Difference between revisions of "Team:UGM Indonesia/Bioreactor"

 
(12 intermediate revisions by 2 users not shown)
Line 14: Line 14:
  
 
   <body data-bs-offset="360" data-bs-spy="scroll" data-bs-target="#sidebar">
 
   <body data-bs-offset="360" data-bs-spy="scroll" data-bs-target="#sidebar">
         <nav class="navbar navbar-expand-lg navbar-light shadow sticky-top menu">
+
         <nav class="navbar navbar-expand-lg navbar-light shadow sticky-top menu" id="navbar">
 
       <div class="container">
 
       <div class="container">
 
         <a class="navbar-brand" href="#">
 
         <a class="navbar-brand" href="#">
Line 37: Line 37:
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Engineering">Engineering</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Engineering">Engineering</a></li>
               
 
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Implementation">Implementation</a></li>
 
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Safety">Safety</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Safety">Safety</a></li>
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Contribution">Contribution</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Contribution">Contribution</a></li>
               
 
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Notebook">Notebook</a></li>
 
 
                  
 
                  
 
               </ul>
 
               </ul>
Line 58: Line 54:
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Results">Results</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Results">Results</a></li>
 +
               
 +
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Notebook">Notebook</a></li>
 
                  
 
                  
 
               </ul>
 
               </ul>
Line 69: Line 67:
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Bioreactor">Bioreactor</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Bioreactor">Bioreactor</a></li>
               
 
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Measurement">Measurement</a></li>
 
 
                  
 
                  
 
               </ul>
 
               </ul>
Line 80: Line 76:
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Human_Practices">Human Practices</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Human_Practices">Human Practices</a></li>
 +
               
 +
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/IHP">Integrated Human Practices</a></li>
 +
               
 +
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Implementation">Proposed Implementation</a></li>
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Communication">Education and Communication</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Communication">Education and Communication</a></li>
 +
               
 +
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Education">Education and Public Engagement</a></li>
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Entrepreneurship">Entrepreneurship</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Entrepreneurship">Entrepreneurship</a></li>
 +
               
 +
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Sustainable">Sustainable Development Impact</a></li>
 
                  
 
                  
 
               </ul>
 
               </ul>
Line 106: Line 110:
 
               <a aria-expanded="false" class="nav-link mx-2" href="#" id="projectNavbarDropdown" role="button">Medals</a>
 
               <a aria-expanded="false" class="nav-link mx-2" href="#" id="projectNavbarDropdown" role="button">Medals</a>
 
               <ul aria-labelledby="projectNavbarDropdown" class="dropdown-menu">
 
               <ul aria-labelledby="projectNavbarDropdown" class="dropdown-menu">
               
 
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Awards">Awards</a></li>
 
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Medals">Medals</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Medals">Medals</a></li>
Line 121: Line 123:
 
     <main>
 
     <main>
 
       <style>
 
       <style>
     .hero {
+
     #hero.hero .hero-image {
 
         background-image: url("https://static.igem.org/mediawiki/2021/6/63/T--UGM_Indonesia--img--hero-bioreactor.jpg");
 
         background-image: url("https://static.igem.org/mediawiki/2021/6/63/T--UGM_Indonesia--img--hero-bioreactor.jpg");
 
     }
 
     }
Line 128: Line 130:
 
<section class="hero" id="hero">
 
<section class="hero" id="hero">
 
     <div class="container-fluid">
 
     <div class="container-fluid">
         <div class="row d-flex flex-column justify-content-center align-items-center">
+
         <div class="row hero-image">
 +
        </div>
 +
        <div class="row hero-content d-flex flex-column justify-content-center align-items-center">
 
             <h1 class="hero-decorative decorative-right">
 
             <h1 class="hero-decorative decorative-right">
 
                 Bioreactor
 
                 Bioreactor
Line 142: Line 146:
 
     </div>
 
     </div>
 
</section>
 
</section>
       <section class="main-content pt-4" id="main-content">
+
       <section class="main-content" id="main-content">
 
         <div class="container">
 
         <div class="container">
 
           <div class="row">
 
           <div class="row">
 
             <nav class="navbar navbar-light flex-column align-items-stretch col-3 p-1 d-none d-lg-block sticky-sidebar" id="sidebar">
 
             <nav class="navbar navbar-light flex-column align-items-stretch col-3 p-1 d-none d-lg-block sticky-sidebar" id="sidebar">
 
     <nav class="nav nav-pills flex-column sticky-top sticky-offset">
 
     <nav class="nav nav-pills flex-column sticky-top sticky-offset">
   
+
        <ul>
         <a class="nav-link" href="#bioreactor">Bioreactor</a>
+
          
   
+
            <li>
 +
                <a class="nav-link" href="#pyrite">Pyrite Dissolutions Bioreactor</a>
 +
               
 +
            </li>
 +
       
 +
        </ul>
 
     </nav>
 
     </nav>
 
</nav>
 
</nav>
              
+
             <div class="col-12 col-lg-9">
Bioreactor
+
              <p class="my4">We determined the design of the bioreactor based on two types of gold ore: refractory and non-refractory. Refractory gold is a type of ores that is naturally resistant to extract by standard cyanidation process, while the non-refractory one is the opposite. </p><p>The refractory gold ores were obtained from Kulonprogo, Yogyakarta which can be reached for 1 hour from Universitas Gadjah Mada. Meanwhile, the non-refractory ones were obtained from Sumbawa, West Nusa Tenggara. The gold ores from Kulonprogo were trapped between pyrite, \(FeS_2\), in which <i>Thiobacillus ferrooxidans</i> could be used to oxidize the pyrite and collect the gold elements.</p><p>In this project, we used two types of bioreactor, one that harbors <i>Chromobacterium violaceum</i> for gold cyanidation, and the other one utilized <i>T. ferrooxidans</i> for pyrite dissolution. The non-refractory gold ore only uses 1 bioreactor that utilizes<i>C. violaceum</i> for gold cyanidation. Meanwhile, the refractory one uses 2 bioreactors (<b>Figure 1</b>).</p><figure class="text-center"><img alt="Bioreactor used for a non-refractory gold ore b refractory gold ore." class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/5/5b/T--UGM_Indonesia--img--bioreactor-figure-1.jpg"/><figcaption class="figure-caption"><b>Figure 1.</b> Bioreactor used for (<b>a</b>) non-refractory gold ore (<b>b</b>) refractory gold ore.</figcaption></figure><section id="pyrite"><h4 class="display-4 text-primary">Pyrite Dissolutions Bioreactor</h4><p>In this reactor, we used wild-type <i>T. ferrooxidans</i> kinetics to the bioreactor.</p><p>These are the mass balance of semi-batch bioreactor<a href="#reference-1"><sup>1</sup></a>:</p><p> \[\begin{align*} \frac{d(XV)}{dt} &amp; = V r_c(X,S) \\ \frac{d(PV)}{dt} &amp; = V r_P(X,S) \\ \frac{d(SV)}{dt} &amp; = F S_0 - \frac{1}{Y_{X/S}}V r_c(X,S) \end{align*}\]</p><p>The change of volume per time (hour) is defined as<a href="#reference-1"><sup>1</sup></a>:</p><p> \[\frac{dV}{dt} = F(t)\]</p><p>The cell growth is expressed as<a href="#reference-1"><sup>1</sup></a>:</p><p> \[\frac{dV}{dt} = F(t)\]</p><p>Monod model provides this equation to define cell specific growth rate as a function of substrate concentration<a href="#reference-1"><sup>1</sup></a>:</p><p>\[ \mu(S) = \mu_{max}\frac{S}{K_S + S} \]</p><p>The rate of product formation is assumed to be a fraction of cell growth by-product:<a href="#reference-1"><sup>1</sup></a>:</p><p>\[ r_P(X,S) = Y_{P/X}r_g(X,S) \]</p><p>Where \(Y_{P/X} \) is a product yield coefficient that serves as a ratio of product formation versus cell growth.<a href="#reference-1"><sup>1</sup></a>:</p><p>\[ Y_{P/X} = \frac{\mbox{product mass}}{\mbox{new cells mass}} \]</p><p>The mass of new cells from cell growth is assumed to have a constant ratio with mass of substrate consumed, thus<a href="#reference-1"><sup>1</sup></a>:</p><p>\[ Y_{X/S} = \frac{\mbox{new cells mass}}{\mbox{substrate consumed}} \]</p><table class="table table-bordered text-center"><caption class="text-center"><b>Table 1.</b> Reaction variables used for bioreactor modelling.</caption><thead> </thead><tbody><tr><td>\( X \)</td><th scope="row">Cell concentration (grams/liter)</th></tr><tr><td>\( P \)</td><th scope="row">Product concentration (grams/liter)</th></tr><tr><td>\( S \)</td><th scope="row">Substrate concentration (grams/liter)</th></tr><tr><td>\( S_0 \)</td><th scope="row">Feed substrate concentration (grams/liter)</th></tr><tr><td>\( r_c \)</td><th scope="row">Rate of cell or biomass growth (grams/liter/hr)</th></tr><tr><td>\( r_P \)</td><th scope="row">Rate of product formation (grams/liter/hr)</th></tr><tr><td>\( Y_(P/X) \)</td><th scope="row">Product yield coefficient</th></tr><tr><td>\( Y_(X/S) \)</td><th scope="row">Cell growth coefficient</th></tr><tr><td>\( F(t) \)</td><th scope="row">Flowrate (liter/hr)</th></tr><tr><td>\( \mu(S) \)</td><th scope="row">Cell specific growth rate</th></tr><tr><td>\( \mu_{max} \)</td><th scope="row">Maximum cell specific growth rate</th></tr><tr><td>\( K_S \)</td><th scope="row">Half saturation constant</th></tr></tbody></table><p> In the semi-batch model, the volume is not constant. Thus, the dilution effect is affecting cell, product, and substrate concentrations. The differential equation for \(X\), \(P\), and \(S\) mass balance is extended according to chain rule<a href="#reference-1"><sup>1</sup></a>:</p><p>\[ \begin{align*} \frac{d(XV)}{dt} &amp; = V\frac{dX}{dt} + X\frac{dV}{dt} = V\frac{dX}{dt} + F(t)X \\ \frac{d(PV)}{dt} &amp; = V\frac{dP}{dt} + P\frac{dV}{dt} = V\frac{dP}{dt} + F(t)P \\ \frac{d(SV)}{dt} &amp; = V\frac{dS}{dt} + S\frac{dV}{dt} = V\frac{dS}{dt} + F(t)S \end{align*} \]</p><p> Rearranging this mass balance equation with the previous equations gives<a href="#reference-1"><sup>1</sup></a>:</p><p>\[ \begin{align*}  \frac{dX}{dt} &amp; = - \frac{F(t)}{V}X + r_g(X,S)  \\ \frac{dP}{dt} &amp; = - \frac{F(t)}{V}P + r_P(X,S) \\ \frac{dS}{dt} &amp; = \frac{F(t)}{V}(S_f - S) - \frac{1}{Y_{X/S}}r_g(X,S) \\ \frac{dV}{dt} &amp; = F(t)  \end{align*} \]</p><p>We used an assumption that states \(Fe^{3+}\) is a product that also acts as a competitive inhibitor for pyrite dissolution reaction.  This assumption is based on the engineering cycle – design, build, test, and learn – that has been done on various possible inhibition schemes (competitive, uncompetitive, non-competitive) and various possible inhibition components ( \(Fe^{3+}\) and regulation by <i>T. Ferrooxidans</i> cells). The best scheme would be the one which gives the shortest reactor residence time.</p><p>The \(Fe^{3+}\) as competitive inhibitor assumption gives the following value for bioreactor-related variables mentioned in <b>Table 2</b>.</p><table class="table table-bordered text-center"><caption class="text-center"><b>Table 2.</b> Kinetic variables used for bioreactor modelling.</caption><thead><tr><th colspan="2" scope="col">Kinetic Variable</th><th scope="col">Source</th></tr></thead><tbody><tr><td>\( \mu_max \)</td><td>\( 1.25 hr^{-1} \)</td><td><a href="#reference-2">2</a></td></tr><tr><td>\( K_S \)</td><td>\( 0.048 gram/liter \)</td><td><a href="#reference-2">2</a></td></tr><tr><td>\( K_P \)</td><td>\( 0.06 gram/liter \)</td><td><a href="#reference-2">2</a></td></tr><tr><td>\( Y_{X/S} \)</td><td>\( 0.324 gram/gram \)</td><td><a href="#reference-3">3</a></td></tr><tr><td>\( Y_{P/X} \)</td><td>\( 0.4348 gram/gram \)</td><td><a href="#reference-4">4</a></td></tr><tr><td>\( S_0 \)</td><td>\( 606.6225 gram/liter \)</td><td><a href="#reference-5">5</a></td></tr><tr><th colspan="3" scope="row">Bioreactor Operating Condition</th></tr><tr><td>\( pH \)</td><td>\( 1.6 \)</td><td><a href="#reference-2">2</a></td></tr><tr><td>\( \mbox{Temperature} \)</td><td>\( 30^{\circ} C \)</td><td><a href="#reference-2">2</a></td></tr></tbody></table><p>In this model, it is assumed that the operating conditions are maintained from the beginning until the end of the process batch. Then, the reaction was modelled via Jupyter Notebook.</p><figure class="text-center"><img alt="Concentration of cell, product, substrate, and total volume versus time." class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/3/34/T--UGM_Indonesia--img--bioreactor-figure-2.png"/><figcaption class="figure-caption"><b>Figure 2.</b>Concentration of cell, product, substrate, and total volume versus time.</figcaption></figure><p>These are the results of cell concentration (\( X \)), product concentration (\( P \)), substrate concentration (\( S \)), and total volume (\( V \)) in 4 hours batch time:</p><table class="table table-bordered text-center"><caption class="text-center"><b>Table 3.</b> Initial and final concentration of each variable.</caption><thead><tr><th scope="col">Variable</th><th scope="col">Initial (time = \( 0 s\))</th><th scope="col">End of Batch (time = \(14400 s\))</th><th scope="col">Unit</th></tr></thead><tbody><tr><td>\( X \)</td><td>\( 0.05 \)</td><td>\( 1.95728572 \times 10^{2} \)</td><td>Gram/liter</td></tr><tr><td>\( P \)</td><td>\( 0 \)</td><td>\(85.08121549\)</td><td>Gram/liter</td></tr><tr><td>\( S \)</td><td>\( 606.6225 \)</td><td>\( 2.67506643 \)</td><td>Gram/liter</td></tr><tr><td>\( V \)</td><td>\( 25 \)</td><td>\( 25.2 \)</td><td>Liter</td></tr></tbody></table><p>To determine the volume of the bioreactor, we implemented 20% overdesign to prevent reactor flooding. Thus, based on the final total volume of one batch:</p><p>\[ 25.2\ \mbox{Liter} \times 120\% = 30.24\ \mbox{Liter} \]</p></section>
 +
             
 +
                    <section class="content-references" id="references">
 +
        <h4 class="display-4 text-primary mb-4">
 +
            References
 +
        </h4>
 +
        <ol>
 +
         
 +
            <li id="reference-1">
 +
                Shuler, M.L., Kargi, F., DeLisa, M., 2017, <i>Bioprocess Engineering: Basic Concepts</i>, Pearson Education.
 +
               
 +
               
 +
               
 +
            </li>
 +
         
 +
            <li id="reference-2">
 +
                Jones, C. A. and Kelly, D. P., 1983, Growth of <i>Thiobacillus ferrooxidans</i> on ferrous iron in chemostat culture: influence of product and substrate inhibition, <i>J. Chem. Tech. Biotechnology</i>, vol. 33B, pp. 241-261.
 +
               
 +
               
 +
                    <a href="https://doi.org/10.1002/jctb.280330407 " target="_blank">https://doi.org/10.1002/jctb.280330407 </a>
 +
               
 +
               
 +
            </li>
 +
         
 +
            <li id="reference-3">
 +
                Li, X., 2015, <i>Engineering and Characterization of Acidithiobacillus ferrooxidans for Biotechnology Applications</i>, Columbia University.
 +
               
 +
               
 +
               
 +
            </li>
 +
         
 +
            <li id="reference-4">
 +
                Michaels, R. and Corpe, W. A., 1965, Cyanide Formation by <i>Chromobacterium violaceum</i>, <i>American Society for Microbiology</i>, vol. 89, no. 1.
 +
               
 +
               
 +
               
 +
            </li>
 +
         
 +
            <li id="reference-5">
 +
                Pramuwijoyo, P., Idrus, A., Warmada, I.W., Yonezu, K., 2017, Geology, Geochemistry and Hydrothermal Fluid Characteristics of Low Sulfidation Epithermal Deposit in the Sangon Area, Kokap, Special Region of Yogyakarta, <i>Journal of Applied Geology</i>, vol. 2, np. 1, pp. 48-58.
 +
               
 +
               
 +
                    <a href="https://doi.org/10.22146/jag.42442" target="_blank">https://doi.org/10.22146/jag.42442</a>
 +
               
 +
               
 +
            </li>
 +
         
 +
        <ol>
 +
    </ol></ol></section>
 +
             
 +
            </div>
 
           </div>
 
           </div>
 
         </div>
 
         </div>
Line 163: Line 222:
 
   <div class="row py-5">
 
   <div class="row py-5">
 
     <div class="col-12">
 
     <div class="col-12">
       <div class="d-flex align-content-between align-items-center justify-content-center flex-wrap sponsors p-2">
+
       <div class="d-flex align-content-between align-items-center justify-content-center flex-wrap sponsors p-4">
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/1/13/T--UGM_Indonesia--img--sponsor-ugm.png" style="max-height: 175px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/1/13/T--UGM_Indonesia--img--sponsor-ugm.png" style="max-height: 90px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/0/03/T--UGM_Indonesia--img--sponsor-genscript.png" style="max-height: 150px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/0/03/T--UGM_Indonesia--img--sponsor-genscript.png" style="max-height: 75px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/1/10/T--UGM_Indonesia--img--sponsor-rentokill.png" style="max-height: 100px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/1/10/T--UGM_Indonesia--img--sponsor-rentokill.png" style="max-height: 50px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/4/44/T--UGM_Indonesia--img--sponsor-geneious.png" style="max-height: 80px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/4/44/T--UGM_Indonesia--img--sponsor-geneious.png" style="max-height: 40px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/2/28/T--UGM_Indonesia--img--sponsor-its.png" style="max-height: 100px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/2/28/T--UGM_Indonesia--img--sponsor-its.png" style="max-height: 50px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/d/df/T--UGM_Indonesia--img--sponsor-twistbio.png" style="max-height: 90px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/d/df/T--UGM_Indonesia--img--sponsor-twistbio.png" style="max-height: 45px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/7/7a/T--UGM_Indonesia--img--sponsor-idt.png" style="max-height: 75px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/7/7a/T--UGM_Indonesia--img--sponsor-idt.png" style="max-height: 35px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/6/67/T--UGM_Indonesia--img--sponsor-biotek.png" style="max-height: 35px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/6/67/T--UGM_Indonesia--img--sponsor-biotek.png" style="max-height: 30px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/6/65/T--UGM_Indonesia--img--sponsor-biology.png" style="max-height: 50px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/6/65/T--UGM_Indonesia--img--sponsor-biology.png" style="max-height: 40px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/3/3c/T--UGM_Indonesia--img--sponsor-agriculture.png" style="max-height: 50px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/3/3c/T--UGM_Indonesia--img--sponsor-agriculture.png" style="max-height: 40px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/1/1f/T--UGM_Indonesia--img--sponsor-pharmacy.png" style="max-height: 50px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/1/1f/T--UGM_Indonesia--img--sponsor-pharmacy.png" style="max-height: 40px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/2/2c/T--UGM_Indonesia--img--sponsor-engineering.png" style="max-height: 50px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/2/2c/T--UGM_Indonesia--img--sponsor-engineering.png" style="max-height: 40px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/f/f3/T--UGM_Indonesia--img--sponsor-kkmk.png" style="max-height: 50px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/f/f3/T--UGM_Indonesia--img--sponsor-kkmk.png" style="max-height: 40px"/>
 
          
 
          
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/9/9e/T--UGM_Indonesia--img--sponsor-feb.png" style="max-height: 50px"/>
+
         <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/9/9e/T--UGM_Indonesia--img--sponsor-feb.png" style="max-height: 40px"/>
 
          
 
          
 
       </div>
 
       </div>
 
     </div>
 
     </div>
 
   </div>
 
   </div>
   <div class="row border-top py-5 d-flex align-items-center" id="footer-contact">
+
   <div class="row border-top pt-5 pb-2 d-flex align-items-center" id="footer-contact">
 
     <div class="col-12 col-lg-1 my-4 d-flex flex-row flex-lg-column justify-content-center footer-logo">
 
     <div class="col-12 col-lg-1 my-4 d-flex flex-row flex-lg-column justify-content-center footer-logo">
 
       <img alt="Universitas Gadjah Mada Logo" class="img-fluid my-2 mx-4 mx-lg-0" src="https://static.igem.org/mediawiki/2021/f/f1/T--UGM_Indonesia--img--logo-ugm-white.png"/>
 
       <img alt="Universitas Gadjah Mada Logo" class="img-fluid my-2 mx-4 mx-lg-0" src="https://static.igem.org/mediawiki/2021/f/f1/T--UGM_Indonesia--img--logo-ugm-white.png"/>
 
       <img alt="iGEM UGM 2021 Logo" class="img-fluid my-2 mx-4 mx-lg-0" src="https://static.igem.org/mediawiki/2021/0/0b/T--UGM_Indonesia--img--logo-igem-ugm-white.png"/>
 
       <img alt="iGEM UGM 2021 Logo" class="img-fluid my-2 mx-4 mx-lg-0" src="https://static.igem.org/mediawiki/2021/0/0b/T--UGM_Indonesia--img--logo-igem-ugm-white.png"/>
 
     </div>
 
     </div>
     <div class="col-12 col-lg-6 my-4 ps-2 ps-lg-4 footer-address">
+
     <div class="col-12 col-lg-6 d-flex flex-column align-items-center align-items-lg-start my-4 ps-2 ps-lg-4 footer-address">
 
       <h5 class="text-center text-lg-start">
 
       <h5 class="text-center text-lg-start">
         Biotechnology Laboratory of Inter University Center in Universitas Gadjah Mada
+
         iGEM UGM
 
       </h5>
 
       </h5>
 
       <p class="text-center text-lg-start">
 
       <p class="text-center text-lg-start">
         Jl. Teknika Utara, Senolowo, Sinduadi, Kecamatan Mlati, Kabupaten Sleman, Daerah Istimewa Yogyakarta 55281
+
         Bulaksumur F11, Caturtunggal, Kecamatan Depok, Kabupaten Sleman, Daerah Istimewa Yogyakarta, Indonesia 55281
 
       </p>
 
       </p>
 +
      <a class="mt-2" href="mailto:igemugm@gmail.com">
 +
        <p class="text-center text-lg-start">
 +
          igemugm@gmail.com
 +
        </p>
 +
      </a>
 
     </div>
 
     </div>
     <div class="col-12 col-lg-5 my-4 d-flex flex-column justify-content-center align-items-center footer-social-media">
+
     <div class="col-12 col-lg-5 my-4 d-flex flex-column align-items-center footer-social-media">
 
       <h4>
 
       <h4>
         Contact Us!
+
         Get in Touch!
 
       </h4>
 
       </h4>
       <ul class="list-unstyled d-flex flex-row">
+
       <ul class="list-unstyled d-flex flex-row justify-content-center align-items-center flex-wrap">
 
         <li>
 
         <li>
 
           <a href="https://www.instagram.com/igem_ugm/" rel="noopener noreferrer" target="_blank">
 
           <a href="https://www.instagram.com/igem_ugm/" rel="noopener noreferrer" target="_blank">
Line 225: Line 289:
 
         </li>
 
         </li>
 
         <li>
 
         <li>
           <a href="https://www.linkedin.com/company/igemugm" rel="noopener noreferrer" target="_blank">
+
           <a href="https://www.youtube.com/channel/UCmauJ9hUdzTSubf8BXBZrFg" rel="noopener noreferrer" target="_blank">
             <i class="fab fa-linkedin"></i>
+
             <i class="fab fa-youtube"></i>
 
           </a>
 
           </a>
 
         </li>
 
         </li>
 
         <li>
 
         <li>
           <a href="mailto:igemugm2021@gmail.com">
+
           <a href="https://www.linkedin.com/company/igemugm" rel="noopener noreferrer" target="_blank">
             <i class="fas fa-envelope"></i>
+
             <i class="fab fa-linkedin"></i>
 
           </a>
 
           </a>
 
         </li>
 
         </li>
 +
       
 
       </ul>
 
       </ul>
 
     </div>
 
     </div>
 +
  </div>
 +
  <div class="row mt-2 d-flex flex-row justify-content-center" id="footer-license">
 +
      <p class="text-center">
 +
        All content on this wiki is available under the <a href="https://creativecommons.org/licenses/by/4.0/" rel="license" target="_blank">Creative Commons Attribution 4.0 license</a> (or any later version).
 +
      </p>
 
   </div>
 
   </div>
 
</div>
 
</div>
  
 
<script src="https://2021.igem.org/Template:UGM_Indonesia/js/bootstrap-bundle-minJS?action=raw&amp;ctype=text/javascript"></script>
 
<script src="https://2021.igem.org/Template:UGM_Indonesia/js/bootstrap-bundle-minJS?action=raw&amp;ctype=text/javascript"></script>
 +
<script async="" id="MathJax-script" src="https://2021.igem.org/Template:UGM_Indonesia/js/mathjax/tex-mml-chtmlJS?action=raw&amp;ctype=text/javascript"></script>
 
     </footer>
 
     </footer>
  

Latest revision as of 04:36, 11 December 2021

<!DOCTYPE html> Bioreactor

Bioreactor

Bioreactor

Bioreactor

Learn More

We determined the design of the bioreactor based on two types of gold ore: refractory and non-refractory. Refractory gold is a type of ores that is naturally resistant to extract by standard cyanidation process, while the non-refractory one is the opposite.

The refractory gold ores were obtained from Kulonprogo, Yogyakarta which can be reached for 1 hour from Universitas Gadjah Mada. Meanwhile, the non-refractory ones were obtained from Sumbawa, West Nusa Tenggara. The gold ores from Kulonprogo were trapped between pyrite, \(FeS_2\), in which Thiobacillus ferrooxidans could be used to oxidize the pyrite and collect the gold elements.

In this project, we used two types of bioreactor, one that harbors Chromobacterium violaceum for gold cyanidation, and the other one utilized T. ferrooxidans for pyrite dissolution. The non-refractory gold ore only uses 1 bioreactor that utilizesC. violaceum for gold cyanidation. Meanwhile, the refractory one uses 2 bioreactors (Figure 1).

Bioreactor used for a non-refractory gold ore b refractory gold ore.
Figure 1. Bioreactor used for (a) non-refractory gold ore (b) refractory gold ore.

Pyrite Dissolutions Bioreactor

In this reactor, we used wild-type T. ferrooxidans kinetics to the bioreactor.

These are the mass balance of semi-batch bioreactor1:

\[\begin{align*} \frac{d(XV)}{dt} & = V r_c(X,S) \\ \frac{d(PV)}{dt} & = V r_P(X,S) \\ \frac{d(SV)}{dt} & = F S_0 - \frac{1}{Y_{X/S}}V r_c(X,S) \end{align*}\]

The change of volume per time (hour) is defined as1:

\[\frac{dV}{dt} = F(t)\]

The cell growth is expressed as1:

\[\frac{dV}{dt} = F(t)\]

Monod model provides this equation to define cell specific growth rate as a function of substrate concentration1:

\[ \mu(S) = \mu_{max}\frac{S}{K_S + S} \]

The rate of product formation is assumed to be a fraction of cell growth by-product:1:

\[ r_P(X,S) = Y_{P/X}r_g(X,S) \]

Where \(Y_{P/X} \) is a product yield coefficient that serves as a ratio of product formation versus cell growth.1:

\[ Y_{P/X} = \frac{\mbox{product mass}}{\mbox{new cells mass}} \]

The mass of new cells from cell growth is assumed to have a constant ratio with mass of substrate consumed, thus1:

\[ Y_{X/S} = \frac{\mbox{new cells mass}}{\mbox{substrate consumed}} \]

Table 1. Reaction variables used for bioreactor modelling.
\( X \)Cell concentration (grams/liter)
\( P \)Product concentration (grams/liter)
\( S \)Substrate concentration (grams/liter)
\( S_0 \)Feed substrate concentration (grams/liter)
\( r_c \)Rate of cell or biomass growth (grams/liter/hr)
\( r_P \)Rate of product formation (grams/liter/hr)
\( Y_(P/X) \)Product yield coefficient
\( Y_(X/S) \)Cell growth coefficient
\( F(t) \)Flowrate (liter/hr)
\( \mu(S) \)Cell specific growth rate
\( \mu_{max} \)Maximum cell specific growth rate
\( K_S \)Half saturation constant

In the semi-batch model, the volume is not constant. Thus, the dilution effect is affecting cell, product, and substrate concentrations. The differential equation for \(X\), \(P\), and \(S\) mass balance is extended according to chain rule1:

\[ \begin{align*} \frac{d(XV)}{dt} & = V\frac{dX}{dt} + X\frac{dV}{dt} = V\frac{dX}{dt} + F(t)X \\ \frac{d(PV)}{dt} & = V\frac{dP}{dt} + P\frac{dV}{dt} = V\frac{dP}{dt} + F(t)P \\ \frac{d(SV)}{dt} & = V\frac{dS}{dt} + S\frac{dV}{dt} = V\frac{dS}{dt} + F(t)S \end{align*} \]

Rearranging this mass balance equation with the previous equations gives1:

\[ \begin{align*} \frac{dX}{dt} & = - \frac{F(t)}{V}X + r_g(X,S) \\ \frac{dP}{dt} & = - \frac{F(t)}{V}P + r_P(X,S) \\ \frac{dS}{dt} & = \frac{F(t)}{V}(S_f - S) - \frac{1}{Y_{X/S}}r_g(X,S) \\ \frac{dV}{dt} & = F(t) \end{align*} \]

We used an assumption that states \(Fe^{3+}\) is a product that also acts as a competitive inhibitor for pyrite dissolution reaction. This assumption is based on the engineering cycle – design, build, test, and learn – that has been done on various possible inhibition schemes (competitive, uncompetitive, non-competitive) and various possible inhibition components ( \(Fe^{3+}\) and regulation by T. Ferrooxidans cells). The best scheme would be the one which gives the shortest reactor residence time.

The \(Fe^{3+}\) as competitive inhibitor assumption gives the following value for bioreactor-related variables mentioned in Table 2.

Table 2. Kinetic variables used for bioreactor modelling.
Kinetic VariableSource
\( \mu_max \)\( 1.25 hr^{-1} \)2
\( K_S \)\( 0.048 gram/liter \)2
\( K_P \)\( 0.06 gram/liter \)2
\( Y_{X/S} \)\( 0.324 gram/gram \)3
\( Y_{P/X} \)\( 0.4348 gram/gram \)4
\( S_0 \)\( 606.6225 gram/liter \)5
Bioreactor Operating Condition
\( pH \)\( 1.6 \)2
\( \mbox{Temperature} \)\( 30^{\circ} C \)2

In this model, it is assumed that the operating conditions are maintained from the beginning until the end of the process batch. Then, the reaction was modelled via Jupyter Notebook.

Concentration of cell, product, substrate, and total volume versus time.
Figure 2.Concentration of cell, product, substrate, and total volume versus time.

These are the results of cell concentration (\( X \)), product concentration (\( P \)), substrate concentration (\( S \)), and total volume (\( V \)) in 4 hours batch time:

Table 3. Initial and final concentration of each variable.
VariableInitial (time = \( 0 s\))End of Batch (time = \(14400 s\))Unit
\( X \)\( 0.05 \)\( 1.95728572 \times 10^{2} \)Gram/liter
\( P \)\( 0 \)\(85.08121549\)Gram/liter
\( S \)\( 606.6225 \)\( 2.67506643 \)Gram/liter
\( V \)\( 25 \)\( 25.2 \)Liter

To determine the volume of the bioreactor, we implemented 20% overdesign to prevent reactor flooding. Thus, based on the final total volume of one batch:

\[ 25.2\ \mbox{Liter} \times 120\% = 30.24\ \mbox{Liter} \]

References

  1. Shuler, M.L., Kargi, F., DeLisa, M., 2017, Bioprocess Engineering: Basic Concepts, Pearson Education.
  2. Jones, C. A. and Kelly, D. P., 1983, Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: influence of product and substrate inhibition, J. Chem. Tech. Biotechnology, vol. 33B, pp. 241-261. https://doi.org/10.1002/jctb.280330407
  3. Li, X., 2015, Engineering and Characterization of Acidithiobacillus ferrooxidans for Biotechnology Applications, Columbia University.
  4. Michaels, R. and Corpe, W. A., 1965, Cyanide Formation by Chromobacterium violaceum, American Society for Microbiology, vol. 89, no. 1.
  5. Pramuwijoyo, P., Idrus, A., Warmada, I.W., Yonezu, K., 2017, Geology, Geochemistry and Hydrothermal Fluid Characteristics of Low Sulfidation Epithermal Deposit in the Sangon Area, Kokap, Special Region of Yogyakarta, Journal of Applied Geology, vol. 2, np. 1, pp. 48-58. https://doi.org/10.22146/jag.42442