Difference between revisions of "Team:XJTU-China/Improve"

 
(8 intermediate revisions by the same user not shown)
Line 26: Line 26:
 
         <div class="container row fixedBackground">
 
         <div class="container row fixedBackground">
 
             <div class="fixedBackgroundImg"
 
             <div class="fixedBackgroundImg"
                 style="background-image: url(https://static.igem.org/mediawiki/2021/f/fd/T--XJTU-China--bg.jpg);">
+
                 style="background-image: url(https://static.igem.org/mediawiki/2021/8/84/T--XJTU-China--improvement-bg.jpg);
 +
                background-position: 0 -40px;">
 
             </div>
 
             </div>
 
             <div class="pageHeadline"><span>Improve</span></div>
 
             <div class="pageHeadline"><span>Improve</span></div>
Line 50: Line 51:
 
                             <li><a class="fa fa-plug" href="#3"> 3. Characterization of cell proliferation</a></li>
 
                             <li><a class="fa fa-plug" href="#3"> 3. Characterization of cell proliferation</a></li>
 
                             <li><a class="fa fa-plug" href="#4"> 4. Conclusions</a></li>
 
                             <li><a class="fa fa-plug" href="#4"> 4. Conclusions</a></li>
 +
                            <li><a class="fa fa-plug" href="#5"> 4. Reference</a></li>
 
                     </nav>
 
                     </nav>
 
                 </div>
 
                 </div>
Line 69: Line 71:
 
                                     aroG can lead to more substrate into the shikimate pathway, which can improve the
 
                                     aroG can lead to more substrate into the shikimate pathway, which can improve the
 
                                     yield of
 
                                     yield of
                                     downstream products as tryptophan, phenylalanine, tyrosine and benzazole <i>etc.</i>
+
                                     downstream products as tryptophan, phenylalanine, tyrosine and benzazole
 +
                                    <i>etc.</i><a href="#5"><span class="sup">[1-4]</span></a>
 
                                 </p>
 
                                 </p>
                                 <p>AroG-S211F, in which the serine at 211 was replaced by phenylalanine, has also been
+
                                <div class="imgWrapper centerize">
 +
                                    <img src="https://static.igem.org/mediawiki/2021/3/33/T--XJTU-China--POC-Fig1-1.png"
 +
                                        alt="pathway" width="70%" class="hoverLarger">
 +
                                </div>
 +
                                 <p class="mt-3">AroG-S211F, in which the serine at 211 was replaced by phenylalanine, has also been
 
                                     reported
 
                                     reported
                                     to be able to increase the production of downstream product in shikimate pathway.
+
                                     to be able to increase the production of downstream product in shikimate
 +
                                    pathway<a href="#5"><span class="sup">[5]</span></a>.
 
                                     However
 
                                     However
 
                                     the structural mechanism is unclear. And also it is not sure whether it can increase
 
                                     the structural mechanism is unclear. And also it is not sure whether it can increase
 
                                     the
 
                                     the
                                     production of our tryptophan. So In our project, aroG-S211F was overexpressed,
+
                                     production of our tryptophan. So In our project, <i>aroG-S211F</i> was overexpressed,
 
                                     attempted to
 
                                     attempted to
 
                                     improve the production of tryptophan. </p>
 
                                     improve the production of tryptophan. </p>
                                 <p>An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG S211F were
+
                                 <p>An inducible circuit BBa_K3832008 containing lacUV5-controlled <i>aroG-S211F</i> were
 
                                     constructed to
 
                                     constructed to
 
                                     characterize and measure the function of AroG-S211F in <i>E.coli</i> DH5alpha(Fig.
 
                                     characterize and measure the function of AroG-S211F in <i>E.coli</i> DH5alpha(Fig.
 
                                     1.1).
 
                                     1.1).
 
                                     Firstly
 
                                     Firstly
                                     the yield of tryptophan of mutant aroG and the native one respectively were detected
+
                                     the yield of tryptophan of mutant <i>aroG</i> and the native one respectively were detected
 
                                     by PDAB
 
                                     by PDAB
                                     method modified by ourselves. Secondly, considering that the over-expression of aroG
+
                                     method modified by ourselves. Secondly, considering that the over-expression of <i>aroG</i>
 
                                     will
 
                                     will
 
                                     significantly reduce the amount of substrate (glucose) entering the glycolysis
 
                                     significantly reduce the amount of substrate (glucose) entering the glycolysis
 
                                     pathway, in
 
                                     pathway, in
                                     turn affecting the normal cell proliferation, the effect of aroG-S211F on the cell
+
                                     turn affecting the normal cell proliferation, the effect of AroG-S211F on the cell
 
                                     proliferation was also tested by the comparison of growth rate of the wild-type
 
                                     proliferation was also tested by the comparison of growth rate of the wild-type
 
                                     <i>E.coli</i> and
 
                                     <i>E.coli</i> and
                                     the engineered <i>E.coli</i> with aroG-S211F.
+
                                     the engineered <i>E.coli</i> with AroG-S211F.
 
                                 </p>
 
                                 </p>
 
                             </div>
 
                             </div>
Line 100: Line 108:
 
                     </div>
 
                     </div>
 
                     <a class="anchor" id="1"></a>
 
                     <a class="anchor" id="1"></a>
                     <h2 class="ml-5 mt-5">1. Construction and Verification of aroG circuit</h2>
+
                     <h2 class="ml-5 mt-5">1. Construction and Verification of <i>aroG</i> circuit</h2>
                     <p>aroG S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden
+
                     <p>aroG-S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden
 
                         Gate assembly (BsaI). After transformed into <i>E.coli</i> DH5alpha, plasmid extraction and
 
                         Gate assembly (BsaI). After transformed into <i>E.coli</i> DH5alpha, plasmid extraction and
 
                         electrophoresis, PCR amplification
 
                         electrophoresis, PCR amplification
                         and sequencing were conducted to confirm its correctness. The results are list in Fig. 1.1 </p>
+
                         and sequencing were conducted to confirm its correctness. The results are listed in Fig. 1.1 </p>
 
                     <div class="imgWrapper centerize">
 
                     <div class="imgWrapper centerize">
 
                         <img src="https://static.igem.org/mediawiki/2021/c/c3/T--XJTU-China--aroG.png" alt="Fig. 1.1"
 
                         <img src="https://static.igem.org/mediawiki/2021/c/c3/T--XJTU-China--aroG.png" alt="Fig. 1.1"
Line 116: Line 124:
 
                     <p>Meanwhile, the quantitatively assay by RT-qPCR was also performed to verified its mRNA level. As
 
                     <p>Meanwhile, the quantitatively assay by RT-qPCR was also performed to verified its mRNA level. As
 
                         shown in Fig. 1.2, the transcriptional level was increased about two folds after IPTG induction,
 
                         shown in Fig. 1.2, the transcriptional level was increased about two folds after IPTG induction,
                         indicating the circuit was successfully constructed with functional aroG mutant. The basal
+
                         indicating the circuit was successfully constructed with functional AroG mutant. The basal
                         expression of aroG without IPTG induction can be observed due to one copy of native aroG in
+
                         expression of <i>aroG</i> without IPTG induction can be observed due to one copy of native <i>aroG</i> in
 
                         <i>E.coli</i> genome.
 
                         <i>E.coli</i> genome.
 
                     </p>
 
                     </p>
Line 123: Line 131:
 
                         <img src="https://static.igem.org/mediawiki/2021/2/21/T--XJTU-China--improvement3.1.png" width="70%"
 
                         <img src="https://static.igem.org/mediawiki/2021/2/21/T--XJTU-China--improvement3.1.png" width="70%"
 
                             alt="Fig. 1.2">
 
                             alt="Fig. 1.2">
                         <span class="description"><strong>Fig. 1.2 The relative mRNA level of aroG-S211F in DH5alpha
+
                         <span class="description"><strong>Fig. 1.2 The relative mRNA level of <i>aroG-S211F</i> in DH5alpha
 
                                 strain with Part:BBa_K3832008 inserted in pET28a+ vector.</strong></span>
 
                                 strain with Part:BBa_K3832008 inserted in pET28a+ vector.</strong></span>
 
                     </div>
 
                     </div>
Line 156: Line 164:
 
                         compared to native
 
                         compared to native
 
                         AroG</h3>
 
                         AroG</h3>
                     <p>As shown in Fig. 2.1, compared with the <i>E.coli</i> harboring the blank vector and native aroG
+
                     <p>As shown in Fig. 2.1, compared with the <i>E.coli</i> harboring the blank vector and native <i>aroG</i>
 
                         gene
 
                         gene
                         (BBa_K1060000), the yield of tryptophan in the engineered <i>E.coli</i> with aroG-S211F induced
+
                         (BBa_K1060000), the yield of tryptophan in the engineered <i>E.coli</i> with <i>aroG-S211F</i> induced
 
                         by 1 mM
 
                         by 1 mM
 
                         IPTG continuously increased in the 30 h cultivation (green triangle), reaching a maximal
 
                         IPTG continuously increased in the 30 h cultivation (green triangle), reaching a maximal
Line 171: Line 179:
 
                             alt="Fig. 2.1">
 
                             alt="Fig. 2.1">
 
                         <span class="description"><strong>Fig. 2.1 The tryptophan production curve of the engineering
 
                         <span class="description"><strong>Fig. 2.1 The tryptophan production curve of the engineering
                                 <i>E.coli</i> with aroG-S211F and <i>E.coli</i> with native aroG.</strong></span>
+
                                 <i>E.coli</i> with <i>aroG-S211F</i> and <i>E.coli</i> with native <i>aroG</i>.</strong></span>
 
                     </div>
 
                     </div>
 
                     <a class="anchor" id="2.3"></a>
 
                     <a class="anchor" id="2.3"></a>
Line 208: Line 216:
 
                     </div>
 
                     </div>
 
                     <a class="anchor" id="3"></a>
 
                     <a class="anchor" id="3"></a>
                     <h2 class="ml-5 mt-5">3. Characterization the effect of aroG-S211F on cell proliferation</h2>
+
                     <h2 class="ml-5 mt-5">3. Characterization the effect of <i>aroG-S211F</i> on cell proliferation</h2>
                     <p>The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell
+
                     <p>The over-expression of <i>aroG</i> inhibits the glycolysis pathway, thus definitely affecting the cell
                         growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of
+
                         growth. So the effect of <i>aroG-S211F</i> on cell proliferation was also detected. The OD<span class="sub">600</span> of
                         engineered <i>E.coli</i> and blank strain were continuously monitored, as shown in Fig. The
+
                         engineered <i>E.coli</i> and blank strain were continuously monitored, as shown in Fig. 3.1. The
 
                         Logistic
 
                         Logistic
                         equation was used to fit the growth curve, the obvious inhibitory effect of aroG expression on
+
                         equation was used to fit the growth curve, the obvious inhibitory effect of <i>aroG</i> expression on
 
                         cell proliferation was observed, especially with IPTG induction. The growth parameters K
 
                         cell proliferation was observed, especially with IPTG induction. The growth parameters K
 
                         (environmental capacity) and r (intrinsic growth rate) of different experimental groups was also
 
                         (environmental capacity) and r (intrinsic growth rate) of different experimental groups was also
 
                         obtained from the fitting Logistic curve, and the parameter r decreased dramatically in
 
                         obtained from the fitting Logistic curve, and the parameter r decreased dramatically in
 
                         <i>E.coli</i>
 
                         <i>E.coli</i>
                         with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell.
+
                         with <i>aroG-S211F</i> induced by IPTG, indicating the increased doubling time of the cell.
 
                     </p>
 
                     </p>
 
                     <div class="imgWrapper centerize">
 
                     <div class="imgWrapper centerize">
Line 233: Line 241:
 
                     <a class="anchor" id="4"></a>
 
                     <a class="anchor" id="4"></a>
 
                     <h2 class="ml-5 mt-5">4. Conclusions:</h2>
 
                     <h2 class="ml-5 mt-5">4. Conclusions:</h2>
                     <p>A lacUV5 controlled-aroG S211F gene circuit was successfully constructed, and the overexpression
+
                     <p>A lacUV5-controlled <i>aroG-S211F</i> gene circuit was successfully constructed, and the overexpression
                         of aroG-S211F significantly improved the tryptophan production, with a highest productivity of
+
                         of <i>aroG-S211F</i> significantly improved the tryptophan production, with a highest productivity of
 
                         160 mg/ml per OD. Protein structure modeling elucidate that the improvement may attribute to the
 
                         160 mg/ml per OD. Protein structure modeling elucidate that the improvement may attribute to the
 
                         elimination of the allosteric inhibition of phenylalanine, thus increasing the catalytic rate
 
                         elimination of the allosteric inhibition of phenylalanine, thus increasing the catalytic rate
 
                         and downstream product yield. However, because of the inhibition on the glycolysis pathway of
 
                         and downstream product yield. However, because of the inhibition on the glycolysis pathway of
                         aroG, the cell growth was obviously inhibited. The results confirmed our hypothesis that cell
+
                         AroG, the cell growth was obviously inhibited. The results confirmed our hypothesis that cell
 
                         proliferation and tryptophan production should be separated, and it has been designed to be
 
                         proliferation and tryptophan production should be separated, and it has been designed to be
                         strictly controlled by toggle-switch circuit, in which cell proliferation (pykA gene
+
                         strictly controlled by toggle-switch circuit, in which cell proliferation (<i>pykA</i>
                         overexpression) and tryptophan production (aroG-S211F overexpression) was constructed in the two
+
                         overexpression) and tryptophan production (<i>aroG-S211F</i> overexpression) was constructed in the two
 
                         arms of toggle-switch. (View our design on <b><a
 
                         arms of toggle-switch. (View our design on <b><a
 
                                 href="https://2021.igem.org/Team:XJTU-China/Design">Team:XJTU-China/Design</a></b>).</p>
 
                                 href="https://2021.igem.org/Team:XJTU-China/Design">Team:XJTU-China/Design</a></b>).</p>
 +
                    <a class="anchor" id="5"></a>
 +
                    <h2 class="ml-5 mt-5">5. Reference</h2>
 +
                    <p style="font-size: 0.8em!important;">[1] SHEN T,LIU Q,XIE X,et al. Improved production of tryptophan in genetically engineered
 +
                        Escherichia coli with TktA and PpsA overexpression[J].J Biomed Biotechnol,2012 (11) :
 +
                        605219.<br>
 +
                        [2] CHEN L,ZENG A P.Rational design and metabolic analysis of Escherichia coli for effective
 +
                        production of L -tryptophan at high concentration[J]. Applied Microbiology and
 +
                        Biotechnology,2017,101( 2) : 559-568.<br>
 +
                        [3] Zhan JJ,Du LH. Progress of metabolic engineering modification of Escherichia coli for
 +
                        L-tryptophan production[J]. Shandong Chemical Industry,2021,50(01):85-87+89.<br>
 +
                        [4] Hu,Changyun.Study on the structure and function of 3-deoxy-D-arabinoheptulose-7-phosphate
 +
                        synthase AroG[D]. Fudan University, 2003.<br>
 +
                        [5] HAO Dali et al. Site-mutation of AroG Gene and Co-expression with TrpBA Gene in Escherichia
 +
                        coli. Chinese Journal of Applied and Environmental Biology 19, 817-821 (2013).</p>
 
                 </div>
 
                 </div>
 
                 <div class="col-lg-1"></div>
 
                 <div class="col-lg-1"></div>

Latest revision as of 19:37, 21 October 2021

Team:XJTU-China/Project

Improve

Improve

AroG (3-deoxy-7-phosphoheptulonate synthase, EC 2.5.1.54, BBa_K1060000), catalyzes the following reaction:
phosphoenolpyruvate(PEP) + D-erythrose-4-phosphate(E4P) + H2O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate (DAHP) + phosphate

The reaction is a key branching point of the glycolysis and shikimate pathways. Expression of aroG can lead to more substrate into the shikimate pathway, which can improve the yield of downstream products as tryptophan, phenylalanine, tyrosine and benzazole etc.[1-4]

pathway

AroG-S211F, in which the serine at 211 was replaced by phenylalanine, has also been reported to be able to increase the production of downstream product in shikimate pathway[5]. However the structural mechanism is unclear. And also it is not sure whether it can increase the production of our tryptophan. So In our project, aroG-S211F was overexpressed, attempted to improve the production of tryptophan.

An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG-S211F were constructed to characterize and measure the function of AroG-S211F in E.coli DH5alpha(Fig. 1.1). Firstly the yield of tryptophan of mutant aroG and the native one respectively were detected by PDAB method modified by ourselves. Secondly, considering that the over-expression of aroG will significantly reduce the amount of substrate (glucose) entering the glycolysis pathway, in turn affecting the normal cell proliferation, the effect of AroG-S211F on the cell proliferation was also tested by the comparison of growth rate of the wild-type E.coli and the engineered E.coli with AroG-S211F.

1. Construction and Verification of aroG circuit

aroG-S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden Gate assembly (BsaI). After transformed into E.coli DH5alpha, plasmid extraction and electrophoresis, PCR amplification and sequencing were conducted to confirm its correctness. The results are listed in Fig. 1.1

Fig. 1.1 Fig. 1.1 The DNA agarose gel electrophoresis result of AroG-S211F circuit, plasmid and PCR product. (a) The length of the circuit is 2503bp (b) The length of the plasmid is 4738bp. And the two discrete bands are thought as either open-coiled or super-coiled plasmids (c)The amplicon is expected to be 2526bp.

Meanwhile, the quantitatively assay by RT-qPCR was also performed to verified its mRNA level. As shown in Fig. 1.2, the transcriptional level was increased about two folds after IPTG induction, indicating the circuit was successfully constructed with functional AroG mutant. The basal expression of aroG without IPTG induction can be observed due to one copy of native aroG in E.coli genome.

Fig. 1.2 Fig. 1.2 The relative mRNA level of aroG-S211F in DH5alpha strain with Part:BBa_K3832008 inserted in pET28a+ vector.

2. Characterization the effect of AroG-S211F on tryptophan production

2.1 Tryptophan can be easily determined by modified PDAB chromogenic method

  1. Freeze-thaw bacterial culture medium with suspension cells for over 3 times.
  2. Add 100 ul medium into 400 ul PDAB (p-dimethylaminobezaldehyde) solution (3 mg/ml in 9 M solution of sulfuric acid). Then keep at 60℃ for 20 min.
  3. Add 3 ul 0.5% (w/w) solution of sodium nitrite. Then keep at 60℃ for 15min.
  4. Measure absorption under 590 nm wavelength (OD590).

2.2 The yield of tryptophan was significantly improved in AroG-S211F strain compared to native AroG

As shown in Fig. 2.1, compared with the E.coli harboring the blank vector and native aroG gene (BBa_K1060000), the yield of tryptophan in the engineered E.coli with aroG-S211F induced by 1 mM IPTG continuously increased in the 30 h cultivation (green triangle), reaching a maximal productivity of 160 mg/ml per OD, while the blank controls slowly increased and maintained its production at about 1200 min, arriving about 80 mg/ml per OD, half of the previous one (circle and square). It is the same case in absent of IPTG (blue triangle), indicating the low leaky expression of our circuit. In all, our circuit containing AroG-S211F can efficiently produce tryptophan with the highest productivity of 160 mg/ml per OD, which can be further improved under the control of toggle-switch.

Fig. 2.1 Fig. 2.1 The tryptophan production curve of the engineering E.coli with aroG-S211F and E.coli with native aroG.

2.3 The structural mechanisms was elucidated by protein structure modeling

To explain the concrete mechanisms of the promotion effect by AroG-S211F comparing wild-type AroG, protein structure modeling is used to analyze the thermodynamics and structure of them.

From an energy perspective, our modeling results show that the mutant protein exhibits lower binding free energy with the catalytic substrate in the presence of the inhibitor (Phe), that is, it is able to bind more tightly and stably to the substrate, thus improving catalytic efficiency.

binding-energy Fig. 2.2 Affinity of docking

On the other hand, structural analysis also reflected that the binding tightness between the mutated site and the inhibitor was reduced, which weakened its inhibitory effect.

binding-energy Fig. 2.3 Differences between the Phe docking site

By the modeling result, the mutation (S211 to F211) in AroG is proposed to eliminate the allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream product yield.

3. Characterization the effect of aroG-S211F on cell proliferation

The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of engineered E.coli and blank strain were continuously monitored, as shown in Fig. 3.1. The Logistic equation was used to fit the growth curve, the obvious inhibitory effect of aroG expression on cell proliferation was observed, especially with IPTG induction. The growth parameters K (environmental capacity) and r (intrinsic growth rate) of different experimental groups was also obtained from the fitting Logistic curve, and the parameter r decreased dramatically in E.coli with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell.

Fig. 3.1 Fig. 3.1 (a) The population density of E.coli was measured at 600nm by colorimetry. The scatter represents the result of the measurement. The Logistic equation was used to fit the growth curve, and the fitting results were shown in the curve. (b) shows the growth parameters K (environmental capacity) and r (intrinsic growth rate) of different experimental groups obtained from the fitting results in (a).

4. Conclusions:

A lacUV5-controlled aroG-S211F gene circuit was successfully constructed, and the overexpression of aroG-S211F significantly improved the tryptophan production, with a highest productivity of 160 mg/ml per OD. Protein structure modeling elucidate that the improvement may attribute to the elimination of the allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream product yield. However, because of the inhibition on the glycolysis pathway of AroG, the cell growth was obviously inhibited. The results confirmed our hypothesis that cell proliferation and tryptophan production should be separated, and it has been designed to be strictly controlled by toggle-switch circuit, in which cell proliferation (pykA overexpression) and tryptophan production (aroG-S211F overexpression) was constructed in the two arms of toggle-switch. (View our design on Team:XJTU-China/Design).

5. Reference

[1] SHEN T,LIU Q,XIE X,et al. Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression[J].J Biomed Biotechnol,2012 (11) : 605219.
[2] CHEN L,ZENG A P.Rational design and metabolic analysis of Escherichia coli for effective production of L -tryptophan at high concentration[J]. Applied Microbiology and Biotechnology,2017,101( 2) : 559-568.
[3] Zhan JJ,Du LH. Progress of metabolic engineering modification of Escherichia coli for L-tryptophan production[J]. Shandong Chemical Industry,2021,50(01):85-87+89.
[4] Hu,Changyun.Study on the structure and function of 3-deoxy-D-arabinoheptulose-7-phosphate synthase AroG[D]. Fudan University, 2003.
[5] HAO Dali et al. Site-mutation of AroG Gene and Co-expression with TrpBA Gene in Escherichia coli. Chinese Journal of Applied and Environmental Biology 19, 817-821 (2013).

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by