Difference between revisions of "Team:XJTU-China/Parts"

Line 135: Line 135:
 
                         </tbody>
 
                         </tbody>
 
                     </table>
 
                     </table>
                    <a class="anchor" id="part-improvement"></a>
 
                    <h2 class="ml-3">Part improvement</h2>
 
                    <a class="anchor" id="introduction"></a>
 
                    <h3 class="ml-5">1. Introduction</h3>
 
                    <p>AroG (3-deoxy-7-phosphoheptulonate synthase, EC 2.5.1.54) is a key enzyme in the metabolism of
 
                        aromatic amino acids, catalysis following reaction:<br>
 
                        phosphoenolpyruvate + D-erythrose-4-phosphate+H2O =
 
                        3-deoxy-D-arabino-hept-2-ulosonate-7-phosphate +phosphate</p>
 
                    <p>Wild aroG functions in the form of tetramer, which can be inhibited by its allosteric inhibitors
 
                        Phenylalanine (Phe). In order to increase the production of downstream products such as
 
                        tryptophan, Ser on site 211 of aroG was mutated to Phe to remove the inhibitory effect of Phe.
 
                        The CDS of the mutant (aroG-S211F, Part:BBa_3832000) is our improvement version of
 
                        Part:BBa_K1060000 which encodes wild-type aroG.</p>
 
                    <p>We used protein structure prediction tool (Alphafold2) to predict the structure of the mutant
 
                        aroG-S211F, and compared its ability to bind to substrates in the presence of Phe with that of
 
                        the wild type. </p>
 
                    <p>In our project, aroG-S211F is used to improve the production of tryptophan. Considering the
 
                        over-expression of aroG-S211F could significantly reduce the amount of substrate (glucose)
 
                        entering the glycolysis reaction, in turn affects the normal process of cell proliferation, the
 
                        expression of aroG is designed under strict control by toggle-switch circuit.</p>
 
                    <a class="anchor" id="construction"></a>
 
                    <h3 class="ml-5">2. Construction</h3>
 
                    <p>An inducible circuit (Part:BBa_K3832008) is constructed to characterize and measure the function
 
                        of aroG-S211F (Fig.2.1). LacUV5 promoter is used while LacI is also contained in our circuit as
 
                        a repressor. </p>
 
                    <div class="imgWrapper centerize">
 
                        <img src="https://static.igem.org/mediawiki/2021/f/fe/T--XJTU-China--POC-Fig2-1.png"
 
                            alt="Design of the inducible circuit for aroG-S211F" width="60%">
 
                        <span class="description"><strong>Fig. 2.1 Design of the inducible circuit for
 
                                aroG-S211F</strong></span>
 
                    </div>
 
                    <p>Both GolgenGate assembly and In-Fusion assembly are used to construct the circuit from basic
 
                        parts and insert into pET28a+ vector (In-Fusion assembly is done with the help of partner team
 
                        NWU-CHINA-A as our collaboration). </p>
 
                    <div class="card card-dark ml-5 mt-5 mb-5" style="width: 90%;">
 
                        <button class="btn btn-default" type="button" data-toggle="collapse" data-target="#GG"
 
                            aria-expanded="false" aria-controls="part">
 
                            Method (for Golden Gate Assembly)
 
                        </button>
 
                        <div class="collapse" id="GG">
 
                            <div class="card card-body card-dark">
 
                                <p>
 
                                    <b>Reaction:</b><br>
 
                                    Insert (purified PCR product)/ng= Length/bp × 1.08×102
 
                                    Vector (purified PCR product)/ng= Length/bp × 2.16×102
 
                                    BsaI-HFv2 (20U/ul) = 1 ul
 
                                    T4 ligase (1000U/ul) = 1 ul
 
                                    T4 ligase buffer (10×) = 2 ul
 
                                    ddH20 = 20 ul
 
                                </p>
 
                                <p><b>Condition:</b></p>
 
                                <table class="ml-5 table table-striped table-light" style="width: 90%;">
 
                                    <thead>
 
                                        <tr>
 
                                            <th scope="col">Temperature</th>
 
                                            <th scope="col">Time</th>
 
                                            <th scope="col">Cycle</th>
 
                                        </tr>
 
                                    </thead>
 
                                    <tbody>
 
                                        <tr>
 
                                            <th scope="row">37 &#8451;</th>
 
                                            <td>15 min</td>
 
                                            <td rowspan="2">10</td>
 
                                        </tr>
 
                                        <tr>
 
                                            <th scope="row">16 &#8451;</th>
 
                                            <td>10 min</td>
 
                                        </tr>
 
                                        <tr>
 
                                            <th scope="row">37 &#8451;</th>
 
                                            <td>10 min</td>
 
                                            <td>1</td>
 
                                        </tr>
 
                                        <tr>
 
                                            <th scope="row">65 &#8451;</th>
 
                                            <td>10 min</td>
 
                                            <td>1</td>
 
                                        </tr>
 
                                        <tr>
 
                                            <th scope="row">80 &#8451;</th>
 
                                            <td>10 min</td>
 
                                            <td>1</td>
 
                                        </tr>
 
                                        <tr>
 
                                            <th scope="row" colspan="3">Store at 4 &#8451;</th>
 
                                        </tr>
 
                                    </tbody>
 
                                </table>
 
                                <p><b>Transformation: </b><br>
 
                                    Using Trelief<span class="sub">TM</span> 5α Chemically Competent Cell (Tsingke
 
                                    Biotechnology Co., Ltd.)
 
                                    Add 20 ul assembly product in 50 ul competent cell, ice bath for 30 min.
 
                                    Heat shock 42&#8451; for 45 sec.
 
                                    Ice bath for 2 min.
 
                                    Recover in 1ml SOC medium, 37&#8451;, 200rpm, for 1 hour.
 
                                    Spread to LB plate with 50 ug/ml kanamycin, 37&#8451; for 10-16 hours.
 
                                </p>
 
                            </div>
 
                        </div>
 
                    </div>
 
                    <div class="imgWrapper centerize">
 
                        <img src="https://static.igem.org/mediawiki/2021/c/c3/T--XJTU-China--aroG.png" alt="AroG-S211F gel">
 
                        <span class="description"><strong>Fig. 2.2 The DNA agarose gel electrophoresis result of
 
                                AroG-S211F circuit, plasmid and PCR product. </strong>(a) The length of the circuit is
 
                            2503bp (b) The length of the plasmid is 4738bp. And the two discrete bands are thought as
 
                            either open-coiled or super-coiled plasmids (c)The amplicon is expected to be 2526bp.
 
                        </span>
 
                    </div>
 
                    <p>The constructed plasmid of AroG-S211F are then subjected to PCR amplification to verify the
 
                        length of circuit, and the expected amplicon is 2526bp in length. Fig.2.2 shows the fragment of
 
                        the inducible circuit (panel a),
 
                        corresponding cloned vector (panel b) and the amplicon (panel c). The result suggests plasmid
 
                        obtained contains an insert with proper length identical to the circuit, thus indicating the
 
                        plasmid to be successfully constructed. The sequencing result (unpublished) also conforms to
 
                        this suggestion.</p>
 
                    <a class="anchor" id="measurement"></a>
 
                    <h3 class="ml-5">3. Measurement</h3>
 
                    <a class="anchor" id="RT-qPCR"></a>
 
                    <h4 class="ml-5">3.1 RT-qPCR</h4>
 
                    <p>RT-qPCR is used to detect the transcription of aroG-S211F as first step.</p>
 
                    <div class="card card-dark ml-5 mt-5 mb-5" style="width: 90%;">
 
                        <button class="btn btn-default" type="button" data-toggle="collapse" data-target="#RT"
 
                            aria-expanded="false" aria-controls="part">
 
                            Method
 
                        </button>
 
                        <div class="collapse" id="RT">
 
                            <div class="card card-body card-dark">
 
                                <p><b>Cultivation:</b> Using LB liquid medium, 37&#8451;, 200rpm. <br>
 
                                    <b>Inducing condition:</b> 1 mM IPTG, over 8 hours.<br>
 
                                    <b>Total RNA extraction:</b> Using RNAsimple Total RNA Kit,DP419 (TIANGEN BIOTECH
 
                                    (BEIJING) CO.,LTD.)<br>
 
                                    <b>cDNA preparation:</b> Using Evo M-MLV RT Mix (Vazyme Biotech Co.,Ltd); template
 
                                    concentration: 50ng RNA/ul; reaction condition: 37&#8451; 15min, 85&#8451;
 
                                    15sec.<br>
 
                                    <b>qPCR:</b> Using ChamQ SYBR qPCR Master Mix (Vazyme Biotech Co.,Ltd).<br>
 
 
                                    Relative Normalized Expression data is calculated by using the equation below,<br>
 
                                    Relative Expression = 2<span class="sup">-[ΔC<span class="sub">t</span>(T)-ΔC<span
 
                                            class="sub">t</span>(C)]</span><br>
 
                                    where ΔC<span class="sub">t</span>(T) represents the difference between C<span
 
                                        class="sub">t</span> value of target gene and internal
 
                                    standard gene in treatment group; ΔC<span class="sub">t</span>(C) represents the
 
                                    difference between C<span class="sub">t</span> value
 
                                    of target gene and internal standard gene in negative control group.
 
                                </p>
 
                            </div>
 
                        </div>
 
                    </div>
 
                    <p><b>Result:</b><br> As in Fig.3.1, expression of aroG-S211F under induction by IPTG is higher than
 
                        that in un-induced
 
                        group and negative control (DH5alpha with blank pET28a+ vector).</p>
 
                    <div class="imgWrapper ceterize">
 
                        <img src="https://static.igem.org/mediawiki/2021/2/21/T--XJTU-China--improvement3.1.png" alt="RTaroG"
 
                            width="60%">
 
                        <span class="description"><strong>Fig.3.1 The relative mRNA level of aroG-S211F in DH5alpha
 
                                strain with
 
                                Part:BBa_K3832008 inserted in pET28a+ vector.</strong></span>
 
                    </div>
 
                    <a class="anchor" id="characterization"></a>
 
                    <h4 class="ml-5">3.2 Characterization</h4>
 
                    <a class="anchor" id="growth-curve"></a>
 
                    <h5 class="ml-5">3.2.1 Growth Curve</h5>
 
                    <p>As is showed in Fig.3.2, by using the Logistic equation to fit the growth curve, the inhibitory
 
                        effect of aroG expression on cell proliferation was verified (as the parameter r decreased in
 
                        <i>E.coli</i> with aroG-S211F and induced by IPTG, which represents the reciprocal of the time
 
                        it takes
 
                        for the population to double). <br>
 
                        Cultivation condition: 20 ml LB medium, 37&#8451;, 200rpm; Inoculation dose: 20 ul (0.1%)
 
                    </p>
 
                    <div class="imgWrapper ceterize">
 
                        <img src="https://static.igem.org/mediawiki/2021/f/f2/T--XJTU-China--POC-Fig2-3.png" alt="Fig. 3.2"
 
                            width="60%">
 
                        <span class="description"><strong>Fig. 3.2</strong> (a) The population density of <i>E.coli</i>
 
                            was
 
                            measured at 600 nm
 
                            by colorimetry. The scatter represents the result of the measurement. The Logistic equation
 
                            was used to fit the growth curve, and the fitting results were shown in the curve. (b) and
 
                            (c) respectively show the growth parameters K (environmental capacity) and r (intrinsic
 
                            growth rate) of different experimental groups obtained from the fitting results in
 
                            (a).</span>
 
                    </div>
 
                    <a class="anchor" id="tryptophan-production"></a>
 
                    <h5 class="ml-5">3.2.2 Tryptophan Production</h5>
 
                    <p>Fig. 3.3 shows the yield of tryptophan. The engineered <i>E.coli</i> with aroG-S211F induced by 1
 
                        mM
 
                        IPTG resents an increased production of tryptophan, comparing in absent of IPTG or aroG-S211F
 
                        (within blank pET28a+ vector).</p>
 
                    <p>Concentration of tryptophan is calculated by standard curve in Fig.3.4. Tryptophan production is
 
                        calculated by removing the concentration of blank medium, and normalized by divided by OD<span
 
                            class="sub">600</span>
 
                        (reflecting cell density).</p>
 
                    <div class="imgWrapper ceterize">
 
                        <img src="https://static.igem.org/mediawiki/2021/2/2c/T--XJTU-China--improvement3.3.png"
 
                            alt="Fig 3.3" width="60%">
 
                        <span class="description"><strong>Fig. 3.3 The relationship between tryptophan concentration in
 
                                culture
 
                                medium and culture time.</strong> The concentration of tryptophan is measured by PDAB
 
                            chromogenic
 
                            method. </span>
 
                    </div>
 
                    <div class="card card-dark ml-5 mt-5 mb-5" style="width: 90%;">
 
                        <button class="btn btn-default" type="button" data-toggle="collapse"
 
                            data-target="#ncharacterization" aria-expanded="false" aria-controls="part">
 
                            Method
 
                        </button>
 
                        <div class="collapse" id="ncharacterization">
 
                            <div class="card card-body card-dark">
 
                                <ol style="color: white; font-family: 'eras';">
 
                                    <li>Freeze-thaw bacterial culture medium with suspension cells for over 3 times.
 
                                    </li>
 
                                    <li>Add 100 ul medium into 400 ul PDAB (p-dimethylaminobezaldehyde) solution (3
 
                                        mg/ml in
 
                                        9 M solution of sulfuric acid). Then keep at 60&#8451; for 20 min.</li>
 
                                    <li>Add 3 ul 0.5% (w/w) solution of sodium nitrite. Then keep at 60&#8451; for
 
                                        15min.
 
                                    </li>
 
                                    <li>Measure absorption under 590 nm wavelength (OD<span class="sub">590</span>).
 
                                    </li>
 
                                </ol>
 
                            </div>
 
                        </div>
 
                    </div>
 
                    <p>The same method should be used to determine the OD<span class="sub">590</span> of a tryptophan
 
                        standard solution at a
 
                        known concentration to obtain a standard curve. Standard curve measured and used in our
 
                        experiment is as Fig.3.4.</p>
 
                    <div class="imgWrapper ceterize">
 
                        <img src="https://static.igem.org/mediawiki/2021/a/ab/T--XJTU-China--improvement3.4.png"
 
                            alt="Fig 3.4" width="60%">
 
                        <span class="description"><strong>Fig.3.4 Standard curve of measuring tryptophan tryptophan by
 
                                PDAB method.</strong></span>
 
                    </div>
 
 
                 </div>
 
                 </div>
 
                 <div class="col-lg-1"></div>
 
                 <div class="col-lg-1"></div>

Revision as of 08:32, 21 October 2021

Team:XJTU-China/Project

Parts

Parts

New Parts

In order to increase the yield of tryptophan in E.coli, the gene of key enzyme AroG which catalizes the synthesis of DAHP by condensation of PEP and E4P, is selected to be overexpressed. To maximum the output, a mutant AroG (S211F) without Phe feedback inhibition is picked to construct the induced expression system. And this part is documented under BBa_K3832008. In addition, a toggle switch circuit with GFP and RFP is also constructed. It can achieve bistable status and switch in certain condition, like IPTG induction and 42℃ heat, and the expression of reporter mRFP and sfGFP is upregulated, resulting in toggle of fluorescence. This part is documented under BBa_K3832007. And all other new basic parts included in our project are listed in the table.

# Name Type Description Length
BBa_K3832000 aroG (Mutant S211F) Coding Phospho-2-dehydro-3-deoxyheptonate aldolase (mutant S211F) 1053bp
BBa_K3832003 Medium RBS (RBS-B) RBS A medium RBS in E.coli 10bp
BBa_K3832004 Medium RBS (RBS-D) RBS A medium RBS in E.coli 14bp
BBa_K3832005 Weak RBS (RBS-H) RBS A weak RBS in E.coli 11bp
BBa_K3832007 Toggle-switch circuit with GFP and RFP Composite A bistable toggle switch with two promoter-repressor systems (lacUV5 promoter-LacI and lambda-CI857) and reporter genes (sfGFP and mRFP) 3685bp
BBa_K3832008 Induced expression circuit of aroG (Mutant s211f) Composite An expression system of aroG-S211F induced by IPTG 2503bp

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by