Difference between revisions of "Team:XJTU-China/Improve"

(Prototype team page)
 
Line 1: Line 1:
{{IGEM_TopBar}}
+
{{XJTU-China/style}}
{{XJTU-China}}
+
{{XJTU-China/youtube}}
<html>
+
<html lang="en" dir="ltr">
  
 +
<head>
 +
    <title>Team:XJTU-China/Project</title>
 +
    <meta charset="utf-8">
 +
    <meta name="keywords" content="iGEM,Xi'an Jiaotong University,XJTU-China,Tryptophan,
 +
        Trp,Biosynthesis,E.coli">
 +
    <meta name="description"
 +
        content="Welcome to 2021 XJTU-China. Please check our recent work on tryptophan biosynthesis via E.coli">
 +
    <meta name="viewport"
 +
        content="width=device-width, initial-scale=1.0, minimum-scale=0.5, maximum-scale=2.0, user-scalable=yes" />
 +
    <link rel="stylesheet" type="text/css"
 +
        href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China&action=raw&ctype=text/css" />
 +
    <link rel="stylesheet" type="text/css"
 +
        href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/font_awesome_min&action=raw&ctype=text/css" />
 +
    <link rel="stylesheet" type="text/css"
 +
        href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrap&action=raw&ctype=text/css" />
  
<div class="column full_size judges-will-not-evaluate">
+
</head>
<h3>★  ALERT! </h3>
+
<p>This page is used by the judges to evaluate your team for the <a href="https://2021.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2021.igem.org/Judging/Awards"> award listed below</a>. </p>
+
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2021.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
</div>
+
  
 +
<body>
 +
    <!--banner-->
 +
    <section>
 +
        <div class="container row fixedBackground">
 +
            <div class="fixedBackgroundImg"
 +
                style="background-image: url(https://static.igem.org/mediawiki/2021/f/fd/T--XJTU-China--bg.jpg);">
 +
            </div>
 +
            <div class="pageHeadline"><span>Improve</span></div>
 +
        </div>
 +
    </section>
 +
    <!--main-->
 +
    <section class="main">
 +
        <div class="container mainBox" id="mainBox">
 +
            <div class="row" id="container">
 +
                <div class="side col-lg-3">
 +
                    <nav class="dr-menu">
 +
                        <h3 class="ml-5">Improve</h3>
 +
                        <ul>
 +
                            <li><a class="fa fa-plug" href="#1"> 1. Construction and Verification</a>
 +
                            </li>
 +
                            <li><a class="fa fa-plug" href="#2"> 2. Characterization of trp production</a>
 +
                                <ul>
 +
                                    <li><a class="fa fa-plug" href="#2.1"> 2.1 Tryptophan determination</a></li>
 +
                                    <li><a class="fa fa-plug" href="#2.2"> 2.2 Tryptophan yield</a></li>
 +
                                    <li><a class="fa fa-plug" href="#2.3"> 2.3 Protein modelling</a></li>
 +
                                </ul>
 +
                            </li>
 +
                            <li><a class="fa fa-plug" href="#3"> 3. Characterization of cell proliferation</a></li>
 +
                            <li><a class="fa fa-plug" href="#4"> 4. Conclusions</a></li>
 +
                    </nav>
 +
                </div>
 +
                <div class="page xjtuText col-lg-8 col-12 justify-content-center">
 +
                    <h1>Improvement</h1>
 +
                    <div class="row">
 +
                        <div class="col-12 d-flex justify-content-center">
 +
                            <div class="highlightBox mt-5">
 +
                                <p>AroG (3-deoxy-7-phosphoheptulonate synthase, <a
 +
                                        href="https://www.brenda-enzymes.org/enzyme.php?ecno=2.5.1.54">EC 2.5.1.54</a>,
 +
                                    <a href="http://parts.igem.org/Part:BBa_K1060000">BBa_K1060000</a>), catalyzes the
 +
                                    following reaction:<br>
 +
                                    phosphoenolpyruvate(PEP) + D-erythrose-4-phosphate(E4P) + H<span
 +
                                        class="sub">2</span>O = 3-deoxy-D-arabino-hept-2-ulosonate
 +
                                    7-phosphate (DAHP) + phosphate
 +
                                </p>
 +
                                <p>The reaction is a key branching point of the glycolysis and shikimate pathways.
 +
                                    Expression of
 +
                                    aroG can lead to more substrate into the shikimate pathway, which can improve the
 +
                                    yield of
 +
                                    downstream products as tryptophan, phenylalanine, tyrosine and benzazole <i>etc.</i>
 +
                                </p>
 +
                                <p>AroG-S211F, in which the serine at 211 was replaced by phenylalanine, has also been
 +
                                    reported
 +
                                    to be able to increase the production of downstream product in shikimate pathway.
 +
                                    However
 +
                                    the structural mechanism is unclear. And also it is not sure whether it can increase
 +
                                    the
 +
                                    production of our tryptophan. So In our project, aroG-S211F was overexpressed,
 +
                                    attempted to
 +
                                    improve the production of tryptophan. </p>
 +
                                <p>An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG S211F were
 +
                                    constructed to
 +
                                    characterize and measure the function of AroG-S211F in <i>E.coli</i> DH5alpha(Fig.
 +
                                    1.1).
 +
                                    Firstly
 +
                                    the yield of tryptophan of mutant aroG and the native one respectively were detected
 +
                                    by PDAB
 +
                                    method modified by ourselves. Secondly, considering that the over-expression of aroG
 +
                                    will
 +
                                    significantly reduce the amount of substrate (glucose) entering the glycolysis
 +
                                    pathway, in
 +
                                    turn affecting the normal cell proliferation, the effect of aroG-S211F on the cell
 +
                                    proliferation was also tested by the comparison of growth rate of the wild-type
 +
                                    <i>E.coli</i> and
 +
                                    the engineered <i>E.coli</i> with aroG-S211F.
 +
                                </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                    <a class="anchor" id="1"></a>
 +
                    <h2 class="ml-5 mt-5">1. Construction and Verification of aroG circuit</h2>
 +
                    <p>aroG S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden
 +
                        Gate assembly (BsaI). After transformed into <i>E.coli</i> DH5alpha, plasmid extraction and
 +
                        electrophoresis, PCR amplification
 +
                        and sequencing were conducted to confirm its correctness. The results are list in Fig. 1.1 </p>
 +
                    <div class="imgWrapper centerize">
 +
                        <img src="https://static.igem.org/mediawiki/2021/c/c3/T--XJTU-China--aroG.png" alt="Fig. 1.1"
 +
                            width="70%">
 +
                        <span class="description"><strong>Fig. 1.1 The DNA agarose gel electrophoresis result of
 +
                                AroG-S211F circuit, plasmid and PCR product. </strong>(a) The length of the circuit is
 +
                            2503bp (b) The length of the plasmid is 4738bp. And the two discrete bands are thought as
 +
                            either open-coiled or super-coiled plasmids (c)The amplicon is expected to be 2526bp.
 +
                        </span>
 +
                    </div>
 +
                    <p>Meanwhile, the quantitatively assay by RT-qPCR was also performed to verified its mRNA level. As
 +
                        shown in Fig. 1.2, the transcriptional level was increased about two folds after IPTG induction,
 +
                        indicating the circuit was successfully constructed with functional aroG mutant. The basal
 +
                        expression of aroG without IPTG induction can be observed due to one copy of native aroG in
 +
                        <i>E.coli</i> genome.
 +
                    </p>
 +
                    <div class="imgWrapper centerize">
 +
                        <img src="https://static.igem.org/mediawiki/2021/2/21/T--XJTU-China--improvement3.1.png" width="70%"
 +
                            alt="Fig. 1.2">
 +
                        <span class="description"><strong>Fig. 1.2 The relative mRNA level of aroG-S211F in DH5alpha
 +
                                strain with Part:BBa_K3832008 inserted in pET28a+ vector.</strong></span>
 +
                    </div>
 +
                    <a class="anchor" id="2"></a>
 +
                    <h2 class="ml-5 mt-5">2. Characterization the effect of AroG-S211F on tryptophan production</h2>
 +
                    <a class="anchor" id="2.1"></a>
 +
                    <h3 class="ml-5">2.1 Tryptophan can be easily determined by modified PDAB chromogenic method</h3>
 +
                    <div class="card card-dark ml-5 mt-5 mb-5" style="width: 90%;">
 +
                        <button class="btn btn-default" type="button" data-toggle="collapse"
 +
                            data-target="#ncharacterization" aria-expanded="false" aria-controls="part">
 +
                            Modified PDAB chromogenic Method
 +
                        </button>
 +
                        <div class="collapse" id="ncharacterization">
 +
                            <div class="card card-body card-dark">
 +
                                <ol style="color: white; font-family: 'eras';">
 +
                                    <li>Freeze-thaw bacterial culture medium with suspension cells for over 3 times.
 +
                                    </li>
 +
                                    <li>Add 100 ul medium into 400 ul PDAB (p-dimethylaminobezaldehyde) solution (3
 +
                                        mg/ml in
 +
                                        9 M solution of sulfuric acid). Then keep at 60&#8451; for 20 min.</li>
 +
                                    <li>Add 3 ul 0.5% (w/w) solution of sodium nitrite. Then keep at 60&#8451; for
 +
                                        15min.
 +
                                    </li>
 +
                                    <li>Measure absorption under 590 nm wavelength (OD<span class="sub">590</span>).
 +
                                    </li>
 +
                                </ol>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                    <a class="anchor" id="2.2"></a>
 +
                    <h3 class="ml-5">2.2 The yield of tryptophan was significantly improved in AroG-S211F strain
 +
                        compared to native
 +
                        AroG</h3>
 +
                    <p>As shown in Fig. 2.1, compared with the <i>E.coli</i> harboring the blank vector and native aroG
 +
                        gene
 +
                        (BBa_K1060000), the yield of tryptophan in the engineered <i>E.coli</i> with aroG-S211F induced
 +
                        by 1 mM
 +
                        IPTG continuously increased in the 30 h cultivation (green triangle), reaching a maximal
 +
                        productivity of 160 mg/ml per OD, while the blank controls slowly increased and maintained its
 +
                        production at about 1200 min, arriving about 80 mg/ml per OD, half of the previous one (circle
 +
                        and square). It is the same case in absent of IPTG (blue triangle), indicating the low leaky
 +
                        expression of our circuit. In all, our circuit containing AroG-S211F can efficiently produce
 +
                        tryptophan with the highest productivity of 160 mg/ml per OD, which can be further improved
 +
                        under the control of toggle-switch. </p>
 +
                    <div class="imgWrapper centerize">
 +
                        <img src="https://static.igem.org/mediawiki/2021/2/2c/T--XJTU-China--improvement3.3.png" width="70%"
 +
                            alt="Fig. 2.1">
 +
                        <span class="description"><strong>Fig. 2.1 The tryptophan production curve of the engineering
 +
                                <i>E.coli</i> with aroG-S211F and <i>E.coli</i> with native aroG.</strong></span>
 +
                    </div>
 +
                    <a class="anchor" id="2.3"></a>
 +
                    <h3 class="ml-5">2.3 The structural mechanisms was elucidated by protein structure modeling</h3>
 +
                    <p>To explain the concrete mechanisms of the promotion effect by AroG-S211F comparing wild-type
 +
                        AroG, protein structure modeling is used to analyze the thermodynamics and structure of them.
 +
                    </p>
  
<div class="clear"></div>
+
                    <p>From an energy perspective, our modeling results show that the mutant protein exhibits lower
 +
                        binding free energy with the catalytic substrate in the presence of the inhibitor (Phe), that
 +
                        is, it is able to bind more tightly and stably to the substrate, thus improving catalytic
 +
                        efficiency. On the other hand, structural analysis also reflected that the binding tightness
 +
                        between the mutated site and the inhibitor was reduced, which weakened its inhibitory effect.
 +
                    </p>
 +
                    <div class="imgWrapper centerize">
 +
                        <img src="https://static.igem.org/mediawiki/2021/7/7e/T--XJTU-China--binding-energy.png" width="70%" alt="binding-energy">
 +
                        <span class="description"><strong>Fig. 2.2 The binding energy of Phe with either AroG or AroG-S211F</strong></span>
 +
                    </div>
 +
                    <p>By the modeling result, the mutation (S211 to F211) in AroG is proposed to eliminate the
 +
                        allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream
 +
                        product yield.</p>
 +
                        <div class="row">
 +
                            <div class="col-12">
 +
                                <p class="float-right nav mt-3">For more detail of our protein modelling, see also our<a
 +
                                        href="https://2021.igem.org/Team:XJTU-China/protein_model">
 +
                                        &nbsp;Protein Modelling&nbsp;&nbsp;<span class="fa fa-wrench"></span></a></p>
 +
                            </div>
 +
                        </div>
 +
                    <a class="anchor" id="3"></a>
 +
                    <h2 class="ml-5 mt-5">3. Characterization the effect of aroG-S211F on cell proliferation</h2>
 +
                    <p>The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell
 +
                        growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of
 +
                        engineered <i>E.coli</i> and blank strain were continuously monitored, as shown in Fig. The
 +
                        Logistic
 +
                        equation was used to fit the growth curve, the obvious inhibitory effect of aroG expression on
 +
                        cell proliferation was observed, especially with IPTG induction. The growth parameters K
 +
                        (environmental capacity) and r (intrinsic growth rate) of different experimental groups was also
 +
                        obtained from the fitting Logistic curve, and the parameter r decreased dramatically in
 +
                        <i>E.coli</i>
 +
                        with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell.
 +
                    </p>
 +
                    <div class="imgWrapper centerize">
 +
                        <img src="https://static.igem.org/mediawiki/2021/f/f2/T--XJTU-China--POC-Fig2-3.png" width="70%"
 +
                            alt="Fig. 3.1">
 +
                        <span class="description"><strong>Fig. 3.1</strong> (a) The population density of <i>E.coli</i>
 +
                            was
 +
                            measured at 600nm by
 +
                            colorimetry. The scatter represents the result of the measurement. The Logistic equation was
 +
                            used to fit the growth curve, and the fitting results were shown in the curve. (b) shows the
 +
                            growth parameters K (environmental capacity) and r (intrinsic growth rate) of different
 +
                            experimental groups obtained from the fitting results in (a).</span>
 +
                    </div>
 +
                    <a class="anchor" id="4"></a>
 +
                    <h2 class="ml-5 mt-5">4. Conclusions:</h2>
 +
                    <p>A lacUV5 controlled-aroG S211F gene circuit was successfully constructed, and the overexpression
 +
                        of aroG-S211F significantly improved the tryptophan production, with a highest productivity of
 +
                        160 mg/ml per OD. Protein structure modeling elucidate that the improvement may attribute to the
 +
                        elimination of the allosteric inhibition of phenylalanine, thus increasing the catalytic rate
 +
                        and downstream product yield. However, because of the inhibition on the glycolysis pathway of
 +
                        aroG, the cell growth was obviously inhibited. The results confirmed our hypothesis that cell
 +
                        proliferation and tryptophan production should be separated, and it has been designed to be
 +
                        strictly controlled by toggle-switch circuit, in which cell proliferation (pykA gene
 +
                        overexpression) and tryptophan production (aroG-S211F overexpression) was constructed in the two
 +
                        arms of toggle-switch. (View our design on <b><a
 +
                                href="https://2021.igem.org/Team:XJTU-China/Design">Team:XJTU-China/Design</a></b>).</p>
 +
                </div>
 +
                <div class="col-lg-1"></div>
 +
            </div>
 +
        </div>
 +
    </section>
  
 +
    <!--JS-->
 +
    <script type="text/javascript"
 +
        src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/jquery&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript"
 +
        src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrapJS&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript"
 +
        src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/lottie&action=raw&ctype=text/javascript"></script>
 +
    <!--dr-menuSliding-->
 +
    <script>
 +
        var fsliding = (function () {
 +
            window.addEventListener('scroll', function () {
 +
                var scroll = $(window).scrollTop();
 +
                var pageHeight = $(window).height();
 +
                var pageWidth = $(window).width();
 +
                var drMenu = $(".dr-menu");
 +
                var containerHeight = $("#container").height();
 +
                var drMenuHeight = drMenu.height();
 +
                var headerHeight = $("header").height();
  
<div class="column full_size">
+
                if (pageWidth < 992) {
<h1>Improvement of an Existing Part</h1>
+
                    drMenu.hide();
 
+
                }
<h3>Gold Medal Criterion #2</h3>
+
                else {
<p>Make a new Part that improves the function of an existing Part. This improvement must be distinct from your work for Bronze and Silver medals. </p>
+
                    drMenu.show();
 
+
                    // drmenu到底, -5px莫名其妙
<p>You must document your improvement on <strong>both the existing and new Parts' Main Pages</strong> on the <a href="http://parts.igem.org/Main_Page">Registry</a> for your team to be eligible for this criteria.</p>
+
                    if (scroll - 5 - (0.7 * pageHeight - headerHeight) + drMenuHeight >= containerHeight) {
 
+
                        drMenu.css({
 
+
                            "position": "relative",
</div>
+
                            "top": (containerHeight - drMenuHeight).toString() + "px"
 
+
                        });
 
+
                    }
<div class="column full_size">
+
                    //滑动时,-5px莫名其妙
<div class="highlight decoration_B_full">
+
                    else if (scroll - 5 > 0.7 * pageHeight - headerHeight) {
 
+
                        drMenu.css({
<h3>Adding parts to the Registry</h3>
+
                            "position": "fixed",
<p>You can add parts to the Registry at our <a href="http://parts.igem.org/Add_a_Part_to_the_Registry">Add a Part to the Registry</a> link.</p>
+
                            "top": (headerHeight + 100).toString() + "px"
 
+
                        });
<p>We encourage teams to start adding and documenting their parts on the Registry as soon as they can. Once you add your parts to the Registry, you can continue to add documentation to them throughout the iGEM season (up until the Registry freeze). This will allow you to remember all the details about your parts and store their history in the wiki. Documentation includes the characterization data of your parts.</p>
+
                    }
<div class="button_link">
+
                    //未滑动时
<a href="http://parts.igem.org/Add_a_Part_to_the_Registry">
+
                    else {
ADD PARTS
+
                        drMenu.css({
</a>
+
                            "position": "relative",
</div>
+
                            "top": "0"
 
+
                        });
</div>
+
                    }
</div>
+
                }
 +
            })
 +
        })()
 +
    </script>
 +
</body>
  
 
</html>
 
</html>
 +
{{XJTU-China/header}}
 +
{{XJTU-China/footer}}

Revision as of 12:23, 21 October 2021

Team:XJTU-China/Project

Improve

Improvement

AroG (3-deoxy-7-phosphoheptulonate synthase, EC 2.5.1.54, BBa_K1060000), catalyzes the following reaction:
phosphoenolpyruvate(PEP) + D-erythrose-4-phosphate(E4P) + H2O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate (DAHP) + phosphate

The reaction is a key branching point of the glycolysis and shikimate pathways. Expression of aroG can lead to more substrate into the shikimate pathway, which can improve the yield of downstream products as tryptophan, phenylalanine, tyrosine and benzazole etc.

AroG-S211F, in which the serine at 211 was replaced by phenylalanine, has also been reported to be able to increase the production of downstream product in shikimate pathway. However the structural mechanism is unclear. And also it is not sure whether it can increase the production of our tryptophan. So In our project, aroG-S211F was overexpressed, attempted to improve the production of tryptophan.

An inducible circuit BBa_K3832008 containing lacUV5-controlled aroG S211F were constructed to characterize and measure the function of AroG-S211F in E.coli DH5alpha(Fig. 1.1). Firstly the yield of tryptophan of mutant aroG and the native one respectively were detected by PDAB method modified by ourselves. Secondly, considering that the over-expression of aroG will significantly reduce the amount of substrate (glucose) entering the glycolysis pathway, in turn affecting the normal cell proliferation, the effect of aroG-S211F on the cell proliferation was also tested by the comparison of growth rate of the wild-type E.coli and the engineered E.coli with aroG-S211F.

1. Construction and Verification of aroG circuit

aroG S211F gene was chemically synthetized by Genewiz and cloned into pET28a+ backbone by Golden Gate assembly (BsaI). After transformed into E.coli DH5alpha, plasmid extraction and electrophoresis, PCR amplification and sequencing were conducted to confirm its correctness. The results are list in Fig. 1.1

Fig. 1.1 Fig. 1.1 The DNA agarose gel electrophoresis result of AroG-S211F circuit, plasmid and PCR product. (a) The length of the circuit is 2503bp (b) The length of the plasmid is 4738bp. And the two discrete bands are thought as either open-coiled or super-coiled plasmids (c)The amplicon is expected to be 2526bp.

Meanwhile, the quantitatively assay by RT-qPCR was also performed to verified its mRNA level. As shown in Fig. 1.2, the transcriptional level was increased about two folds after IPTG induction, indicating the circuit was successfully constructed with functional aroG mutant. The basal expression of aroG without IPTG induction can be observed due to one copy of native aroG in E.coli genome.

Fig. 1.2 Fig. 1.2 The relative mRNA level of aroG-S211F in DH5alpha strain with Part:BBa_K3832008 inserted in pET28a+ vector.

2. Characterization the effect of AroG-S211F on tryptophan production

2.1 Tryptophan can be easily determined by modified PDAB chromogenic method

  1. Freeze-thaw bacterial culture medium with suspension cells for over 3 times.
  2. Add 100 ul medium into 400 ul PDAB (p-dimethylaminobezaldehyde) solution (3 mg/ml in 9 M solution of sulfuric acid). Then keep at 60℃ for 20 min.
  3. Add 3 ul 0.5% (w/w) solution of sodium nitrite. Then keep at 60℃ for 15min.
  4. Measure absorption under 590 nm wavelength (OD590).

2.2 The yield of tryptophan was significantly improved in AroG-S211F strain compared to native AroG

As shown in Fig. 2.1, compared with the E.coli harboring the blank vector and native aroG gene (BBa_K1060000), the yield of tryptophan in the engineered E.coli with aroG-S211F induced by 1 mM IPTG continuously increased in the 30 h cultivation (green triangle), reaching a maximal productivity of 160 mg/ml per OD, while the blank controls slowly increased and maintained its production at about 1200 min, arriving about 80 mg/ml per OD, half of the previous one (circle and square). It is the same case in absent of IPTG (blue triangle), indicating the low leaky expression of our circuit. In all, our circuit containing AroG-S211F can efficiently produce tryptophan with the highest productivity of 160 mg/ml per OD, which can be further improved under the control of toggle-switch.

Fig. 2.1 Fig. 2.1 The tryptophan production curve of the engineering E.coli with aroG-S211F and E.coli with native aroG.

2.3 The structural mechanisms was elucidated by protein structure modeling

To explain the concrete mechanisms of the promotion effect by AroG-S211F comparing wild-type AroG, protein structure modeling is used to analyze the thermodynamics and structure of them.

From an energy perspective, our modeling results show that the mutant protein exhibits lower binding free energy with the catalytic substrate in the presence of the inhibitor (Phe), that is, it is able to bind more tightly and stably to the substrate, thus improving catalytic efficiency. On the other hand, structural analysis also reflected that the binding tightness between the mutated site and the inhibitor was reduced, which weakened its inhibitory effect.

binding-energy Fig. 2.2 The binding energy of Phe with either AroG or AroG-S211F

By the modeling result, the mutation (S211 to F211) in AroG is proposed to eliminate the allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream product yield.

3. Characterization the effect of aroG-S211F on cell proliferation

The over-expression of aroG inhibits the glycolysis pathway, thus definitely affecting the cell growth. So the effect of aroG-S211F on cell proliferation was also detected. The OD600 of engineered E.coli and blank strain were continuously monitored, as shown in Fig. The Logistic equation was used to fit the growth curve, the obvious inhibitory effect of aroG expression on cell proliferation was observed, especially with IPTG induction. The growth parameters K (environmental capacity) and r (intrinsic growth rate) of different experimental groups was also obtained from the fitting Logistic curve, and the parameter r decreased dramatically in E.coli with aroG-S211F induced by IPTG, indicating the increased doubling time of the cell.

Fig. 3.1 Fig. 3.1 (a) The population density of E.coli was measured at 600nm by colorimetry. The scatter represents the result of the measurement. The Logistic equation was used to fit the growth curve, and the fitting results were shown in the curve. (b) shows the growth parameters K (environmental capacity) and r (intrinsic growth rate) of different experimental groups obtained from the fitting results in (a).

4. Conclusions:

A lacUV5 controlled-aroG S211F gene circuit was successfully constructed, and the overexpression of aroG-S211F significantly improved the tryptophan production, with a highest productivity of 160 mg/ml per OD. Protein structure modeling elucidate that the improvement may attribute to the elimination of the allosteric inhibition of phenylalanine, thus increasing the catalytic rate and downstream product yield. However, because of the inhibition on the glycolysis pathway of aroG, the cell growth was obviously inhibited. The results confirmed our hypothesis that cell proliferation and tryptophan production should be separated, and it has been designed to be strictly controlled by toggle-switch circuit, in which cell proliferation (pykA gene overexpression) and tryptophan production (aroG-S211F overexpression) was constructed in the two arms of toggle-switch. (View our design on Team:XJTU-China/Design).

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by