F strain compared to native
+
                    <a class="anchor" id="2.2"></a>
 +
                     <h3 class="ml-5">2.2 The yield of tryptophan was significantly improved in AroG-S211F strain
 +
                        compared to native
 
                         AroG</h3>
 
                         AroG</h3>
 
                     <p>As shown in Fig. 2.1, compared with the E.coli harboring the blank vector and native aroG gene
 
                     <p>As shown in Fig. 2.1, compared with the E.coli harboring the blank vector and native aroG gene
Line 154: Line 174:
 
                                 E.coli with aroG-S211F and E.coli with native aroG.</strong></span>
 
                                 E.coli with aroG-S211F and E.coli with native aroG.</strong></span>
 
                     </div>
 
                     </div>
 
+
                    <a class="anchor" id="2.3"></a>
                     <h3>2.3 The structural mechanisms was elucidated by protein structure modeling</h3>
+
                     <h3 class="ml-5">2.3 The structural mechanisms was elucidated by protein structure modeling</h3>
 
                     <p>To explain the concrete mechanisms of the promotion effect by AroG-S211F comparing wild-type
 
                     <p>To explain the concrete mechanisms of the promotion effect by AroG-S211F comparing wild-type
 
                         AroG, protein structure modeling is used to analyze the thermodynamics and structure of them.
 
                         AroG, protein structure modeling is used to analyze the thermodynamics and structure of them.
Line 168: Line 188:
 
                         allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream
 
                         allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream
 
                         product yield.</p>
 
                         product yield.</p>
                     <h2>4. Characterization the effect of aroG-S211F on cell proliferation</h2>
+
                    <a class="anchor" id="3"></a>
 +
                     <h2 class="ml-5">3. Characterization the effect of aroG-S211F on cell proliferation</h2>
 
                     <p>The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell
 
                     <p>The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell
 
                         growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of
 
                         growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of
Line 178: Line 199:
 
                         with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell. </p>
 
                         with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell. </p>
 
                     <div class="imgWrapper centerize">
 
                     <div class="imgWrapper centerize">
                         <img src="https://static.igem.org/mediawiki/2021/f/f2/T--XJTU-China--POC-Fig2-3.png" width="70%" alt="Fig. 4.1">
+
                         <img src="https://static.igem.org/mediawiki/2021/f/f2/T--XJTU-China--POC-Fig2-3.png" width="70%"
                         <span class="description"><strong>Fig. 3.2</strong> (a) The population density of E.coli was
+
                            alt="Fig. 3.1">
 +
                         <span class="description"><strong>Fig. 3.1</strong> (a) The population density of E.coli was
 
                             measured at 600nm by
 
                             measured at 600nm by
 
                             colorimetry. The scatter represents the result of the measurement. The Logistic equation was
 
                             colorimetry. The scatter represents the result of the measurement. The Logistic equation was
Line 186: Line 208:
 
                             experimental groups obtained from the fitting results in (a).</span>
 
                             experimental groups obtained from the fitting results in (a).</span>
 
                     </div>
 
                     </div>
                     <h2>5. Conclusions:</h2>
+
                     <a class="anchor" id="4"></a>
 +
                    <h2 class="ml-5">4. Conclusions:</h2>
 
                     <p>A lacUV5 controlled-aroG S211F gene circuit was successfully constructed, and the overexpression
 
                     <p>A lacUV5 controlled-aroG S211F gene circuit was successfully constructed, and the overexpression
 
                         of aroG-S211F significantly improved the tryptophan production, with a highest productivity of
 
                         of aroG-S211F significantly improved the tryptophan production, with a highest productivity of

Revision as of 11:30, 21 October 2021

Team:XJTU-China/Project

Improvement

Improvement

AroG (3-deoxy-7-phosphoheptulonate synthase, EC 2.5.1.54, BBa_K1060000), catalyzes the following reaction:
phosphoenolpyruvate+D-erythrose 4-phosphate+H2O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate +phosphate

The reaction is a key branching point of the glycolysis and shikimate pathways. Expression of aroG can lead to more substrate into the shikimate pathway, which can improve the yield of downstream products as tryptophan, phenylalanine, tyrosine and benzazole etc.

AroG-S211F, in which the serine at 211 was replaced by phenylalanine, has also been reported to be able to increase the production of downstream product in shikimate pathway. However the structural mechanism is unclear. And also it is not sure whether it can increase the production of our tryptophan. So In our project, aroG-S211F was overexpressed, attempted to improve the production of tryptophan.

An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG S211F were constructed to characterize and measure the function of AroG-S211F in E.coli DH5alpha(Fig. 1.1). Firstly the yield of tryptophan of mutant aroG and the native one respectively were detected by PDAB method modified by ourselves. Secondly, considering that the over-expression of aroG will significantly reduce the amount of substrate (glucose) entering the glycolysis pathway, in turn affecting the normal cell proliferation, the effect of aroG-S211F on the cell proliferation was also tested by the comparison of growth rate of the wild-type E.coli and the engineered E.coli with aroG-S211F.

1. Construction and Verification of aroG circuit

aroG S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden Gate assembly (BsaI). After transformed into E.coli DH5alpha, plasmid extraction and electrophoresis, PCR amplification and sequencing were conducted to confirm its correctness. The results are list in Fig. 1.1

Fig. 1.1 Fig. 1.1 The DNA agarose gel electrophoresis result of AroG-S211F circuit, plasmid and PCR product. (a) The length of the circuit is 2503bp (b) The length of the plasmid is 4738bp. And the two discrete bands are thought as either open-coiled or super-coiled plasmids (c)The amplicon is expected to be 2526bp.

Meanwhile, the quantitatively assay by RT-qPCR was also performed to verified its mRNA level. As shown in Fig. 1.2, the transcriptional level was increased about two folds after IPTG induction, indicating the circuit was successfully constructed with functional aroG mutant. The basal expression of aroG without IPTG induction can be observed due to one copy of native aroG in E.coli genome.

Fig. 1.2 Fig. 1.2 The relative mRNA level of aroG-S211F in DH5alpha strain with Part:BBa_K3832008 inserted in pET28a+ vector.

2. Characterization the effect of AroG-S211F on tryptophan production

2.1 Tryptophan can be easily determined by modified PDAB chromogenic method

  1. Freeze-thaw bacterial culture medium with suspension cells for over 3 times.
  2. Add 100 ul medium into 400 ul PDAB (p-dimethylaminobezaldehyde) solution (3 mg/ml in 9 M solution of sulfuric acid). Then keep at 60℃ for 20 min.
  3. Add 3 ul 0.5% (w/w) solution of sodium nitrite. Then keep at 60℃ for 15min.
  4. Measure absorption under 590 nm wavelength (OD590).

2.2 The yield of tryptophan was significantly improved in AroG-S211F strain compared to native AroG

As shown in Fig. 2.1, compared with the E.coli harboring the blank vector and native aroG gene (BBa_K1060000), the yield of tryptophan in the engineered E.coli with aroG-S211F induced by 1 mM IPTG continuously increased in the 30 h cultivation (green triangle), reaching a maximal productivity of 160 mg/ml per OD, while the blank controls slowly increased and maintained its production at about 1200 min, arriving about 80 mg/ml per OD, half of the previous one (circle and square). It is the same case in absent of IPTG (blue triangle), indicating the low leaky expression of our circuit. In all, our circuit containing AroG-S211F can efficiently produce tryptophan with the highest productivity of 160 mg/ml per OD, which can be further improved under the control of toggle-switch.

Fig. 2.1 Fig. 2.1 The tryptophan production curve of the engineering E.coli with aroG-S211F and E.coli with native aroG.

2.3 The structural mechanisms was elucidated by protein structure modeling

To explain the concrete mechanisms of the promotion effect by AroG-S211F comparing wild-type AroG, protein structure modeling is used to analyze the thermodynamics and structure of them.

From an energy perspective, our modeling results show that the mutant protein exhibits lower binding free energy with the catalytic substrate in the presence of the inhibitor (Phe), that is, it is able to bind more tightly and stably to the substrate, thus improving catalytic efficiency. On the other hand, structural analysis also reflected that the binding tightness between the mutated site and the inhibitor was reduced, which weakened its inhibitory effect.

By the modeling result, the mutation (S211 to F211) in AroG is proposed to eliminate the allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream product yield.

3. Characterization the effect of aroG-S211F on cell proliferation

The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of engineered E.coli and blank strain were continuously monitored, as shown in Fig. The Logistic equation was used to fit the growth curve, the obvious inhibitory effect of aroG expression on cell proliferation was observed, especially with IPTG induction. The growth parameters K (environmental capacity) and r (intrinsic growth rate) of different experimental groups was also obtained from the fitting Logistic curve, and the parameter r decreased dramatically in E.coli with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell.

Fig. 3.1 Fig. 3.1 (a) The population density of E.coli was measured at 600nm by colorimetry. The scatter represents the result of the measurement. The Logistic equation was used to fit the growth curve, and the fitting results were shown in the curve. (b) shows the growth parameters K (environmental capacity) and r (intrinsic growth rate) of different experimental groups obtained from the fitting results in (a).

4. Conclusions:

A lacUV5 controlled-aroG S211F gene circuit was successfully constructed, and the overexpression of aroG-S211F significantly improved the tryptophan production, with a highest productivity of 160 mg/ml per OD. Protein structure modeling elucidate that the improvement may attribute to the elimination of the allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream product yield. However, because of the inhibition on the glycolysis pathway of aroG, the cell growth was obviously inhibited. The results confirmed our hypothesis that cell proliferation and tryptophan production should be separated, and it has been designed to be strictly controlled by toggle-switch circuit, in which cell proliferation (pykA gene overexpression) and tryptophan production (aroG-S211F overexpression) was constructed in the two arms of toggle-switch. (View our design on Team:XJTU-China/Design).

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by