Difference between revisions of "Team:XJTU-China/Hardware"

 
(6 intermediate revisions by the same user not shown)
Line 26: Line 26:
 
         <div class="container row fixedBackground">
 
         <div class="container row fixedBackground">
 
             <div class="fixedBackgroundImg"
 
             <div class="fixedBackgroundImg"
                 style="background-image: url(https://static.igem.org/mediawiki/2021/f/fd/T--XJTU-China--bg.jpg);">
+
                 style="background-image: url(https://static.igem.org/mediawiki/2021/4/40/T--XJTU-China--hardware-bg.jpg);">
 
             </div>
 
             </div>
 
             <div class="pageHeadline"><span>Hardware</span></div>
 
             <div class="pageHeadline"><span>Hardware</span></div>
Line 36: Line 36:
 
                 <div class="side col-lg-3">
 
                 <div class="side col-lg-3">
 
                     <nav class="dr-menu">
 
                     <nav class="dr-menu">
                         <h3>Contribution</h3>
+
                         <h3>Hardware</h3>
 
                         <ul>
 
                         <ul>
                             <li><a class="fa fa-plug" href="#nav-part">&nbsp;Part</a></li>
+
                             <li><a class="fa fa-plug" href="#overview">&nbsp;1. Overview</a></li>
                             <li><a class="fa fa-plug" href="#nav-hardware">&nbsp;Hardware</a></li>
+
                             <li><a class="fa fa-plug" href="#design">&nbsp;2. Design</a>
                             <li><a class="fa fa-plug" href="#nav-protocol">&nbsp;Protocols</a></li>
+
                                <ul>
 +
                                    <li><a class="fa fa-plug" href="#detecting-module">&nbsp;2.1 Detecting Module</a>
 +
                                    </li>
 +
                                    <li><a class="fa fa-plug" href="#controlling-module">&nbsp;2.2 Controlling
 +
                                            Module</a></li>
 +
                                    <li><a class="fa fa-plug" href="#cultivation-module">&nbsp;2.3 Cultivation
 +
                                            Module</a></li>
 +
                                </ul>
 +
                            </li>
 +
                             <li><a class="fa fa-plug" href="#program">&nbsp;3. Program</a></li>
 +
                            <li><a class="fa fa-plug" href="#showcase">&nbsp;4. Showcase</a></li>
 +
 
 
                         </ul>
 
                         </ul>
 
                     </nav>
 
                     </nav>
Line 48: Line 59:
 
                         <div class="row">
 
                         <div class="row">
 
                             <div class="col-12">
 
                             <div class="col-12">
                                 <h1>Contribution</h1>
+
                                <!-- hardware -->
                            </div>
+
                                <a class="anchor" id="hardware"></a>
 +
                                 <h1>Hardware</h1>
 +
                                <a class="anchor" id="overview"></a>
 +
                                <h2 class="ml-5">1. Overview</h2>
 +
                                <p>In order to realize the coordination of hardware circuit and gene
 +
                                    circuit, we have made an automatic culture device. At the same time of
 +
                                    detecting the growth and production status of bacteria, the device can
 +
                                    feedback and adjust the conditions of culture, thus controlling the
 +
                                    toggle-switch circuit to allow cells to enter different states between
 +
                                    “proliferation” and “production”. Through the fitting of experimental
 +
                                    results and modeling prediction, we can calculate the best time to
 +
                                    change the cultivation conditions, and write it into the control program
 +
                                    to realize the automatic control of the production process. </p>
 +
                                <a class="anchor" id="design"></a>
 +
                                <h2 class="ml-5">2. Design</h2>
 +
                                <div class="imgWrapper centerize">
 +
                                    <img src="https://static.igem.org/mediawiki/2021/3/30/T--XJTU-China--POC-Fig1-3.jpeg"
 +
                                        alt="design of hardware" width="80%" class="hoverLarger">
 +
                                    <span class="description"><strong>Fig. 2.1 The design of
 +
                                            hardware</strong></span>
 +
                                </div>
 +
                                <a class="anchor" id="detecting-module"></a>
 +
                                <h3 class="ml-5">2.1 Detecting Module</h3>
 +
                                <p>We use a simple spectroscopic device to monitor the cell density and the
 +
                                    concentration of tryptophan in the medium. Our detecting module includes
 +
                                    two sets of tungsten light sources, filters of the corresponding
 +
                                    wavelength and CCDs. By measuring the absorbance of light filtered to
 +
                                    600nm wavelength, the cell density can be represented. While with the
 +
                                    presence of tryptophan detection circuit, the light passing through the
 +
                                    485nm optical filter can excite GFP and its emission light will be
 +
                                    detected by the CCD after a 510nm filter. After receiving by CCDs, all
 +
                                    optical signals of this module are converted into corresponding circuit
 +
                                    signals and transmitted to the control module for processing.</p>
 +
                                <a class="anchor" id="controlling-module"></a>
 +
                                <h3 class="ml-5">2.2 Controlling Module</h3>
 +
                                <p>This module contains a single chip microcomputer (SCM) with its
 +
                                    controlling program, controlling the parts in cultivation module by
 +
                                    receiving and analyzing the signals from detecting module. After
 +
                                    receiving the signal, according to the program written into the SCM, it
 +
                                    can calculate the state of the cell density and product concentration in
 +
                                    the culture medium. When certain conditions are met, corresponding
 +
                                    instructions are issued to control the temperature of culture medium and
 +
                                    the pumping of inducer, with the information fed back to users in real
 +
                                    time.</p>
 +
                                <a class="anchor" id="cultivation-module"></a>
 +
                                <h3 class="ml-5">2.3 Cultivation Module</h3>
 +
                                <p>All fermentation and culture conditions are provided by this module. The
 +
                                    electric heater and ventilator maintain the temperature of the incubator
 +
                                    and are controlled by the SCM to switch the temperature between 37 and
 +
                                    42 degrees Celsius. A ration pump can be used to add IPTG to the medium
 +
                                    upon receiving the SCM signal. The main part is a sterile tank made of
 +
                                    plexiglass, including a transparent and equal thickness area for
 +
                                    spectrophotometry and fluorescence detection. Plus, magnetic stirrer,
 +
                                    ventilation device and other devices for cultivation are also contained
 +
                                    in this module.</p>
 +
                                <a class="anchor" id="program"></a>
 +
                                <h2 class="ml-5">3. Program</h2>
 +
                                <p>The core function of this module is realized by STM32 single chip
 +
                                    microcomputer. The logic control program is designed as follows: the
 +
                                    digital temperature controller continuously monitors the temperature
 +
                                    changes in the container, and keeps communicating with the micro
 +
                                    controller. Micro controller controls the relay to turn on the light
 +
                                    source and photocell briefly every minute to detect the growth of
 +
                                    biological community in the container. If the electromagnetic wave of
 +
                                    600 nanometer wavelength reaches a certain threshold, the micro
 +
                                    controller opens the relay of the electric heating rod through the
 +
                                    digital temperature controller; If the wavelength of 485 nanometer to
 +
                                    510 nanometer, the micro controller through the digital temperature
 +
                                    controller to disconnect the relay of the electric heating rod, and
 +
                                    prompt to replace the solution.</p>
  
                            <!-- hardware -->
+
                                <a class="anchor" id="showcase"></a>
                            <a class="anchor" id="nav-hardware"></a>
+
                                <h2 class="ml-5">4. Showcase</h2>
                            <h2 class="mt-5 ml-5">Hardware</h2>
+
                                <p>Worked by our skillful teammates in hardware group, the prototype of our hardware is
                            <h3>1. Overview</h3>
+
                                    built and tested. We record and document a clip of video of this machine, upload it
                            <p>In order to realize the coordination of hardware circuit and gene
+
                                    to
                                circuit, we have made an automatic culture device. At the same time of
+
                                    iGEM repository, and append it below.</p>
                                detecting the growth and production status of bacteria, the device can
+
                                <div class="row">
                                feedback and adjust the conditions of culture, thus controlling the
+
                                    <div class="col-12 d-flex justify-content-center">
                                toggle-switch circuit to allow cells to enter different states between
+
                                        <video src="https://static.igem.org/mediawiki/2021/e/ef/T--XJTU-China--Hardware.mp4"
                                “proliferation” and “production”. Through the fitting of experimental
+
                                            width="70%" controls preload="metadata"></video>
                                results and modeling prediction, we can calculate the best time to
+
                                    </div>
                                change the cultivation conditions, and write it into the control program
+
                                </div>
                                to realize the automatic control of the production process. </p>
+
                            <h3>2. Design</h3>
+
                            <div class="imgWrapper centerize">
+
                                <img src="https://static.igem.org/mediawiki/2021/3/30/T--XJTU-China--POC-Fig1-3.jpeg"
+
                                    alt="design of hardware" width="80%" class="hoverLarger">
+
                                <span class="description"><strong>Fig. 2.1 The design of
+
                                        hardware</strong></span>
+
 
                             </div>
 
                             </div>
                            <h4>2.1 Detecting Module</h4>
 
                            <p>We use a simple spectroscopic device to monitor the cell density and the
 
                                concentration of tryptophan in the medium. Our detecting module includes
 
                                two sets of tungsten light sources, filters of the corresponding
 
                                wavelength and CCDs. By measuring the absorbance of light filtered to
 
                                600nm wavelength, the cell density can be represented. While with the
 
                                presence of tryptophan detection circuit, the light passing through the
 
                                485nm optical filter can excite GFP and its emission light will be
 
                                detected by the CCD after a 510nm filter. After receiving by CCDs, all
 
                                optical signals of this module are converted into corresponding circuit
 
                                signals and transmitted to the control module for processing.</p>
 
 
                            <h4>2.2 Controlling Module</h4>
 
                            <p>This module contains a single chip microcomputer (SCM) with its
 
                                controlling program, controlling the parts in cultivation module by
 
                                receiving and analyzing the signals from detecting module. After
 
                                receiving the signal, according to the program written into the SCM, it
 
                                can calculate the state of the cell density and product concentration in
 
                                the culture medium. When certain conditions are met, corresponding
 
                                instructions are issued to control the temperature of culture medium and
 
                                the pumping of inducer, with the information fed back to users in real
 
                                time.</p>
 
                            <h4>2.3 Cultivation Module</h4>
 
                            <p>All fermentation and culture conditions are provided by this module. The
 
                                electric heater and ventilator maintain the temperature of the incubator
 
                                and are controlled by the SCM to switch the temperature between 37 and
 
                                42 degrees Celsius. A ration pump can be used to add IPTG to the medium
 
                                upon receiving the SCM signal. The main part is a sterile tank made of
 
                                plexiglass, including a transparent and equal thickness area for
 
                                spectrophotometry and fluorescence detection. Plus, magnetic stirrer,
 
                                ventilation device and other devices for cultivation are also contained
 
                                in this module.</p>
 
                            <h3>3. Program</h3>
 
                            <p>The core function of this module is realized by STM32 single chip
 
                                microcomputer. The logic control program is designed as follows: the
 
                                digital temperature controller continuously monitors the temperature
 
                                changes in the container, and keeps communicating with the micro
 
                                controller. Micro controller controls the relay to turn on the light
 
                                source and photocell briefly every minute to detect the growth of
 
                                biological community in the container. If the electromagnetic wave of
 
                                600 nanometer wavelength reaches a certain threshold, the micro
 
                                controller opens the relay of the electric heating rod through the
 
                                digital temperature controller; If the wavelength of 485 nanometer to
 
                                510 nanometer, the micro controller through the digital temperature
 
                                controller to disconnect the relay of the electric heating rod, and
 
                                prompt to replace the solution.</p>
 
  
                            <h3>4. Showcase</h3>
 
                            <p>Worked by our skillful teammates in hardware group, the prototype of our hardware is
 
                                built and tested. We record and document a clip of video of this machine, upload it to
 
                                iGEM repository, and append it below. </p>
 
                            <video src="https://static.igem.org/mediawiki/2021/e/ef/T--XJTU-China--Hardware.mp4"
 
                                class="mt-5 ml-5" width="70%"></video>
 
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>

Latest revision as of 17:07, 21 October 2021

Team:XJTU-China/Contributions

Hardware

Hardware

1. Overview

In order to realize the coordination of hardware circuit and gene circuit, we have made an automatic culture device. At the same time of detecting the growth and production status of bacteria, the device can feedback and adjust the conditions of culture, thus controlling the toggle-switch circuit to allow cells to enter different states between “proliferation” and “production”. Through the fitting of experimental results and modeling prediction, we can calculate the best time to change the cultivation conditions, and write it into the control program to realize the automatic control of the production process.

2. Design

design of hardware Fig. 2.1 The design of hardware

2.1 Detecting Module

We use a simple spectroscopic device to monitor the cell density and the concentration of tryptophan in the medium. Our detecting module includes two sets of tungsten light sources, filters of the corresponding wavelength and CCDs. By measuring the absorbance of light filtered to 600nm wavelength, the cell density can be represented. While with the presence of tryptophan detection circuit, the light passing through the 485nm optical filter can excite GFP and its emission light will be detected by the CCD after a 510nm filter. After receiving by CCDs, all optical signals of this module are converted into corresponding circuit signals and transmitted to the control module for processing.

2.2 Controlling Module

This module contains a single chip microcomputer (SCM) with its controlling program, controlling the parts in cultivation module by receiving and analyzing the signals from detecting module. After receiving the signal, according to the program written into the SCM, it can calculate the state of the cell density and product concentration in the culture medium. When certain conditions are met, corresponding instructions are issued to control the temperature of culture medium and the pumping of inducer, with the information fed back to users in real time.

2.3 Cultivation Module

All fermentation and culture conditions are provided by this module. The electric heater and ventilator maintain the temperature of the incubator and are controlled by the SCM to switch the temperature between 37 and 42 degrees Celsius. A ration pump can be used to add IPTG to the medium upon receiving the SCM signal. The main part is a sterile tank made of plexiglass, including a transparent and equal thickness area for spectrophotometry and fluorescence detection. Plus, magnetic stirrer, ventilation device and other devices for cultivation are also contained in this module.

3. Program

The core function of this module is realized by STM32 single chip microcomputer. The logic control program is designed as follows: the digital temperature controller continuously monitors the temperature changes in the container, and keeps communicating with the micro controller. Micro controller controls the relay to turn on the light source and photocell briefly every minute to detect the growth of biological community in the container. If the electromagnetic wave of 600 nanometer wavelength reaches a certain threshold, the micro controller opens the relay of the electric heating rod through the digital temperature controller; If the wavelength of 485 nanometer to 510 nanometer, the micro controller through the digital temperature controller to disconnect the relay of the electric heating rod, and prompt to replace the solution.

4. Showcase

Worked by our skillful teammates in hardware group, the prototype of our hardware is built and tested. We record and document a clip of video of this machine, upload it to iGEM repository, and append it below.

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by