Difference between revisions of "Team:UGM Indonesia/Design"

 
(18 intermediate revisions by 2 users not shown)
Line 14: Line 14:
  
 
   <body data-bs-offset="360" data-bs-spy="scroll" data-bs-target="#sidebar">
 
   <body data-bs-offset="360" data-bs-spy="scroll" data-bs-target="#sidebar">
         <nav class="navbar navbar-expand-lg navbar-light shadow sticky-top menu">
+
         <nav class="navbar navbar-expand-lg navbar-light shadow sticky-top menu" id="navbar">
 
       <div class="container">
 
       <div class="container">
 
         <a class="navbar-brand" href="#">
 
         <a class="navbar-brand" href="#">
           <img height="50px" src="https://static.igem.org/mediawiki/2021/5/55/T--UGM_Indonesia--project_logo.png"/>
+
           <img height="50px" src="https://static.igem.org/mediawiki/2021/f/f2/T--UGM_Indonesia--img--project-logo.png"/>
 
         </a>
 
         </a>
 
         <button aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation" class="navbar-toggler" data-bs-target="#navbarNav" data-bs-toggle="collapse" type="button">
 
         <button aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation" class="navbar-toggler" data-bs-target="#navbarNav" data-bs-toggle="collapse" type="button">
Line 37: Line 37:
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Engineering">Engineering</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Engineering">Engineering</a></li>
               
 
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Implementation">Implementation</a></li>
 
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Safety">Safety</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Safety">Safety</a></li>
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Contribution">Contribution</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Contribution">Contribution</a></li>
               
 
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Notebook">Notebook</a></li>
 
 
                  
 
                  
 
               </ul>
 
               </ul>
Line 58: Line 54:
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Results">Results</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Results">Results</a></li>
 +
               
 +
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Notebook">Notebook</a></li>
 
                  
 
                  
 
               </ul>
 
               </ul>
Line 69: Line 67:
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Bioreactor">Bioreactor</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Bioreactor">Bioreactor</a></li>
               
 
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Measurement">Measurement</a></li>
 
 
                  
 
                  
 
               </ul>
 
               </ul>
Line 80: Line 76:
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Human_Practices">Human Practices</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Human_Practices">Human Practices</a></li>
 +
               
 +
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/IHP">Integrated Human Practices</a></li>
 +
               
 +
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Implementation">Proposed Implementation</a></li>
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Communication">Education and Communication</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Communication">Education and Communication</a></li>
 +
               
 +
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Education">Education and Public Engagement</a></li>
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Entrepreneurship">Entrepreneurship</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Entrepreneurship">Entrepreneurship</a></li>
 +
               
 +
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Sustainable">Sustainable Development Impact</a></li>
 
                  
 
                  
 
               </ul>
 
               </ul>
Line 106: Line 110:
 
               <a aria-expanded="false" class="nav-link mx-2" href="#" id="projectNavbarDropdown" role="button">Medals</a>
 
               <a aria-expanded="false" class="nav-link mx-2" href="#" id="projectNavbarDropdown" role="button">Medals</a>
 
               <ul aria-labelledby="projectNavbarDropdown" class="dropdown-menu">
 
               <ul aria-labelledby="projectNavbarDropdown" class="dropdown-menu">
               
 
                <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Awards">Awards</a></li>
 
 
                  
 
                  
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Medals">Medals</a></li>
 
                 <li><a class="dropdown-item" href="https://2021.igem.org/Team:UGM_Indonesia/Medals">Medals</a></li>
Line 121: Line 123:
 
     <main>
 
     <main>
 
       <style>
 
       <style>
     .hero {
+
     #hero.hero .hero-image {
 
         background-image: url("https://static.igem.org/mediawiki/2021/7/78/T--UGM_Indonesia--img--hero-design.jpg");
 
         background-image: url("https://static.igem.org/mediawiki/2021/7/78/T--UGM_Indonesia--img--hero-design.jpg");
 
     }
 
     }
Line 128: Line 130:
 
<section class="hero" id="hero">
 
<section class="hero" id="hero">
 
     <div class="container-fluid">
 
     <div class="container-fluid">
         <div class="row d-flex flex-column justify-content-center align-items-center">
+
         <div class="row hero-image">
 +
        </div>
 +
        <div class="row hero-content d-flex flex-column justify-content-center align-items-center">
 
             <h1 class="hero-decorative decorative-right">
 
             <h1 class="hero-decorative decorative-right">
 
                 Design
 
                 Design
Line 142: Line 146:
 
     </div>
 
     </div>
 
</section>
 
</section>
       <section class="main-content pt-4" id="main-content">
+
       <section class="main-content" id="main-content">
 
         <div class="container">
 
         <div class="container">
 
           <div class="row">
 
           <div class="row">
 
             <nav class="navbar navbar-light flex-column align-items-stretch col-3 p-1 d-none d-lg-block sticky-sidebar" id="sidebar">
 
             <nav class="navbar navbar-light flex-column align-items-stretch col-3 p-1 d-none d-lg-block sticky-sidebar" id="sidebar">
 
     <nav class="nav nav-pills flex-column sticky-top sticky-offset">
 
     <nav class="nav nav-pills flex-column sticky-top sticky-offset">
   
+
         <ul>
         <a class="nav-link" href="#overview">Overview of <i>Chromobacterium violaceum</i></a>
+
          
   
+
         <a class="nav-link" href="#auviola">Auviola: The Engineered <i>Chromobacterium violaceum</i></a>
+
   
+
        <a class="nav-link" href="#utilization">The Practical Utilization of The Auviola System</a>
+
   
+
        <a class="nav-link" href="#demonstration">Demonstration of Auviola System</a>
+
   
+
        <a class="nav-link" href="#references">References</a>
+
   
+
    </nav>
+
</nav>
+
           
+
<div class="col-12 col-lg-9">
+
    <section id="overview">
+
        <h4 class="display-4 text-primary mb-4">
+
            Overview of <i>Chromobacterium violaceum</i>
+
        </h4>
+
        <p>
+
            <i>Chromobacterium violaceum</i> is a bacterium able to regulate cyanide according to the presence of cyanide-producing and degrading enzymes in the wild-type ones. These enzymes are encoded by some genes, such as hcnABC for cyanide production and rhodanese for cyanide degradation.<sup>1,2</sup>
+
        </p>
+
        <p>
+
            The hcnABC is an operon that consists of a cluster of three genes; i.e., hcnA, hcnB, and hcnC. This operon encodes HCN synthase that facilitates the conversion of an amino acid glycine into cyanide.<sup>3</sup> This enzyme belongs to the oxidoreductase class as it oxidizes the amine (CH-NH2) functional group into imine (C=NH) and consecutively cleaves the molecule into HCN and carbon dioxide (CO2) (Figure 1).<sup>4</sup>
+
        </p>
+
        <figure class="my-2 text-center">
+
            <img alt="HCN synthesis pathway (Blumer &amp; Haas, 2000)" class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/e/e7/T--UGM_Indonesia--img--design-figure-1.jpg"/>
+
            <figcaption class="figure-caption"><b>Figure 1.</b> HCN synthesis pathway (Blumer &amp; Haas, 2000).</figcaption>
+
        </figure>
+
        <p>
+
            Rhodanese is one of the cyanide degrading enzymes found in <i>C. violaceum</i>. This enzyme is also known as sulfurtransferase, as it catalyzes sulfur transfer from thiosulfate to cyanide and leads to the formation of the less toxic thiocyanate (Figure 2).<sup>5,6</sup> Compared to the other enzymes, the regulation of rhodanese expression is not affected by the presence of glycine and methionine, so that seems to be easily controlled.<sup>7</sup>
+
        </p>
+
        <figure class="my-2 text-center">
+
            <img alt="Cyanide degradation pathway (Machingura et al., 2016)" class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/6/6a/T--UGM_Indonesia--img--design-figure-2.jpg"/>
+
            <figcaption class="figure-caption"><b>Figure 2.</b> Cyanide degradation pathway (Machingura et al., 2016).</figcaption>
+
        </figure>
+
    </section>
+
    <section id="auviola">
+
        <h4 class="display-4 text-primary mb-4">
+
            Auviola: The Engineered <i>Chromobacterium violaceum</i>
+
        </h4>
+
        <p>
+
            With the concepts of synthetic biology, we developed an engineered <i>C. violaceum</i> to create an on-off system for cyanide regulation in the gold bioleaching process. Compared to the wild-type, the new <i>C. violaceum</i> was engineered to have more cyanide-regulating genes, resulting in a better gold dissolution and cyanide waste treatment.
+
        </p>
+
        <figure class="my-2 text-center">
+
            <img alt="The circuitry design of cyanide-regulating on-off system" class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/1/1c/T--UGM_Indonesia--img--design-figure-3.jpg"/>
+
            <figcaption class="figure-caption"><b>Figure 3.</b> The circuitry design of cyanide-regulating on-off system.</figcaption>
+
        </figure>
+
        <p>
+
            Our Auviola on-off system involved a regulator gene of araC since it exists on the plasmid. This regulator works dependably to arabinose level which acts as both an activator in the presence of arabinose and a repressor in the absence of arabinose.<sup>8</sup> An inducible promoter of PBAD was utilized for the on-off mechanism regulated by the araC.<sup>9</sup>
+
        </p>
+
        <p>
+
            Our circuitry design consisted of three expression systems explained below (Figure 3):
+
        </p>
+
        <ol>
+
 
             <li>
 
             <li>
            <h5>Cyanide-producing system</h5>
+
                <a class="nav-link" href="#overview">Overview of <i>Chromobacterium violaceum</i></a>
            The HCN synthase enzymes were expressed by this system in the presence of arabinose.
+
               
 
             </li>
 
             </li>
 +
       
 
             <li>
 
             <li>
            <h5>Cyanide-degrading system</h5>
+
                <a class="nav-link" href="#auviola">Auviola: The Engineered <i>Chromobacterium violaceum</i></a>
            This rhodanese expression system involved not only araC regulator and PBAD promoter but also tetR regulator and PTET inducible promoter. These genes are presented in the wild-type of <i>C. violaceum</i> that acts as a repressor and normally play a role in tetracycline resistance.<sup>10,11</sup> The system was designed so that araC regulates the tetR expression as well as tetR regulates rhodanese expression. In the presence of arabinose, the TetR proteins are expressed and subsequently repress the production of rhodanese, and vice versa.
+
               
 
             </li>
 
             </li>
 +
       
 
             <li>
 
             <li>
            <h5>L-arabinose isomerase (L-AI) expression system</h5>
+
                <a class="nav-link" href="#utilization">The Practical Utilization of The Auviola System</a>
            The L-AI is an enzyme that catalyzes the conversion of L-arabinose into L-ribulose.<sup>12</sup> This system was utilized for our on-off system since <i>C. violaceum</i> is not able to ferment arabinose. Through utilizing a constitutive weak promoter, the L-AIs were slowly expressed to convert arabinose into the inactive form and subsequently control the on-off system.
+
               
 
             </li>
 
             </li>
         </ol>
+
          
    </section>
+
            <li>
     <section id="utilization">
+
                <a class="nav-link" href="#demonstration">Demonstration of Auviola System</a>
        <h4 class="display-4 text-primary mb-4">
+
               
            The Practical Utilization of The Auviola System
+
            </li>
        </h4>
+
       
        <p>
+
            <li>
            The use of our Auviola system was conducted in a closed compartment and depended on the level of arabinose. The gold bioleaching process was conducted by adding the arabinose as the HCN synthases are expressed while the rhodanese enzymes are not. After the L-AI converted the arabinose in a considerable amount, the system continued to degrade the cyanide as the rhodanese enzymes started being produced while the HCN synthases were stopped (Figure 4).
+
                <a class="nav-link" href="#references">References</a>
        </p>
+
               
        <figure class="my-2 text-center">
+
            </li>
            <img alt="The on-off mechanism (a) in the presence of arabinose (b) after L-AI converts the arabinose into its inactive form" class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/5/5f/T--UGM_Indonesia--img--design-figure-4.jpg"/>
+
       
            <figcaption class="figure-caption"><b>Figure 4.</b> The on-off mechanism (a) in the presence of arabinose (b) after L-AI converts the arabinose into its inactive form.</figcaption>
+
        </ul>
        </figure>
+
     </nav>
    </section>
+
</nav>
    <section id="demonstration">
+
            <div class="col-12 col-lg-9">
        <h4 class="display-4 text-primary mb-4">
+
              <section id="overview"><h4 class="display-4 text-primary">Overview of <i>Chromobacterium violaceum </i></h4><p><i>Chromobacterium violaceum</i> is a bacterium able to regulate cyanide according to the presence of cyanide-producing and degrading enzymes in the wild-type ones. These enzymes are encoded by some genes, such as <b>hcnABC</b> for cyanide production and <b>rhodanese</b> for cyanide degradation.<a href="#reference-1"><sup>1</sup></a><sup>,</sup><a href="#reference-2"><sup>2</sup></a></p><p>The <b>hcnABC</b> is an operon that consists of a cluster of three genes; i.e., hcnA, hcnB, and hcnC. This operon encodes HCN synthase that facilitates the conversion of an amino acid glycine into cyanide<a href="#reference-3"><sup>3</sup></a> This enzyme belongs to the oxidoreductase class as it oxidizes the amine (\(CH-NH_2\)) functional group into imine (\(C=NH\)) and consecutively cleaves the molecule into HCN and carbon dioxide (\(CO_2\)) (Figure 1).<a href="#reference-4"><sup>4</sup></a></p><figure class="text-center"><img alt="HCN synthesis pathway" class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/e/e7/T--UGM_Indonesia--img--design-figure-1.jpg" style="max-width:70%; width:70%"/><figcaption class="figure-caption"><b>Figure 1.</b> HCN synthesis pathway (Blumer &amp; Haas, 2000).</figcaption></figure><p><b>Rhodanese</b> is one of the cyanide degrading enzymes found in <i>C. violaceum</i>. This enzyme is also known as <b>sulfurtransferase</b>, as it catalyzes sulfur transfer from thiosulfate to cyanide and leads to the formation of the less toxic thiocyanate (Figure 2).<a href="#reference-5"><sup>5</sup></a><sup>,</sup><a href="#reference-6"><sup>6</sup></a> Compared to the other enzymes, the regulation of rhodanese expression is not affected by the presence of glycine and methionine, so that seems to be easily controlled.<a href="#reference-7"><sup>7</sup></a></p><figure class="text-center"><img alt="Cyanide degradation pathway" class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/6/6a/T--UGM_Indonesia--img--design-figure-2.jpg" style="max-width:60%; width:60%"/><figcaption class="figure-caption"><b>Figure 2.</b> Cyanide degradation pathway (Machingura et al., 2016).</figcaption></figure></section><section id="auviola"><h4 class="display-4 text-primary">Auviola: The Engineered<i> Chromobacterium violaceum</i></h4><p>With the concepts of synthetic biology, we developed an engineered <i>C. violaceum</i> to create an on-off system for cyanide regulation in the gold bioleaching process. Compared to the wild-type, the new <i>C. violaceum</i> was engineered to have more cyanide-regulating genes, resulting in a better gold dissolution and cyanide waste treatment.</p><figure class="text-center"><img alt="The circuitry design of cyanide-regulating on-off system" class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/1/1c/T--UGM_Indonesia--img--design-figure-3.jpg"/><figcaption class="figure-caption"><b>Figure 3.</b> The circuitry design of cyanide-regulating on-off system (L-AI: L-Arabinose Isomerase)</figcaption></figure><p>Our <b>Auviola</b> on-off system involved a regulator gene of <b>araC</b> since it exists on the plasmid. This regulator works dependably to arabinose level which acts as both an activator in the presence of arabinose and a repressor in the absence of arabinose.<a href="#reference-8"><sup>8</sup></a> An <b>inducible promoter of pBAD</b> was utilized for the on-off mechanism regulated by the araC.<a href="#reference-9"><sup>9</sup></a> In addition, this system also involved <b>tetR regulator</b> and <b>pTet inducible promoter</b>. These genes are presented in the wild-type of <i>C. violaceum</i> that acts as a <b>repressor</b> and normally play a role in tetracycline resistance.<a href="#reference-10"><sup>10</sup></a><sup>,</sup><a href="#reference-11"><sup>11</sup></a></p><p>Our circuitry design consisted of three expression systems explained below (Figure 3):</p><ol class="styled"><li><h5>Cyanide-producing system</h5><p>This system consists of an operon hcnABC as HCN synthase-encoding genes, pBAD promoter, and araC regulator.</p></li><li><h5>Cyanide-degrading system</h5><p>This rhodanese expression system involved not only araC regulator and pBAD promoter but also <b>tetR regulator</b> and <b>pTet inducible promoter</b>. The system was designed so that araC regulates the tetR expression as well as tetR regulates rhodanese expression.</p></li><li><h5>L-arabinose isomerase (L-AI) expression system</h5><p>The L-AI is an enzyme that catalyzes the conversion of L-arabinose into L-ribulose.<a href="#reference-12"><sup>12</sup></a> This system was utilized for our on-off system since <i>C. violaceum</i> is not able to ferment arabinose. Through utilizing <b>a constitutive weak promoter J23106</b>, the L-AIs were slowly expressed to convert arabinose into the inactive form.</p></li></ol></section><section id="utilization"><h4 class="display-4 text-primary">The Practical Utilization of The Auviola System</h4><p><b>Figure 4</b> summarizes the on-off mechanism of the Auviola system. The use of our <b>Auviola</b> system was conducted in a closed compartment and depended on the level of glucose and arabinose.</p><figure class="text-center"><img alt="The on-off mechanism (a) in the presence of arabinose (b) after L-AI converts the arabinose into its inactive form" class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/5/5f/T--UGM_Indonesia--img--design-figure-4.jpg" style="max-width:90%; width:90%"/><figcaption class="figure-caption"><b>Figure 4.</b> The on-off mechanism (<b>a</b>) in the presence of arabinose (<b>b</b>) after L-AI converts the arabinose into its inactive form.</figcaption></figure><p>In the condition with <b>low level of glucose</b> and <b>high level of arabinose</b>, the <b>HCN production will be turned on</b> and the <b>HCN degradation will not</b>. The added arabinose regulates the expression through binding of AraC protein. This complex activates pBAD to express HCN synthase. pBAD in the HCN degradation system is also activated by this complex to express TetR that represses rhodanese expression. The L-AI expression which involves the constitutive promoter is not altered by this condition.</p><p>This condition by adding the arabinose into the bioreactor is suitable for the <b>gold bioleaching process</b>, knowing that the HCN synthases will be expressed while the rhodanese enzymes will not (<b>Figure 5</b>).</p><figure class="text-center"><img alt="The on-off mechanism (a) in the presence of arabinose (b) after L-AI converts the arabinose into its inactive form" class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/0/03/T--UGM_Indonesia--img--design-figure-5.jpg" style="max-width:75%; width:75%"/><figcaption class="figure-caption"><b>Figure 5.</b> Auviola system in the condition with low level of glucose and high level of arabinose</figcaption></figure><p>In the condition with <b>high level of glucose</b> and <b>low level of arabinose</b>, the <b>HCN synthase will be switched off</b> meanwhile the <b>HCN degradation will be turned on</b>. The glucose used by the cells for metabolism will also control the on-off system through suppressing pBAD activation via cAMP-CAP pathway, so the HCN synthase will not be expressed. On the other hand, this pBAD repression will activate the pTET that subsequently activates the rhodanese expression. The L-AI expression is also not altered by this condition.</p><p>This condition is achieved by the L-AI activity that <b>converts the arabinose</b> in a considerable amount. This condition is suitable for the <b>cyanide waste treatment</b> as the rhodanese enzymes start being produced while the HCN synthase expression will be stopped (<b>Figure 6</b>).</p><figure class="text-center"><img alt="The on-off mechanism (a) in the presence of arabinose (b) after L-AI converts the arabinose into its inactive form" class="figure-img img-fluid rounded" src="https://static.igem.org/mediawiki/2021/1/11/T--UGM_Indonesia--img--design-figure-6.jpg" style="max-width:75%; width:75%"/><figcaption class="figure-caption"><b>Figure 6.</b> Auviola system in the condition with high level of glucose and low level of arabinose</figcaption></figure></section>
            Demonstration of Auviola System
+
             
        </h4>
+
                    <section class="content-references" id="references">
        <p>
+
            The demonstration was conducted by analytical procedure to determine the cyanide concentration in several defined points. This procedure gave results that cyanide presents in a high concentration after adding the arabinose that represents the gold bioleaching process. Afterward, the cyanide concentration started to decrease as the L-AIs were slowly produced to convert the arabinose and subsequently the rhodanese enzymes were expressed to degrade the cyanide.  
+
        </p>
+
        <p>
+
            In addition, fluorimetry was also conducted to demonstrate the Auviola system. Firstly, the genes of interest were replaced by some fluorescent protein-encoded. After that, some samples were taken in several defined points then the intensities were read by the spectrofluorometer. The results showed that the protein presents in a high concentration at the point that represents the gold bioleaching process. Afterward, the protein level started to decrease as long as the rhodanese enzymes were expressed to degrade the cyanide.
+
        </p>
+
    </section>
+
    <section class="content-references" id="references">
+
 
         <h4 class="display-4 text-primary mb-4">
 
         <h4 class="display-4 text-primary mb-4">
 
             References
 
             References
 
         </h4>
 
         </h4>
 
         <ol>
 
         <ol>
             <li>McGivney, E., Gao, X., Liu, Y., Lowry, G.V., Casman, E., et al., 2019, Biogenic Cyanide Production Promotes Dissolution of Gold Nanoparticles in Soil, Environmental Science &amp; Technology, vol. 53, pp. 1287-1295.</li>
+
         
             <li>Rodgers, P.B., Knowles, C.J., 1978, Cyanide Production and Degradation During Growth of <i>Chromobacterium violaceum</i>, Journal of General Microbiology, vol. 108, pp. 261-267.</li>
+
             <li id="reference-1">
             <li>KEGG, ENZYME: 1.4.99.5 [Online] https://www.genome.jp/dbget-bin/www_bget?ec:1.4.99.5 [accessed on July 28, 2021 at 09:06 WIT].</li>
+
                McGivney, E., Gao, X., Liu, Y., Lowry, G.V., Casman, E., et al., 2019, Biogenic Cyanide Production Promotes Dissolution of Gold Nanoparticles in Soil, <i>Environmental Science &amp; Technology</i>, vol. 53, pp. 1287-1295.
             <li>Blumer, C, Haas, D., 2000, Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis, Archives of Microbiology, vol. 173, pp. 170-177.</li>
+
               
             <li>Machingura, M., Salomon, E., Jez, J.M., Ebbs, S.D., 2016, The β-cyanoalanine synthase pathway: beyond cyanide detoxification, Plant, Cell and Environment, vol. 39, no. 10, pp. 2329-41.</li>
+
               
             <li>Cipollone, R., Ascenzi, P., Tomao, P., Imperi, F., Visca, P., 2008, Enzymatic Detoxification of Cyanide: Clues from Pseudomonas aeruginosa Rhodanese, Journal of Molecular Microbiology and Biotechnology, vol 15, pp. 199-211.</li>
+
               
             <li>Rodgers, P.B., Knowles, C.J., 1978, Cyanide Production and Degradation During Growth of <i>Chromobacterium violaceum</i>, Journal of General Microbiology, vol. 108, pp. 261-267.</li>
+
            </li>
             <li>Lobell, R.B., Schleif, R.F., 1990, DNA looping and unlooping by AraC protein, Science, vol. 250, no. 4980, pp. 528-532.</li>
+
         
             <li>Schleif, R., 2003, AraC protein: a love-hate relationship, Bioessays, vol. 25, pp. 274-282.</li>
+
             <li id="reference-2">
             <li>Brazilian National Genome Project Consortium, 2003, The complete genome sequence of <i>Chromobacterium violaceum</i> reveals remarkable and exploitable bacterial adaptability, Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11660–11665. https://doi.org/10.1073/pnas.1832124100</li>
+
                Rodgers, P.B., Knowles, C.J., 1978, Cyanide Production and Degradation During Growth of <i>Chromobacterium violaceum</i>, <i>Journal of General Microbiology</i>, vol. 108, pp. 261-267.
             <li>Cuthbertson, L., Nodwell, J.R., 2013, The TetR family of regulators, Microbiology and molecular biology reviews: MMBR, vol. 77, no. 3, pp. 440–475. https://doi.org/10.1128/MMBR.00018-13</li>
+
               
             <li>Uniprot, 2021, UniProtKB - P08202 (ARAA_ECOLI) [Online] https://www.uniprot.org/uniprot/P08202 [accessed on August 17, 2021 at 12:25 WIT].</li>
+
               
           
+
               
 +
            </li>
 +
         
 +
             <li id="reference-3">
 +
                KEGG, ENZYME: <i>1.4.99.5</i>
 +
               
 +
                    [Online]
 +
               
 +
               
 +
                    <a href="https://www.genome.jp/dbget-bin/www_bget?ec:1.4.99.5" target="_blank">https://www.genome.jp/dbget-bin/www_bget?ec:1.4.99.5</a>
 +
               
 +
               
 +
                    [accessed on July 28, 2021 at 09:06 WIT]
 +
               
 +
            </li>
 +
         
 +
             <li id="reference-4">
 +
                Blumer, C, Haas, D., 2000, Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis, <i>Archives of Microbiology</i>, vol. 173, pp. 170-177.
 +
               
 +
               
 +
               
 +
            </li>
 +
         
 +
             <li id="reference-5">
 +
                Machingura, M., Salomon, E., Jez, J.M., Ebbs, S.D., 2016, The β-cyanoalanine synthase pathway: beyond cyanide detoxification, <i>Plant, Cell and Environment</i>, vol. 39, no. 10, pp. 2329-41.
 +
               
 +
               
 +
               
 +
            </li>
 +
         
 +
             <li id="reference-6">
 +
                Cipollone, R., Ascenzi, P., Tomao, P., Imperi, F., Visca, P., 2008, Enzymatic Detoxification of Cyanide: Clues from <i>Pseudomonas aeruginosa</i> Rhodanese, <i>Journal of Molecular Microbiology and Biotechnology</i>, vol 15, pp. 199-211.
 +
               
 +
               
 +
               
 +
            </li>
 +
         
 +
             <li id="reference-7">
 +
                Rodgers, P.B., Knowles, C.J., 1978, Cyanide Production and Degradation During Growth of <i>Chromobacterium violaceum</i>, <i>Journal of General Microbiology</i>, vol. 108, pp. 261-267.
 +
               
 +
               
 +
               
 +
            </li>
 +
         
 +
             <li id="reference-8">
 +
                Lobell, R.B., Schleif, R.F., 1990, DNA looping and unlooping by AraC protein, <i>Science</i>, vol. 250, no. 4980, pp. 528-532.
 +
               
 +
               
 +
               
 +
            </li>
 +
         
 +
             <li id="reference-9">
 +
                Schleif, R., 2003, AraC protein: a love-hate relationship, <i>Bioessays</i>, vol. 25, pp. 274-282.
 +
               
 +
               
 +
               
 +
            </li>
 +
         
 +
             <li id="reference-10">
 +
                Brazilian National Genome Project Consortium, 2003, The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability, <i>Proceedings of the National Academy of Sciences of the United States of America</i>, vol. 100, no. 20, pp. 11660–11665.
 +
               
 +
               
 +
                    <a href="https://doi.org/10.1073/pnas.1832124100" target="_blank">https://doi.org/10.1073/pnas.1832124100</a>
 +
               
 +
               
 +
            </li>
 +
         
 +
             <li id="reference-11">
 +
                Cuthbertson, L., Nodwell, J.R., 2013, The TetR family of regulators, <i>Microbiology and molecular biology reviews: MMBR</i>, vol. 77, no. 3, pp. 440–475.  
 +
               
 +
               
 +
                    <a href="https://doi.org/10.1128/MMBR.00018-13" target="_blank">https://doi.org/10.1128/MMBR.00018-13</a>
 +
               
 +
               
 +
            </li>
 +
         
 +
             <li id="reference-12">
 +
                Uniprot, 2021, <i>UniProtKB - P08202 (ARAA_ECOLI)</i>
 +
               
 +
                    [Online]
 +
               
 +
               
 +
                    <a href="https://www.uniprot.org/uniprot/P08202" target="_blank">https://www.uniprot.org/uniprot/P08202</a>
 +
               
 +
               
 +
                    [accessed on August 17, 2021 at 12:25 WIT]
 +
               
 +
            </li>
 +
         
 
         <ol>
 
         <ol>
 
     </ol></ol></section>
 
     </ol></ol></section>
</div>
+
             
 +
            </div>
 
           </div>
 
           </div>
 
         </div>
 
         </div>
Line 265: Line 299:
 
     </main>
 
     </main>
  
     <footer class="container">
+
     <footer class="container-fluid" id="footer">
         <div class="row border-top py-5">
+
         <div class="container">
  <div class="col-12">
+
  <div class="row py-5">
     <p>
+
    <div class="col-12">
         Footer Lorem Ipsum
+
      <div class="d-flex align-content-between align-items-center justify-content-center flex-wrap sponsors p-4">
     </p>
+
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/1/13/T--UGM_Indonesia--img--sponsor-ugm.png" style="max-height: 90px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/0/03/T--UGM_Indonesia--img--sponsor-genscript.png" style="max-height: 75px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/1/10/T--UGM_Indonesia--img--sponsor-rentokill.png" style="max-height: 50px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/4/44/T--UGM_Indonesia--img--sponsor-geneious.png" style="max-height: 40px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/2/28/T--UGM_Indonesia--img--sponsor-its.png" style="max-height: 50px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/d/df/T--UGM_Indonesia--img--sponsor-twistbio.png" style="max-height: 45px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/7/7a/T--UGM_Indonesia--img--sponsor-idt.png" style="max-height: 35px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/6/67/T--UGM_Indonesia--img--sponsor-biotek.png" style="max-height: 30px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/6/65/T--UGM_Indonesia--img--sponsor-biology.png" style="max-height: 40px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/3/3c/T--UGM_Indonesia--img--sponsor-agriculture.png" style="max-height: 40px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/1/1f/T--UGM_Indonesia--img--sponsor-pharmacy.png" style="max-height: 40px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/2/2c/T--UGM_Indonesia--img--sponsor-engineering.png" style="max-height: 40px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/f/f3/T--UGM_Indonesia--img--sponsor-kkmk.png" style="max-height: 40px"/>
 +
       
 +
        <img alt="Universitas Gadjah Mada" class="mx-4 my-4" src="https://static.igem.org/mediawiki/2021/9/9e/T--UGM_Indonesia--img--sponsor-feb.png" style="max-height: 40px"/>
 +
       
 +
      </div>
 +
    </div>
 +
  </div>
 +
  <div class="row border-top pt-5 pb-2 d-flex align-items-center" id="footer-contact">
 +
    <div class="col-12 col-lg-1 my-4 d-flex flex-row flex-lg-column justify-content-center footer-logo">
 +
      <img alt="Universitas Gadjah Mada Logo" class="img-fluid my-2 mx-4 mx-lg-0" src="https://static.igem.org/mediawiki/2021/f/f1/T--UGM_Indonesia--img--logo-ugm-white.png"/>
 +
      <img alt="iGEM UGM 2021 Logo" class="img-fluid my-2 mx-4 mx-lg-0" src="https://static.igem.org/mediawiki/2021/0/0b/T--UGM_Indonesia--img--logo-igem-ugm-white.png"/>
 +
     </div>
 +
    <div class="col-12 col-lg-6 d-flex flex-column align-items-center align-items-lg-start my-4 ps-2 ps-lg-4 footer-address">
 +
      <h5 class="text-center text-lg-start">
 +
        iGEM UGM
 +
      </h5>
 +
      <p class="text-center text-lg-start">
 +
         Bulaksumur F11, Caturtunggal, Kecamatan Depok, Kabupaten Sleman, Daerah Istimewa Yogyakarta, Indonesia 55281
 +
      </p>
 +
      <a class="mt-2" href="mailto:igemugm@gmail.com">
 +
        <p class="text-center text-lg-start">
 +
          igemugm@gmail.com
 +
        </p>
 +
      </a>
 +
     </div>
 +
    <div class="col-12 col-lg-5 my-4 d-flex flex-column align-items-center footer-social-media">
 +
      <h4>
 +
        Get in Touch!
 +
      </h4>
 +
      <ul class="list-unstyled d-flex flex-row justify-content-center align-items-center flex-wrap">
 +
        <li>
 +
          <a href="https://www.instagram.com/igem_ugm/" rel="noopener noreferrer" target="_blank">
 +
            <i class="fab fa-instagram"></i>
 +
          </a>
 +
        </li>
 +
        <li>
 +
          <a href="https://twitter.com/igem_ugm" rel="noopener noreferrer" target="_blank">
 +
            <i class="fab fa-twitter"></i>
 +
          </a>
 +
        </li>
 +
        <li>
 +
          <a href="https://www.youtube.com/channel/UCmauJ9hUdzTSubf8BXBZrFg" rel="noopener noreferrer" target="_blank">
 +
            <i class="fab fa-youtube"></i>
 +
          </a>
 +
        </li>
 +
        <li>
 +
          <a href="https://www.linkedin.com/company/igemugm" rel="noopener noreferrer" target="_blank">
 +
            <i class="fab fa-linkedin"></i>
 +
          </a>
 +
        </li>
 +
       
 +
      </ul>
 +
    </div>
 +
  </div>
 +
  <div class="row mt-2 d-flex flex-row justify-content-center" id="footer-license">
 +
      <p class="text-center">
 +
        All content on this wiki is available under the <a href="https://creativecommons.org/licenses/by/4.0/" rel="license" target="_blank">Creative Commons Attribution 4.0 license</a> (or any later version).
 +
      </p>
 
   </div>
 
   </div>
 
</div>
 
</div>
  
 
<script src="https://2021.igem.org/Template:UGM_Indonesia/js/bootstrap-bundle-minJS?action=raw&amp;ctype=text/javascript"></script>
 
<script src="https://2021.igem.org/Template:UGM_Indonesia/js/bootstrap-bundle-minJS?action=raw&amp;ctype=text/javascript"></script>
 +
<script async="" id="MathJax-script" src="https://2021.igem.org/Template:UGM_Indonesia/js/mathjax/tex-mml-chtmlJS?action=raw&amp;ctype=text/javascript"></script>
 
     </footer>
 
     </footer>
  

Latest revision as of 04:35, 11 December 2021

<!DOCTYPE html> Design

Design

Design

Design

Learn More

Overview of Chromobacterium violaceum

Chromobacterium violaceum is a bacterium able to regulate cyanide according to the presence of cyanide-producing and degrading enzymes in the wild-type ones. These enzymes are encoded by some genes, such as hcnABC for cyanide production and rhodanese for cyanide degradation.1,2

The hcnABC is an operon that consists of a cluster of three genes; i.e., hcnA, hcnB, and hcnC. This operon encodes HCN synthase that facilitates the conversion of an amino acid glycine into cyanide3 This enzyme belongs to the oxidoreductase class as it oxidizes the amine (\(CH-NH_2\)) functional group into imine (\(C=NH\)) and consecutively cleaves the molecule into HCN and carbon dioxide (\(CO_2\)) (Figure 1).4

HCN synthesis pathway
Figure 1. HCN synthesis pathway (Blumer & Haas, 2000).

Rhodanese is one of the cyanide degrading enzymes found in C. violaceum. This enzyme is also known as sulfurtransferase, as it catalyzes sulfur transfer from thiosulfate to cyanide and leads to the formation of the less toxic thiocyanate (Figure 2).5,6 Compared to the other enzymes, the regulation of rhodanese expression is not affected by the presence of glycine and methionine, so that seems to be easily controlled.7

Cyanide degradation pathway
Figure 2. Cyanide degradation pathway (Machingura et al., 2016).

Auviola: The Engineered Chromobacterium violaceum

With the concepts of synthetic biology, we developed an engineered C. violaceum to create an on-off system for cyanide regulation in the gold bioleaching process. Compared to the wild-type, the new C. violaceum was engineered to have more cyanide-regulating genes, resulting in a better gold dissolution and cyanide waste treatment.

The circuitry design of cyanide-regulating on-off system
Figure 3. The circuitry design of cyanide-regulating on-off system (L-AI: L-Arabinose Isomerase)

Our Auviola on-off system involved a regulator gene of araC since it exists on the plasmid. This regulator works dependably to arabinose level which acts as both an activator in the presence of arabinose and a repressor in the absence of arabinose.8 An inducible promoter of pBAD was utilized for the on-off mechanism regulated by the araC.9 In addition, this system also involved tetR regulator and pTet inducible promoter. These genes are presented in the wild-type of C. violaceum that acts as a repressor and normally play a role in tetracycline resistance.10,11

Our circuitry design consisted of three expression systems explained below (Figure 3):

  1. Cyanide-producing system

    This system consists of an operon hcnABC as HCN synthase-encoding genes, pBAD promoter, and araC regulator.

  2. Cyanide-degrading system

    This rhodanese expression system involved not only araC regulator and pBAD promoter but also tetR regulator and pTet inducible promoter. The system was designed so that araC regulates the tetR expression as well as tetR regulates rhodanese expression.

  3. L-arabinose isomerase (L-AI) expression system

    The L-AI is an enzyme that catalyzes the conversion of L-arabinose into L-ribulose.12 This system was utilized for our on-off system since C. violaceum is not able to ferment arabinose. Through utilizing a constitutive weak promoter J23106, the L-AIs were slowly expressed to convert arabinose into the inactive form.

The Practical Utilization of The Auviola System

Figure 4 summarizes the on-off mechanism of the Auviola system. The use of our Auviola system was conducted in a closed compartment and depended on the level of glucose and arabinose.

The on-off mechanism (a) in the presence of arabinose (b) after L-AI converts the arabinose into its inactive form
Figure 4. The on-off mechanism (a) in the presence of arabinose (b) after L-AI converts the arabinose into its inactive form.

In the condition with low level of glucose and high level of arabinose, the HCN production will be turned on and the HCN degradation will not. The added arabinose regulates the expression through binding of AraC protein. This complex activates pBAD to express HCN synthase. pBAD in the HCN degradation system is also activated by this complex to express TetR that represses rhodanese expression. The L-AI expression which involves the constitutive promoter is not altered by this condition.

This condition by adding the arabinose into the bioreactor is suitable for the gold bioleaching process, knowing that the HCN synthases will be expressed while the rhodanese enzymes will not (Figure 5).

The on-off mechanism (a) in the presence of arabinose (b) after L-AI converts the arabinose into its inactive form
Figure 5. Auviola system in the condition with low level of glucose and high level of arabinose

In the condition with high level of glucose and low level of arabinose, the HCN synthase will be switched off meanwhile the HCN degradation will be turned on. The glucose used by the cells for metabolism will also control the on-off system through suppressing pBAD activation via cAMP-CAP pathway, so the HCN synthase will not be expressed. On the other hand, this pBAD repression will activate the pTET that subsequently activates the rhodanese expression. The L-AI expression is also not altered by this condition.

This condition is achieved by the L-AI activity that converts the arabinose in a considerable amount. This condition is suitable for the cyanide waste treatment as the rhodanese enzymes start being produced while the HCN synthase expression will be stopped (Figure 6).

The on-off mechanism (a) in the presence of arabinose (b) after L-AI converts the arabinose into its inactive form
Figure 6. Auviola system in the condition with high level of glucose and low level of arabinose

References

  1. McGivney, E., Gao, X., Liu, Y., Lowry, G.V., Casman, E., et al., 2019, Biogenic Cyanide Production Promotes Dissolution of Gold Nanoparticles in Soil, Environmental Science & Technology, vol. 53, pp. 1287-1295.
  2. Rodgers, P.B., Knowles, C.J., 1978, Cyanide Production and Degradation During Growth of Chromobacterium violaceum, Journal of General Microbiology, vol. 108, pp. 261-267.
  3. KEGG, ENZYME: 1.4.99.5 [Online] https://www.genome.jp/dbget-bin/www_bget?ec:1.4.99.5 [accessed on July 28, 2021 at 09:06 WIT]
  4. Blumer, C, Haas, D., 2000, Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis, Archives of Microbiology, vol. 173, pp. 170-177.
  5. Machingura, M., Salomon, E., Jez, J.M., Ebbs, S.D., 2016, The β-cyanoalanine synthase pathway: beyond cyanide detoxification, Plant, Cell and Environment, vol. 39, no. 10, pp. 2329-41.
  6. Cipollone, R., Ascenzi, P., Tomao, P., Imperi, F., Visca, P., 2008, Enzymatic Detoxification of Cyanide: Clues from Pseudomonas aeruginosa Rhodanese, Journal of Molecular Microbiology and Biotechnology, vol 15, pp. 199-211.
  7. Rodgers, P.B., Knowles, C.J., 1978, Cyanide Production and Degradation During Growth of Chromobacterium violaceum, Journal of General Microbiology, vol. 108, pp. 261-267.
  8. Lobell, R.B., Schleif, R.F., 1990, DNA looping and unlooping by AraC protein, Science, vol. 250, no. 4980, pp. 528-532.
  9. Schleif, R., 2003, AraC protein: a love-hate relationship, Bioessays, vol. 25, pp. 274-282.
  10. Brazilian National Genome Project Consortium, 2003, The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability, Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11660–11665. https://doi.org/10.1073/pnas.1832124100
  11. Cuthbertson, L., Nodwell, J.R., 2013, The TetR family of regulators, Microbiology and molecular biology reviews: MMBR, vol. 77, no. 3, pp. 440–475. https://doi.org/10.1128/MMBR.00018-13
  12. Uniprot, 2021, UniProtKB - P08202 (ARAA_ECOLI) [Online] https://www.uniprot.org/uniprot/P08202 [accessed on August 17, 2021 at 12:25 WIT]