Difference between revisions of "Team:XJTU-China/protein model"

Line 5: Line 5:
  
 
<head>
 
<head>
     <title>Team:XJTU-China/Project</title>
+
     <title>Team:XJTU-China/Model</title>
 
     <meta charset="utf-8">
 
     <meta charset="utf-8">
 
     <meta name="keywords" content="iGEM,Xi'an Jiaotong University,XJTU-China,Tryptophan,
 
     <meta name="keywords" content="iGEM,Xi'an Jiaotong University,XJTU-China,Tryptophan,
Line 19: Line 19:
 
     <link rel="stylesheet" type="text/css"
 
     <link rel="stylesheet" type="text/css"
 
         href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrap&action=raw&ctype=text/css" />
 
         href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrap&action=raw&ctype=text/css" />
 +
 
</head>
 
</head>
  
Line 24: Line 25:
 
     <!--banner-->
 
     <!--banner-->
 
     <section>
 
     <section>
         <div class="container row fixedBackground">
+
         <div class="container row fixedBackground ml-2">
             <div class="fixedBackgroundImg"
+
             <div class="fixedBackgroundImg" style="background-image: url(https://static.igem.org/mediawiki/2021/f/fd/T--XJTU-China--model_background.jpg);
                style="background-image: url(https://static.igem.org/mediawiki/2021/f/fd/T--XJTU-China--bg.jpg);">
+
                background-position: center;background-size: 55%;background-repeat: no-repeat;">
 
             </div>
 
             </div>
 
             <div class="pageHeadline"><span>Protein Model</span></div>
 
             <div class="pageHeadline"><span>Protein Model</span></div>
 
         </div>
 
         </div>
 
     </section>
 
     </section>
    <!--main-->
 
 
     <section class="main">
 
     <section class="main">
         <div class="container mainBox" id="mainBox">
+
         <div class="container mainBox bg-white" id="mainBox">
 
             <div class="row" id="container">
 
             <div class="row" id="container">
 
                 <div class="side col-lg-3">
 
                 <div class="side col-lg-3">
 
                     <nav class="dr-menu">
 
                     <nav class="dr-menu">
                         <h3>Description</h3>
+
                         <h3>Protein Model</h3>
 
                         <ul>
 
                         <ul>
                             <li><a class="dr-icon dr-icon-user" href="#projectDescription">Project Description </a></li>
+
                             <li><a class="fa fa-plug" href="#protein-model">&nbsp;Protein Model</a></li>
                             <li><a class="dr-icon dr-icon-download" href="#ref">References</a></li>
+
                            <li><a class="fa fa-plug" href="#summary">&nbsp;Summary</a></li>
 +
                             <li><a class="fa fa-plug" href="#establishment-of-model">&nbsp;Model Establishment</a>
 +
                            </li>
 +
                            <li><a class="fa fa-plug" href="#result-and-conclusion">&nbsp;Result and Conclusion</a>
 +
                                <ul>
 +
                                    <li><a href="#population-density">· The Population Density of <i>E. coli</i></a>
 +
                                    </li>
 +
                                    <li><a href="#effect">· The Effect of Toggle Switch</a></li>
 +
                                    <li><a href="#product">· The Product of Genetic Circuits</a></li>
 +
                                    <li><a href="#output">· The Output of Tryptophan</a></li>
 +
                                    <li><a href="#strategy">· The Best Production Strategy</a></li>
 +
                                </ul>
 +
                            </li>
 +
                            <li><a class="fa fa-plug" href="#reference">&nbsp;Reference</a></li>
 +
                            <li><a class="fa fa-plug" href="#code">&nbsp;Code</a></li>
 
                         </ul>
 
                         </ul>
 
                     </nav>
 
                     </nav>
Line 49: Line 63:
 
                         <blockquote>
 
                         <blockquote>
 
                             <p><span>Phospho-2-dehydro-3-deoxyheptonate aldolase (AroG) is an important enzyme for the
 
                             <p><span>Phospho-2-dehydro-3-deoxyheptonate aldolase (AroG) is an important enzyme for the
                                     phosphoenolpyruvate (PEP) catalytic reaction and has an important role in the metabolic
+
                                     phosphoenolpyruvate (PEP) catalytic reaction and has an important role in the
                                     pathways, </span><em><span>i.e.</span></em><span> tryptophan biosynthesis, in this project.
+
                                    metabolic
                                     Literature review shows that Phenylalanine binds to AroG to allosterically inhibit the
+
                                     pathways, </span><em><span>i.e.</span></em><span> tryptophan biosynthesis, in this
                                     condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate(E4P), thus subsequently
+
                                    project.
                                     lower the level of the product 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP), the first
+
                                     Literature review shows that Phenylalanine binds to AroG to allosterically inhibit
                                     step to synthesize chorismite which is the precursor of tryptophan. When the Ser at AroG 211 is
+
                                    the
                                     mutated to Phe, allosteric inhibition produced by Phe is alleviated. To investigate the
+
                                     condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate(E4P), thus
                                     structural mechanism of allosteric inhibition on AroG by Phe and the alleviation in S211F
+
                                    subsequently
                                     mutant, it is proposed to be quantified and visualized using PyMOL, Gaussian16.0W, GaussView6.0,
+
                                     lower the level of the product 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP),
 +
                                    the first
 +
                                     step to synthesize chorismite which is the precursor of tryptophan. When the Ser at
 +
                                    AroG 211 is
 +
                                     mutated to Phe, allosteric inhibition produced by Phe is alleviated. To investigate
 +
                                    the
 +
                                     structural mechanism of allosteric inhibition on AroG by Phe and the alleviation in
 +
                                    S211F
 +
                                     mutant, it is proposed to be quantified and visualized using PyMOL, Gaussian16.0W,
 +
                                    GaussView6.0,
 
                                     Swiss, AutoDockTools software.</span></p>
 
                                     Swiss, AutoDockTools software.</span></p>
 
                         </blockquote>
 
                         </blockquote>
 
                         <h2 id='1-fundamental-assumptions'><span>1. Fundamental assumptions</span></h2>
 
                         <h2 id='1-fundamental-assumptions'><span>1. Fundamental assumptions</span></h2>
 
                         <ol>
 
                         <ol>
                             <li><span>The ligand receptor docking results predicted by AutoDockTools in a semi-flexible docking mode
+
                             <li><span>The ligand receptor docking results predicted by AutoDockTools in a semi-flexible
                                     are bassically correct within the range that the conformation allows to change.</span></li>
+
                                    docking mode
                             <li><span>The mutant AroG tetrameric protein structure predicted by amino acid sequence on the Swiss
+
                                     are bassically correct within the range that the conformation allows to
                                     website is bassically correct within the range that the conformation allows to change.</span>
+
                                    change.</span></li>
 +
                             <li><span>The mutant AroG tetrameric protein structure predicted by amino acid sequence on
 +
                                    the Swiss
 +
                                     website is bassically correct within the range that the conformation allows to
 +
                                    change.</span>
 
                             </li>
 
                             </li>
                             <li><span>The relative position of the wild-type and point-mutation mutant AroG to the protein pocket
+
                             <li><span>The relative position of the wild-type and point-mutation mutant AroG to the
 +
                                    protein pocket
 
                                     bound to Phe and PEP does not change.</span></li>
 
                                     bound to Phe and PEP does not change.</span></li>
                             <li><span>The catalytic activity of the AroG with PEP can be characterized by the binding energy of the
+
                             <li><span>The catalytic activity of the AroG with PEP can be characterized by the binding
 +
                                    energy of the
 
                                     two.</span></li>
 
                                     two.</span></li>
 
                         </ol>
 
                         </ol>
                         <h2 id='2-acquisition-of-protein-and-small-molecule-structures'><span>2. Acquisition of protein and
+
                         <h2 id='2-acquisition-of-protein-and-small-molecule-structures'><span>2. Acquisition of protein
 +
                                and
 
                                 small-molecule structures</span></h2>
 
                                 small-molecule structures</span></h2>
 
                         <figure>
 
                         <figure>
Line 86: Line 116:
 
                                         <td><span> Wild-type AroG tetrameric protein structure </span></td>
 
                                         <td><span> Wild-type AroG tetrameric protein structure </span></td>
 
                                         <td><span> UniProt+</span><a
 
                                         <td><span> UniProt+</span><a
                                                 href='https://www.uniprot.org/uniprot/P0AB91'><span>P0AB91</span></a><span> </span>
+
                                                 href='https://www.uniprot.org/uniprot/P0AB91'><span>P0AB91</span></a><span>
 +
                                            </span>
 
                                         </td>
 
                                         </td>
 
                                     </tr>
 
                                     </tr>
Line 105: Line 136:
 
                         </figure>
 
                         </figure>
 
                         <h2 id='3-autodock-molecular-docking'><span>3. AutoDock molecular docking</span></h2>
 
                         <h2 id='3-autodock-molecular-docking'><span>3. AutoDock molecular docking</span></h2>
                         <p><span>In order to quantify the allosteric inhibition of Phe on AroG and the mechanism of AroG-S211F
+
                         <p><span>In order to quantify the allosteric inhibition of Phe on AroG and the mechanism of
                                 alleviating the inhibition, this paper uses AutoDockTools software to get results. Firstly, dock Phe
+
                                AroG-S211F
                                 molecules in the wild type and mutant AroG respectively. Then, dock PEP molecules to the protein
+
                                 alleviating the inhibition, this paper uses AutoDockTools software to get results.
                                 active center one by one. During this process, record the ligand-receptor binding energy , and
+
                                Firstly, dock Phe
                                 visualized the corresponding protein structure with PyMol software to further explore the
+
                                 molecules in the wild type and mutant AroG respectively. Then, dock PEP molecules to the
 +
                                protein
 +
                                 active center one by one. During this process, record the ligand-receptor binding energy
 +
                                , and
 +
                                 visualized the corresponding protein structure with PyMol software to further explore
 +
                                the
 
                                 relationship between protein structure and the corresponding docking results.</span></p>
 
                                 relationship between protein structure and the corresponding docking results.</span></p>
 
                         <p><span>The workflow is as follows: </span></p>
 
                         <p><span>The workflow is as follows: </span></p>
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020140727559.png" /></p>
+
                         <p><img
 +
                                src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020140727559.png" />
 +
                        </p>
 
                         <h2 id='4-results-and-discussion'><span>4. Results and Discussion</span></h2>
 
                         <h2 id='4-results-and-discussion'><span>4. Results and Discussion</span></h2>
 
                         <h3 id='41bingding-energy'><span>4.1Bingding energy</span></h3>
 
                         <h3 id='41bingding-energy'><span>4.1Bingding energy</span></h3>
 
                         <p><strong><span>1. Allosteric inhibition effect of Phe</span></strong></p>
 
                         <p><strong><span>1. Allosteric inhibition effect of Phe</span></strong></p>
                         <p><span>The average value of the binding energy is obtained by repeating the docking several times. When
+
                         <p><span>The average value of the binding energy is obtained by repeating the docking several
                                 the Phe ligand is not bound, the binding energy of aroG and PEP is -5.5kcal; and when the Phe is
+
                                times. When
                                 bound to aroG tetramer at the corresponding site, the binding energy becomes -5.2kcal.</span></p>
+
                                 the Phe ligand is not bound, the binding energy of aroG and PEP is -5.5kcal; and when
                         <p><span>Conclusively, the binding of Phe to AroG has an inhibitory effect of PEP binding to AroG.</span>
+
                                the Phe is
 +
                                 bound to aroG tetramer at the corresponding site, the binding energy becomes
 +
                                -5.2kcal.</span></p>
 +
                         <p><span>Conclusively, the binding of Phe to AroG has an inhibitory effect of PEP binding to
 +
                                AroG.</span>
 
                         </p>
 
                         </p>
 
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020140918205.png"
 
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020140918205.png"
 
                                 referrerpolicy="no-referrer" alt="image-20211020140918205"></p>
 
                                 referrerpolicy="no-referrer" alt="image-20211020140918205"></p>
                         <p><strong><span>2. Effect of point mutations on the catalytic activity of AroG</span></strong></p>
+
                         <p><strong><span>2. Effect of point mutations on the catalytic activity of AroG</span></strong>
 +
                        </p>
 
                         <figure>
 
                         <figure>
 
                             <table>
 
                             <table>
Line 252: Line 295:
 
                             </table>
 
                             </table>
 
                         </figure>
 
                         </figure>
                         <p><span>From the comparison of the table data, the binding ability of the mutant aroG and Phe is weaker
+
                         <p><span>From the comparison of the table data, the binding ability of the mutant aroG and Phe
                                 than that of the wild-type aroG, and the binding ability of the mutant aroG to PEP, in the case that
+
                                is weaker
                                 the corresponding site has been combined with Phe, is greatly improved compared to the wild-type
+
                                 than that of the wild-type aroG, and the binding ability of the mutant aroG to PEP, in
 +
                                the case that
 +
                                 the corresponding site has been combined with Phe, is greatly improved compared to the
 +
                                wild-type
 
                                 aroG. </span></p>
 
                                 aroG. </span></p>
                         <p><span>Therefore, without considering the software simulation docking error, it can be concluded that the
+
                         <p><span>Therefore, without considering the software simulation docking error, it can be
 +
                                concluded that the
 
                                 Phe allosteric inhibitory effect of mutant aroG is weakened. </span></p>
 
                                 Phe allosteric inhibitory effect of mutant aroG is weakened. </span></p>
 
                         <h3 id='42-protein-pocket-structure'><span>4.2 Protein pocket structure</span></h3>
 
                         <h3 id='42-protein-pocket-structure'><span>4.2 Protein pocket structure</span></h3>
Line 264: Line 311:
 
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020141056684.png"
 
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020141056684.png"
 
                                 referrerpolicy="no-referrer" alt="image-20211020141056684"></p>
 
                                 referrerpolicy="no-referrer" alt="image-20211020141056684"></p>
                         <p><span>In the figure, the yellow is the experimentally measured conformation of Phe in the crystal protein
+
                         <p><span>In the figure, the yellow is the experimentally measured conformation of Phe in the
                                 bound by aroG and Phe, and the green is the docking site and the conformation of Phe predicted by
+
                                crystal protein
                                 AutoDockTools software. Obviously, the ligand receptor docking site predicted by the AutoDockTools
+
                                 bound by aroG and Phe, and the green is the docking site and the conformation of Phe
                                 software is completely consistent with the actual site, but there is a slight difference in the
+
                                predicted by
                                 conformation of Phe. Therefore, the prediction of binding energy can be more credible. </span></p>
+
                                 AutoDockTools software. Obviously, the ligand receptor docking site predicted by the
                         <p><span>The following figure shows the docking visualization results of PEP and AroG:</span></p>
+
                                AutoDockTools
 +
                                 software is completely consistent with the actual site, but there is a slight difference
 +
                                in the
 +
                                 conformation of Phe. Therefore, the prediction of binding energy can be more credible.
 +
                            </span></p>
 +
                         <p><span>The following figure shows the docking visualization results of PEP and AroG:</span>
 +
                        </p>
 
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020141105271.png"
 
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020141105271.png"
 
                                 referrerpolicy="no-referrer" alt="image-20211020141105271"></p>
 
                                 referrerpolicy="no-referrer" alt="image-20211020141105271"></p>
Line 279: Line 332:
 
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020141205740.png"
 
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020141205740.png"
 
                                 referrerpolicy="no-referrer" alt="image-20211020141205740"></p>
 
                                 referrerpolicy="no-referrer" alt="image-20211020141205740"></p>
                         <p><span>According to the docking results, the protein pocket conformation of wild-type and mutant AroG
+
                         <p><span>According to the docking results, the protein pocket conformation of wild-type and
                                 bound to PEP has not changed significantly. The Red is the experimentally measured conformation of
+
                                mutant AroG
                                 Phe in the crystal protein bound by aroG and Phe, and the pink is the docking site and the
+
                                 bound to PEP has not changed significantly. The Red is the experimentally measured
                                 conformation of Phe predicted by AutoDockTools software. In general, the changes in binding PEP
+
                                conformation of
 +
                                 Phe in the crystal protein bound by aroG and Phe, and the pink is the docking site and
 +
                                the
 +
                                 conformation of Phe predicted by AutoDockTools software. In general, the changes in
 +
                                binding PEP
 
                                 sites are not very significant.</span></p>
 
                                 sites are not very significant.</span></p>
 
                         <p><span>Phe site:</span></p>
 
                         <p><span>Phe site:</span></p>
Line 289: Line 346:
 
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020141224863.png"
 
                         <p><img src="C:\Users\Ms_00\AppData\Roaming\Typora\typora-user-images\image-20211020141224863.png"
 
                                 referrerpolicy="no-referrer" alt="image-20211020141224863"></p>
 
                                 referrerpolicy="no-referrer" alt="image-20211020141224863"></p>
                         <p><span>It can be seen from the docking results that the Ser at AroG 211 mutating to Phe changes the
+
                         <p><span>It can be seen from the docking results that the Ser at AroG 211 mutating to Phe
                                 conformation of the protein pocket which originally binds to Phe, and the binding site of Phe
+
                                changes the
                                 changes accordingly. The binding energy calculated by AutoDockTools software shows that the binding
+
                                 conformation of the protein pocket which originally binds to Phe, and the binding site
                                 ability of mutant aroG and Phe becomes weaker. Therefore, it can be concluded that the conformation
+
                                of Phe
                                 of the mutant aroG and Phe binding protein pocket changes, so that the binding ability of Phe to it
+
                                 changes accordingly. The binding energy calculated by AutoDockTools software shows that
                                 becomes smaller, and the allosteric inhibition effect of Phe is reduced, finally the catalytic
+
                                the binding
 +
                                 ability of mutant aroG and Phe becomes weaker. Therefore, it can be concluded that the
 +
                                conformation
 +
                                 of the mutant aroG and Phe binding protein pocket changes, so that the binding ability
 +
                                of Phe to it
 +
                                 becomes smaller, and the allosteric inhibition effect of Phe is reduced, finally the
 +
                                catalytic
 
                                 efficiency of aroG on PEP increases. </span></p>
 
                                 efficiency of aroG on PEP increases. </span></p>
                         <h2 id='5-advantages-and-disadvantages-of-the-model'><span>5. Advantages and disadvantages of the
+
                         <h2 id='5-advantages-and-disadvantages-of-the-model'><span>5. Advantages and disadvantages of
 +
                                the
 
                                 model</span></h2>
 
                                 model</span></h2>
 
                         <h3 id='51-advantages-of-the-model'><span>5.1 Advantages of the model</span></h3>
 
                         <h3 id='51-advantages-of-the-model'><span>5.1 Advantages of the model</span></h3>
 
                         <ol>
 
                         <ol>
                             <li><span>The results of the experiments can be quickly obtained by analysis using available software
+
                             <li><span>The results of the experiments can be quickly obtained by analysis using available
 +
                                    software
 
                                     tools</span></li>
 
                                     tools</span></li>
 
                             <li><span>The accidental deviation caused by experiments is avoided</span></li>
 
                             <li><span>The accidental deviation caused by experiments is avoided</span></li>
Line 308: Line 373:
 
                         <p><span>The prediction results of existing software tools have limitations:</span></p>
 
                         <p><span>The prediction results of existing software tools have limitations:</span></p>
 
                         <ol>
 
                         <ol>
                             <li><span>The Gauss software utilizes a semi-empirical molecular orbital theory algorithm when computing
+
                             <li><span>The Gauss software utilizes a semi-empirical molecular orbital theory algorithm
                                     the steady-state conformation of the Phe and PEP small molecules, which reduces the accuracy of
+
                                    when computing
 +
                                     the steady-state conformation of the Phe and PEP small molecules, which reduces the
 +
                                    accuracy of
 
                                     the calculation results</span></li>
 
                                     the calculation results</span></li>
                             <li><span>When the AutoDockTools calculates the docking of large-mass proteins and ligands, it is
+
                             <li><span>When the AutoDockTools calculates the docking of large-mass proteins and ligands,
                                     limited by the computing power; the receptor can not select too many flexible chains, and the
+
                                    it is
                                     accuracy of the flexible docking prediction algorithm is not very high; if the initial value of
+
                                     limited by the computing power; the receptor can not select too many flexible
                                     the docking is not set properly, the prediction results will fall in the local optimal solution
+
                                    chains, and the
 +
                                     accuracy of the flexible docking prediction algorithm is not very high; if the
 +
                                    initial value of
 +
                                     the docking is not set properly, the prediction results will fall in the local
 +
                                    optimal solution
 
                                     to reach the global optimal solution.</span></li>
 
                                     to reach the global optimal solution.</span></li>
 
                         </ol>
 
                         </ol>
Line 320: Line 391:
 
                 </div>
 
                 </div>
 
                 <div class="col-lg-1"></div>
 
                 <div class="col-lg-1"></div>
            </div>
 
        </div>
 
 
     </section>
 
     </section>
 
 
     <!--JS-->
 
     <!--JS-->
 
     <script type="text/javascript"
 
     <script type="text/javascript"

Revision as of 10:23, 20 October 2021

Team:XJTU-China/Model

Protein Model

Protein Model

Phospho-2-dehydro-3-deoxyheptonate aldolase (AroG) is an important enzyme for the phosphoenolpyruvate (PEP) catalytic reaction and has an important role in the metabolic pathways, i.e. tryptophan biosynthesis, in this project. Literature review shows that Phenylalanine binds to AroG to allosterically inhibit the condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate(E4P), thus subsequently lower the level of the product 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP), the first step to synthesize chorismite which is the precursor of tryptophan. When the Ser at AroG 211 is mutated to Phe, allosteric inhibition produced by Phe is alleviated. To investigate the structural mechanism of allosteric inhibition on AroG by Phe and the alleviation in S211F mutant, it is proposed to be quantified and visualized using PyMOL, Gaussian16.0W, GaussView6.0, Swiss, AutoDockTools software.

1. Fundamental assumptions

  1. The ligand receptor docking results predicted by AutoDockTools in a semi-flexible docking mode are bassically correct within the range that the conformation allows to change.
  2. The mutant AroG tetrameric protein structure predicted by amino acid sequence on the Swiss website is bassically correct within the range that the conformation allows to change.
  3. The relative position of the wild-type and point-mutation mutant AroG to the protein pocket bound to Phe and PEP does not change.
  4. The catalytic activity of the AroG with PEP can be characterized by the binding energy of the two.

2. Acquisition of protein and small-molecule structures

Required structure Method of obtaining
Wild-type AroG tetrameric protein structure UniProt+P0AB91
AroG-S211F tetramer protein structure Predicted by Swiss AutoDockTools
Phe and PEP small-molecule structures Gaussian16.0W, GaussView6.0
Crystal structure of Phe, PEP binding to AroG UniProt+序号

3. AutoDock molecular docking

In order to quantify the allosteric inhibition of Phe on AroG and the mechanism of AroG-S211F alleviating the inhibition, this paper uses AutoDockTools software to get results. Firstly, dock Phe molecules in the wild type and mutant AroG respectively. Then, dock PEP molecules to the protein active center one by one. During this process, record the ligand-receptor binding energy , and visualized the corresponding protein structure with PyMol software to further explore the relationship between protein structure and the corresponding docking results.

The workflow is as follows:

4. Results and Discussion

4.1Bingding energy

1. Allosteric inhibition effect of Phe

The average value of the binding energy is obtained by repeating the docking several times. When the Phe ligand is not bound, the binding energy of aroG and PEP is -5.5kcal; and when the Phe is bound to aroG tetramer at the corresponding site, the binding energy becomes -5.2kcal.

Conclusively, the binding of Phe to AroG has an inhibitory effect of PEP binding to AroG.

image-20211020140918205

2. Effect of point mutations on the catalytic activity of AroG

Number of Phe bound to AroG Ligand receptor binding energy / kcal
1 -5.9
2 -5.5
3 -5.7
4 -5.5
Combined energy sum -22.6
Number of PEP bound to AroG-4Phe Ligand receptor binding energy / kcal
1 -5.2
2 -5.4
3 -5.3
4 -5.3
Combined energy sum -21.2
Number of Phe bound to MutAroG Ligand receptor binding energy / kcal
1 -5.2
2 -5.2
3 -5.0
4 -4.6
Combined energy sum -20.0
Number of PEP bound to MutAroG-4Phe Ligand receptor binding energy / kcal
1 -6.2
2 -6.2
3 -6.4
4 -6.3
Combined energy sum -25.1

From the comparison of the table data, the binding ability of the mutant aroG and Phe is weaker than that of the wild-type aroG, and the binding ability of the mutant aroG to PEP, in the case that the corresponding site has been combined with Phe, is greatly improved compared to the wild-type aroG.

Therefore, without considering the software simulation docking error, it can be concluded that the Phe allosteric inhibitory effect of mutant aroG is weakened.

4.2 Protein pocket structure

1. The docking results of AroG with Phe and PEP

image-20211020141051205

image-20211020141056684

In the figure, the yellow is the experimentally measured conformation of Phe in the crystal protein bound by aroG and Phe, and the green is the docking site and the conformation of Phe predicted by AutoDockTools software. Obviously, the ligand receptor docking site predicted by the AutoDockTools software is completely consistent with the actual site, but there is a slight difference in the conformation of Phe. Therefore, the prediction of binding energy can be more credible.

The following figure shows the docking visualization results of PEP and AroG:

image-20211020141105271

image-20211020141113358

2. Comparison of the wild-type and mutant AroG

image-20211020141205740

According to the docking results, the protein pocket conformation of wild-type and mutant AroG bound to PEP has not changed significantly. The Red is the experimentally measured conformation of Phe in the crystal protein bound by aroG and Phe, and the pink is the docking site and the conformation of Phe predicted by AutoDockTools software. In general, the changes in binding PEP sites are not very significant.

Phe site:

image-20211020141214932

image-20211020141224863

It can be seen from the docking results that the Ser at AroG 211 mutating to Phe changes the conformation of the protein pocket which originally binds to Phe, and the binding site of Phe changes accordingly. The binding energy calculated by AutoDockTools software shows that the binding ability of mutant aroG and Phe becomes weaker. Therefore, it can be concluded that the conformation of the mutant aroG and Phe binding protein pocket changes, so that the binding ability of Phe to it becomes smaller, and the allosteric inhibition effect of Phe is reduced, finally the catalytic efficiency of aroG on PEP increases.

5. Advantages and disadvantages of the model

5.1 Advantages of the model

  1. The results of the experiments can be quickly obtained by analysis using available software tools
  2. The accidental deviation caused by experiments is avoided
  3. Lower cost, less time consuming and easier to study

5.2 Disadvantages of the model

The prediction results of existing software tools have limitations:

  1. The Gauss software utilizes a semi-empirical molecular orbital theory algorithm when computing the steady-state conformation of the Phe and PEP small molecules, which reduces the accuracy of the calculation results
  2. When the AutoDockTools calculates the docking of large-mass proteins and ligands, it is limited by the computing power; the receptor can not select too many flexible chains, and the accuracy of the flexible docking prediction algorithm is not very high; if the initial value of the docking is not set properly, the prediction results will fall in the local optimal solution to reach the global optimal solution.

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by