m |
|||
(7 intermediate revisions by 2 users not shown) | |||
Line 10: | Line 10: | ||
Trp,Biosynthesis,E.coli"> | Trp,Biosynthesis,E.coli"> | ||
<meta name="description" | <meta name="description" | ||
− | + | content="Welcome to 2021 XJTU-China. Please check our recent work on tryptophan biosynthesis via E.coli"> | |
<meta name="viewport" | <meta name="viewport" | ||
− | + | content="width=device-width, initial-scale=1.0, minimum-scale=0.5, maximum-scale=2.0, user-scalable=yes" /> | |
<link rel="stylesheet" type="text/css" | <link rel="stylesheet" type="text/css" | ||
− | + | href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China&action=raw&ctype=text/css" /> | |
<link rel="stylesheet" type="text/css" | <link rel="stylesheet" type="text/css" | ||
− | + | href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/font_awesome_min&action=raw&ctype=text/css" /> | |
<link rel="stylesheet" type="text/css" | <link rel="stylesheet" type="text/css" | ||
− | + | href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrap&action=raw&ctype=text/css" /> | |
</head> | </head> | ||
<body> | <body> | ||
− | + | <!--banner--> | |
− | + | <section> | |
− | + | <div class="container row fixedBackground ml-2"> | |
− | + | <div class="fixedBackgroundImg" style="background-image: url(https://static.igem.org/mediawiki/2021/d/da/T--XJTU-China--protein-modelling-bg.jpeg); | |
background-position: center;background-size: 70%;background-repeat: no-repeat;"> | background-position: center;background-size: 70%;background-repeat: no-repeat;"> | ||
+ | </div> | ||
+ | <div class="pageHeadline"><span>Protein Modelling</span></div> | ||
+ | </div> | ||
+ | </section> | ||
+ | <section class="main"> | ||
+ | <div class="container mainBox bg-white" id="mainBox"> | ||
+ | <div class="row" id="container"> | ||
+ | <div class="side col-lg-3"> | ||
+ | <nav class="dr-menu"> | ||
+ | <h3>Protein Modelling</h3> | ||
+ | <ul> | ||
+ | <li><a class="fa fa-plug" href="#nav-fundamental-assumptions"> 1. Fundamental | ||
+ | assumptions</a></li> | ||
+ | <li><a class="fa fa-plug" | ||
+ | href="#nav-acquisition-of-protein-and-small-molecule-structures"> 2. | ||
+ | Acquisition of protein and small-molecule structures</a></li> | ||
+ | <li><a class="fa fa-plug" href="#nav-autodock-molecular-docking"> 3. AutoDock molecular | ||
+ | docking </a> | ||
+ | </li> | ||
+ | <li><a class="fa fa-plug" href="#nav-results-and-discussion"> 4. Results and | ||
+ | Discussion</a> | ||
+ | <ul> | ||
+ | <li><a href="#nav-binding-energy">4.1 Binding energy</a> | ||
+ | </li> | ||
+ | <li><a href="#nav-protein-pocket-structure">4.2 Protein pocket structure</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li><a class="fa fa-plug" href="#nav-results-and-discussion"> 5. Advantages and | ||
+ | disadvantages of the model</a> | ||
+ | <ul> | ||
+ | <li><a href="#nav-advantages-of-the-model">5.1 Advantages of the model</a> | ||
+ | </li> | ||
+ | <li><a href="#nav-disadvantages-of-the-model">5.2 Disadvantages of the model</a> | ||
+ | </li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li><a class="fa fa-plug" href="#reference"> Reference</a></li> | ||
+ | </ul> | ||
+ | </nav> | ||
</div> | </div> | ||
− | + | <div class="col-lg-8 col-12 justify-content-center"> | |
− | + | <div id='write' class=''> | |
− | + | <a class="anchor" id="nav-protein-model"></a> | |
− | + | <h1 id='proteinModel'><span>Protein Modelling</span></h1> | |
− | + | <blockquote> | |
− | + | <p><span>Phospho-2-dehydro-3-deoxyheptonate aldolase (AroG) is an important enzyme for the | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
phosphoenolpyruvate (PEP) catalytic reaction and has an important role in the | phosphoenolpyruvate (PEP) catalytic reaction and has an important role in the | ||
metabolic | metabolic | ||
Line 92: | Line 93: | ||
GaussView6.0, | GaussView6.0, | ||
Swiss, AutoDockTools software.</span></p> | Swiss, AutoDockTools software.</span></p> | ||
− | + | </blockquote> | |
− | + | <a class="anchor" id="nav-fundamental-assumptions"></a> | |
− | + | <h2 id='1-fundamental-assumptions'><span>1. Fundamental assumptions</span></h2> | |
− | + | <ol> | |
− | + | <li><span>The ligand receptor docking results predicted by AutoDockTools in a semi-flexible | |
docking mode | docking mode | ||
are bassically correct within the range that the conformation allows to | are bassically correct within the range that the conformation allows to | ||
change.</span></li> | change.</span></li> | ||
− | + | <li><span>The mutant AroG tetrameric protein structure predicted by amino acid sequence on | |
the Swiss | the Swiss | ||
website is bassically correct within the range that the conformation allows to | website is bassically correct within the range that the conformation allows to | ||
change.</span> | change.</span> | ||
− | + | </li> | |
− | + | <li><span>The relative position of the wild-type and point-mutation mutant AroG to the | |
protein pocket | protein pocket | ||
bound to Phe and PEP does not change.</span></li> | bound to Phe and PEP does not change.</span></li> | ||
− | + | <li><span>The catalytic activity of the AroG with PEP can be characterized by the binding | |
energy of the | energy of the | ||
two.</span></li> | two.</span></li> | ||
− | + | </ol> | |
− | + | <a class="anchor" id="nav-acquisition-of-protein-and-small-molecule-structures"></a> | |
− | + | <h2 id='2-acquisition-of-protein-and-small-molecule-structures'><span>2. Acquisition of protein | |
and | and | ||
− | small-molecule structures</span></h2> | + | small-molecule structures<sup><a href="#reference">[1]</a></sup></span></h2> |
− | + | <figure> | |
− | + | <table style="width:90%;"> | |
− | + | <thead> | |
− | + | <tr> | |
− | + | <th><span> Required structure </span></th> | |
− | + | <th><span> Method of obtaining </span></th> | |
− | + | </tr> | |
− | + | </thead> | |
− | + | <tbody> | |
− | + | <tr> | |
− | + | <td><span> Wild-type AroG tetrameric protein structure </span></td> | |
− | + | <td><span> UniProt: </span><a | |
− | + | href='https://www.uniprot.org/uniprot/P0AB91'><span>P0AB91</span></a><span> | |
</span> | </span> | ||
− | + | </td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><span> AroG-S211F tetramer protein structure </span></td> | |
− | + | <td><span> Predicted by Swiss AutoDockTools </span></td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><span> Phe and PEP small-molecule structures </span></td> | |
− | + | <td><span> Gaussian16.0W, GaussView6.0 </span></td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><span> Crystal structure of Phe, PEP binding to AroG </span></td> | |
− | + | <td><span> PDBe: </span><a | |
− | + | href="https://www.ebi.ac.uk/pdbe/entry/pdb/1kfl"><span>1kfl</span></a> | |
− | + | </td> | |
− | + | </tr> | |
− | + | </tbody> | |
− | + | </table> | |
− | + | </figure> | |
− | + | <a class="anchor" id="nav-autodock-molecular-docking"></a> | |
− | + | <h2 id='3-autodock-molecular-docking'><span>3. AutoDock molecular docking<sup><a href="#reference">[2]</a></sup></span></h2> | |
− | + | <p><span>In order to quantify the allosteric inhibition of Phe on AroG and the mechanism of | |
AroG-S211F | AroG-S211F | ||
alleviating the inhibition, this paper uses AutoDockTools software to get results. | alleviating the inhibition, this paper uses AutoDockTools software to get results. | ||
Line 162: | Line 163: | ||
the | the | ||
relationship between protein structure and the corresponding docking results.</span></p> | relationship between protein structure and the corresponding docking results.</span></p> | ||
− | + | <p><span>The workflow is as follows: </span></p> | |
− | + | <p><img src="https://static.igem.org/mediawiki/2021/4/41/T--XJTU-China--Fig.1.png" width="50%" /> | |
− | + | </p> | |
− | + | <a class="anchor" id="nav-results-and-discussion"></a> | |
− | + | <h2 id='4-results-and-discussion'><span>4. Results and Discussion</span></h2> | |
− | + | <a class="anchor" id="nav-binding-energy"></a> | |
− | + | <h3 id='41binding-energy'><span>4.1 Binding energy</span></h3> | |
− | + | <p><strong><span>1. Allosteric inhibition effect of Phe</span></strong></p> | |
− | + | <p><span>The average value of the binding energy is obtained by repeating the docking several | |
− | + | ||
times. When | times. When | ||
− | the Phe ligand is not bound, the binding energy of aroG and PEP is -5. | + | the Phe ligand is not bound, the binding energy of aroG and PEP is -5.5 kcal/mol; and when |
the Phe is | the Phe is | ||
bound to aroG tetramer at the corresponding site, the binding energy becomes | bound to aroG tetramer at the corresponding site, the binding energy becomes | ||
− | -5. | + | -5.2 kcal/mol.</span></p> |
− | + | <p><span>Conclusively, the binding of Phe to AroG has an inhibitory effect of PEP binding to | |
AroG.</span> | AroG.</span> | ||
− | + | </p> | |
− | + | <p><img src="https://static.igem.org/mediawiki/2021/2/2b/T--XJTU-China--AIEP.png" | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
referrerpolicy="no-referrer" alt="image-20211020140918205"></p> | referrerpolicy="no-referrer" alt="image-20211020140918205"></p> | ||
− | <p><span>From the comparison of the table data, the binding ability of the mutant aroG and Phe | + | <p><strong><span>2. Effect of point mutations on the catalytic activity of AroG</span></strong> |
+ | </p> | ||
+ | <figure> | ||
+ | <table style="width:90%;"> | ||
+ | <thead> | ||
+ | <tr> | ||
+ | <th><span> Number of Phe bound to AroG </span></th> | ||
+ | <th><span> Ligand receptor binding energy / kcal·mol<sup>-1</sup> </span></th> | ||
+ | </tr> | ||
+ | </thead> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td><span> 1 </span></td> | ||
+ | <td><span> -5.9 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 2 </span></td> | ||
+ | <td><span> -5.5 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 3 </span></td> | ||
+ | <td><span> -5.7 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 4 </span></td> | ||
+ | <td><span> -5.5 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> Combined energy sum </span></td> | ||
+ | <td><span> -22.6 </span></td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | </figure> | ||
+ | <figure> | ||
+ | <table style="width:90%;"> | ||
+ | <thead> | ||
+ | <tr> | ||
+ | <th><span> Number of PEP bound to AroG-4Phe </span></th> | ||
+ | <th><span> Ligand receptor binding energy / kcal·mol<sup>-1</sup> </span></th> | ||
+ | </tr> | ||
+ | </thead> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td><span> 1 </span></td> | ||
+ | <td><span> -5.2 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 2 </span></td> | ||
+ | <td><span> -5.4 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 3 </span></td> | ||
+ | <td><span> -5.3 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 4 </span></td> | ||
+ | <td><span> -5.3 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> Combined energy sum </span></td> | ||
+ | <td><span> -21.2 </span></td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | </figure> | ||
+ | <figure> | ||
+ | <table style="width:90%;"> | ||
+ | <thead> | ||
+ | <tr> | ||
+ | <th><span> Number of Phe bound to MutAroG </span></th> | ||
+ | <th><span> Ligand receptor binding energy / kcal·mol<sup>-1</sup> </span></th> | ||
+ | </tr> | ||
+ | </thead> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td><span> 1 </span></td> | ||
+ | <td><span> -5.2 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 2 </span></td> | ||
+ | <td><span> -5.2 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 3 </span></td> | ||
+ | <td><span> -5.0 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 4 </span></td> | ||
+ | <td><span> -4.6 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> Combined energy sum </span></td> | ||
+ | <td><span> -20.0 </span></td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | </figure> | ||
+ | <figure> | ||
+ | <table style="width:90%;"> | ||
+ | <thead> | ||
+ | <tr> | ||
+ | <th><span> Number of PEP bound to MutAroG-4Phe </span></th> | ||
+ | <th><span> Ligand receptor binding energy / kcal·mol<sup>-1</sup> </span></th> | ||
+ | </tr> | ||
+ | </thead> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td><span> 1 </span></td> | ||
+ | <td><span> -6.2 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 2 </span></td> | ||
+ | <td><span> -6.2 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 3 </span></td> | ||
+ | <td><span> -6.4 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> 4 </span></td> | ||
+ | <td><span> -6.3 </span></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><span> Combined energy sum </span></td> | ||
+ | <td><span> -25.1 </span></td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | </figure> | ||
+ | <p><img src="https://static.igem.org/mediawiki/2021/f/f6/T--XJTU-China--bindingenergy.png" | ||
+ | referrerpolicy="no-referrer" alt="binding-energy" width="70%"></p> | ||
+ | <p><span>From the comparison of the table data, the binding ability of the mutant aroG and Phe | ||
is weaker | is weaker | ||
than that of the wild-type aroG, and the binding ability of the mutant aroG to PEP, in | than that of the wild-type aroG, and the binding ability of the mutant aroG to PEP, in | ||
Line 319: | Line 321: | ||
wild-type | wild-type | ||
aroG. </span></p> | aroG. </span></p> | ||
− | + | <p><span>Therefore, without considering the software simulation docking error, it can be | |
concluded that the | concluded that the | ||
Phe allosteric inhibitory effect of mutant aroG is weakened. </span></p> | Phe allosteric inhibitory effect of mutant aroG is weakened. </span></p> | ||
− | + | <a class="anchor" id="nav-protein-pocket-structure"></a> | |
− | + | <h3 id='42-protein-pocket-structure'><span>4.2 Protein pocket structure</span></h3> | |
− | + | <p><strong><span>1. The docking results of AroG with Phe and PEP</span></strong></p> | |
− | + | <p><img src="https://static.igem.org/mediawiki/2021/f/f9/T--XJTU-China--Fig.3.png" | |
− | + | referrerpolicy="no-referrer" alt="image-20211020141051205" width="60%"></p> | |
− | + | <p><img src="https://static.igem.org/mediawiki/2021/4/4f/T--XJTU-China--Fig.4.png" | |
− | + | referrerpolicy="no-referrer" alt="image-20211020141056684" width="60%"></p> | |
− | + | <p><span>In the figure, the yellow is the experimentally measured conformation of Phe in the | |
crystal protein | crystal protein | ||
bound by aroG and Phe, and the green is the docking site and the conformation of Phe | bound by aroG and Phe, and the green is the docking site and the conformation of Phe | ||
Line 339: | Line 341: | ||
conformation of Phe. Therefore, the prediction of binding energy can be more credible. | conformation of Phe. Therefore, the prediction of binding energy can be more credible. | ||
</span></p> | </span></p> | ||
− | + | <p><span>The following figure shows the docking visualization results of PEP and AroG:</span> | |
− | + | </p> | |
− | + | <p><img src="https://static.igem.org/mediawiki/2021/0/0b/T--XJTU-China--Fig.5.png" | |
− | + | referrerpolicy="no-referrer" alt="image-20211020141105271" width="60%"></p> | |
− | + | <p><img src="https://static.igem.org/mediawiki/2021/2/2f/T--XJTU-China--Fig.6.png" | |
− | + | referrerpolicy="no-referrer" width="60%"></p> | |
− | + | <p><img src="https://static.igem.org/mediawiki/2021/f/f5/T--XJTU-China--Fig.7.png" | |
− | + | referrerpolicy="no-referrer" alt="image-20211020141113358" width="60%"></p> | |
− | + | <p><strong><span>2. Comparison of the wild-type and mutant AroG</span></strong></p> | |
− | + | <p><img src="https://static.igem.org/mediawiki/2021/5/5e/T--XJTU-China--Fig.8.png" | |
− | + | referrerpolicy="no-referrer" alt="image-20211020141205740" width="60%"></p> | |
− | + | <p><span>According to the docking results, the protein pocket conformation of wild-type and | |
mutant AroG | mutant AroG | ||
bound to PEP has not changed significantly. The Red is the experimentally measured | bound to PEP has not changed significantly. The Red is the experimentally measured | ||
Line 359: | Line 361: | ||
binding PEP | binding PEP | ||
sites are not very significant.</span></p> | sites are not very significant.</span></p> | ||
− | + | <p><span>Phe site:</span></p> | |
− | + | <p><img src="https://static.igem.org/mediawiki/2021/0/03/T--XJTU-China--Fig.9.png" | |
− | + | referrerpolicy="no-referrer" alt="image-20211020141214932" width="60%"></p> | |
− | + | <p><img src="https://static.igem.org/mediawiki/2021/8/85/T--XJTU-China--Fig.10.png" | |
− | + | referrerpolicy="no-referrer" alt="image-20211020141224863" width="60%"></p> | |
− | + | <p><span>It can be seen from the docking results that the Ser at AroG 211 mutating to Phe | |
changes the | changes the | ||
conformation of the protein pocket which originally binds to Phe, and the binding site | conformation of the protein pocket which originally binds to Phe, and the binding site | ||
Line 377: | Line 379: | ||
catalytic | catalytic | ||
efficiency of aroG on PEP increases. </span></p> | efficiency of aroG on PEP increases. </span></p> | ||
− | + | <a class="anchor" id="nav-advantages-and-disadvantages-of-the-model"></a> | |
− | + | <h2 id='5-advantages-and-disadvantages-of-the-model'><span>5. Advantages and disadvantages of | |
the | the | ||
model</span></h2> | model</span></h2> | ||
− | + | <a class="anchor" id="nav-advantages-of-the-model"></a> | |
− | + | <h3 id='51-advantages-of-the-model'><span>5.1 Advantages of the model</span></h3> | |
− | + | <ol> | |
− | + | <li><span>The results of the experiments can be quickly obtained by analysis using available | |
software | software | ||
tools</span></li> | tools</span></li> | ||
− | + | <li><span>The accidental deviation caused by experiments is avoided</span></li> | |
− | + | <li><span>Lower cost, less time consuming and easier to study</span></li> | |
− | + | </ol> | |
− | + | <a class="anchor" id="nav-disadvantages-of-the-model"></a> | |
− | + | <h3 id='52-disadvantages-of-the-model'><span>5.2 Disadvantages of the model</span></h3> | |
− | + | <p><span>The prediction results of existing software tools have limitations:</span></p> | |
− | + | <ol> | |
− | + | <li><span>The Gauss software utilizes a semi-empirical molecular orbital theory algorithm | |
when computing | when computing | ||
the steady-state conformation of the Phe and PEP small molecules, which reduces the | the steady-state conformation of the Phe and PEP small molecules, which reduces the | ||
accuracy of | accuracy of | ||
the calculation results</span></li> | the calculation results</span></li> | ||
− | + | <li><span>When the AutoDockTools calculates the docking of large-mass proteins and ligands, | |
it is | it is | ||
limited by the computing power; the receptor can not select too many flexible | limited by the computing power; the receptor can not select too many flexible | ||
Line 408: | Line 410: | ||
optimal solution | optimal solution | ||
to reach the global optimal solution.</span></li> | to reach the global optimal solution.</span></li> | ||
− | + | </ol> | |
− | + | <hr> | |
− | <div class="row mt-5 mb-5"> | + | <a class="anchor" id="reference"></a> |
− | + | <h2 id='reference-1'><span>Reference</span></h2> | |
− | + | <p><span>[1] Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo | |
− | + | Cassarino T, Bertoni M, Bordoli L, Schwede T. SWISS-MODEL: modelling protein tertiary and | |
− | + | quaternary structure using evolutionary information. <i>Nucleic Acids Res</i>. 2014 Jul; | |
− | + | 42(Web Server issue):W252-8. doi: 10.1093/nar/gku340. Epub 2014 Apr 29. PMID: 24782522; | |
− | + | PMCID: PMC4086089.</span></p> | |
+ | <p><span>[2] Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a | ||
+ | new scoring function, efficient optimization, and multithreading. <i>J Comput Chem</i>. 2010 Jan | ||
+ | 30;31(2):455-61. doi: 10.1002/jcc.21334. PMID: 19499576; PMCID: PMC3041641.</span></p><hr /> | ||
+ | <div class="row mt-5 mb-5"> | ||
+ | <div class="col-12"> | ||
+ | <p class="float-right mt-3" style="font-size: 1.5em !important;"><b>For the mathematical | ||
+ | modelling, please | ||
+ | check: <a href="https://2021.igem.org/Team:XJTU-China/Model"> | ||
+ | Modelling <span class="fa fa-flask"></span></a></b></p> | ||
</div> | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
− | + | </div> | |
− | </section> | + | <div class="col-lg-1"></div> |
− | + | </div> | |
− | + | </div> | |
+ | </section> | ||
+ | <!--JS--> | ||
+ | <script type="text/javascript" | ||
src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/jquery&action=raw&ctype=text/javascript"></script> | src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/jquery&action=raw&ctype=text/javascript"></script> | ||
− | + | <script type="text/javascript" | |
src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrapJS&action=raw&ctype=text/javascript"></script> | src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrapJS&action=raw&ctype=text/javascript"></script> | ||
− | + | <script type="text/javascript" | |
src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/lottie&action=raw&ctype=text/javascript"></script> | src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/lottie&action=raw&ctype=text/javascript"></script> | ||
− | + | <!--dr-menuSliding--> | |
− | + | <script> | |
− | + | var fsliding = (function () { | |
− | + | window.addEventListener('scroll', function () { | |
− | + | var scroll = $(window).scrollTop(); | |
− | + | var pageHeight = $(window).height(); | |
− | + | var pageWidth = $(window).width(); | |
− | + | var drMenu = $(".dr-menu"); | |
− | + | var containerHeight = $("#container").height(); | |
− | + | var drMenuHeight = drMenu.height(); | |
− | + | var headerHeight = $("header").height(); | |
− | + | if (pageWidth < 992) { | |
− | + | drMenu.hide(); | |
+ | } | ||
+ | else { | ||
+ | drMenu.show(); | ||
+ | // drmenu到底, -5px莫名其妙 | ||
+ | if (scroll - 5 - (0.7 * pageHeight - headerHeight) + drMenuHeight >= containerHeight) { | ||
+ | drMenu.css({ | ||
+ | "position": "relative", | ||
+ | "top": (containerHeight - drMenuHeight).toString() + "px" | ||
+ | }); | ||
+ | } | ||
+ | //滑动时,-5px莫名其妙 | ||
+ | else if (scroll - 5 > 0.7 * pageHeight - headerHeight) { | ||
+ | drMenu.css({ | ||
+ | "position": "fixed", | ||
+ | "top": (headerHeight + 100).toString() + "px" | ||
+ | }); | ||
} | } | ||
+ | //未滑动时 | ||
else { | else { | ||
− | drMenu. | + | drMenu.css({ |
− | + | "position": "relative", | |
− | + | "top": "0" | |
− | + | }); | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
} | } | ||
− | } | + | } |
− | })() | + | }) |
− | + | })() | |
+ | </script> | ||
</body> | </body> | ||
Latest revision as of 03:30, 22 October 2021
Protein Modelling
Phospho-2-dehydro-3-deoxyheptonate aldolase (AroG) is an important enzyme for the phosphoenolpyruvate (PEP) catalytic reaction and has an important role in the metabolic pathways, i.e. tryptophan biosynthesis, in this project. Literature review shows that Phenylalanine binds to AroG to allosterically inhibit the condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate(E4P), thus subsequently lower the level of the product 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP), the first step to synthesize chorismite which is the precursor of tryptophan. When the Ser at AroG 211 is mutated to Phe, allosteric inhibition produced by Phe is alleviated. To investigate the structural mechanism of allosteric inhibition on AroG by Phe and the alleviation in S211F mutant, it is proposed to be quantified and visualized using PyMOL, Gaussian16.0W, GaussView6.0, Swiss, AutoDockTools software.
1. Fundamental assumptions
- The ligand receptor docking results predicted by AutoDockTools in a semi-flexible docking mode are bassically correct within the range that the conformation allows to change.
- The mutant AroG tetrameric protein structure predicted by amino acid sequence on the Swiss website is bassically correct within the range that the conformation allows to change.
- The relative position of the wild-type and point-mutation mutant AroG to the protein pocket bound to Phe and PEP does not change.
- The catalytic activity of the AroG with PEP can be characterized by the binding energy of the two.
2. Acquisition of protein and small-molecule structures[1]
Required structure | Method of obtaining |
---|---|
Wild-type AroG tetrameric protein structure | UniProt: P0AB91 |
AroG-S211F tetramer protein structure | Predicted by Swiss AutoDockTools |
Phe and PEP small-molecule structures | Gaussian16.0W, GaussView6.0 |
Crystal structure of Phe, PEP binding to AroG | PDBe: 1kfl |
3. AutoDock molecular docking[2]
In order to quantify the allosteric inhibition of Phe on AroG and the mechanism of AroG-S211F alleviating the inhibition, this paper uses AutoDockTools software to get results. Firstly, dock Phe molecules in the wild type and mutant AroG respectively. Then, dock PEP molecules to the protein active center one by one. During this process, record the ligand-receptor binding energy , and visualized the corresponding protein structure with PyMol software to further explore the relationship between protein structure and the corresponding docking results.
The workflow is as follows:
4. Results and Discussion
4.1 Binding energy
1. Allosteric inhibition effect of Phe
The average value of the binding energy is obtained by repeating the docking several times. When the Phe ligand is not bound, the binding energy of aroG and PEP is -5.5 kcal/mol; and when the Phe is bound to aroG tetramer at the corresponding site, the binding energy becomes -5.2 kcal/mol.
Conclusively, the binding of Phe to AroG has an inhibitory effect of PEP binding to AroG.
2. Effect of point mutations on the catalytic activity of AroG
Number of Phe bound to AroG | Ligand receptor binding energy / kcal·mol-1 |
---|---|
1 | -5.9 |
2 | -5.5 |
3 | -5.7 |
4 | -5.5 |
Combined energy sum | -22.6 |
Number of PEP bound to AroG-4Phe | Ligand receptor binding energy / kcal·mol-1 |
---|---|
1 | -5.2 |
2 | -5.4 |
3 | -5.3 |
4 | -5.3 |
Combined energy sum | -21.2 |
Number of Phe bound to MutAroG | Ligand receptor binding energy / kcal·mol-1 |
---|---|
1 | -5.2 |
2 | -5.2 |
3 | -5.0 |
4 | -4.6 |
Combined energy sum | -20.0 |
Number of PEP bound to MutAroG-4Phe | Ligand receptor binding energy / kcal·mol-1 |
---|---|
1 | -6.2 |
2 | -6.2 |
3 | -6.4 |
4 | -6.3 |
Combined energy sum | -25.1 |
From the comparison of the table data, the binding ability of the mutant aroG and Phe is weaker than that of the wild-type aroG, and the binding ability of the mutant aroG to PEP, in the case that the corresponding site has been combined with Phe, is greatly improved compared to the wild-type aroG.
Therefore, without considering the software simulation docking error, it can be concluded that the Phe allosteric inhibitory effect of mutant aroG is weakened.
4.2 Protein pocket structure
1. The docking results of AroG with Phe and PEP
In the figure, the yellow is the experimentally measured conformation of Phe in the crystal protein bound by aroG and Phe, and the green is the docking site and the conformation of Phe predicted by AutoDockTools software. Obviously, the ligand receptor docking site predicted by the AutoDockTools software is completely consistent with the actual site, but there is a slight difference in the conformation of Phe. Therefore, the prediction of binding energy can be more credible.
The following figure shows the docking visualization results of PEP and AroG:
2. Comparison of the wild-type and mutant AroG
According to the docking results, the protein pocket conformation of wild-type and mutant AroG bound to PEP has not changed significantly. The Red is the experimentally measured conformation of Phe in the crystal protein bound by aroG and Phe, and the pink is the docking site and the conformation of Phe predicted by AutoDockTools software. In general, the changes in binding PEP sites are not very significant.
Phe site:
It can be seen from the docking results that the Ser at AroG 211 mutating to Phe changes the conformation of the protein pocket which originally binds to Phe, and the binding site of Phe changes accordingly. The binding energy calculated by AutoDockTools software shows that the binding ability of mutant aroG and Phe becomes weaker. Therefore, it can be concluded that the conformation of the mutant aroG and Phe binding protein pocket changes, so that the binding ability of Phe to it becomes smaller, and the allosteric inhibition effect of Phe is reduced, finally the catalytic efficiency of aroG on PEP increases.
5. Advantages and disadvantages of the model
5.1 Advantages of the model
- The results of the experiments can be quickly obtained by analysis using available software tools
- The accidental deviation caused by experiments is avoided
- Lower cost, less time consuming and easier to study
5.2 Disadvantages of the model
The prediction results of existing software tools have limitations:
- The Gauss software utilizes a semi-empirical molecular orbital theory algorithm when computing the steady-state conformation of the Phe and PEP small molecules, which reduces the accuracy of the calculation results
- When the AutoDockTools calculates the docking of large-mass proteins and ligands, it is limited by the computing power; the receptor can not select too many flexible chains, and the accuracy of the flexible docking prediction algorithm is not very high; if the initial value of the docking is not set properly, the prediction results will fall in the local optimal solution to reach the global optimal solution.
Reference
[1] Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014 Jul; 42(Web Server issue):W252-8. doi: 10.1093/nar/gku340. Epub 2014 Apr 29. PMID: 24782522; PMCID: PMC4086089.
[2] Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61. doi: 10.1002/jcc.21334. PMID: 19499576; PMCID: PMC3041641.
For the mathematical modelling, please check: Modelling