Difference between revisions of "Team:XJTU-China/Design"

(Created page with "{{XJTU-China/style}} {{XJTU-China/youtube}} <html lang="en" dir="ltr"> <head> <title>Team:XJTU-China/Design</title> <meta charset="utf-8"> <meta name="keywords" c...")
 
Line 9: Line 9:
 
         Trp,Biosynthesis,E.coli">
 
         Trp,Biosynthesis,E.coli">
 
     <meta name="description"
 
     <meta name="description"
          content="Welcome to 2021 XJTU-China. Please check our recent work on tryptophan biosynthesis via E.coli">
+
        content="Welcome to 2021 XJTU-China. Please check our recent work on tryptophan biosynthesis via E.coli">
 
     <meta name="viewport"
 
     <meta name="viewport"
          content="width=device-width, initial-scale=1.0, minimum-scale=0.5, maximum-scale=2.0, user-scalable=yes" />
+
        content="width=device-width, initial-scale=1.0, minimum-scale=0.5, maximum-scale=2.0, user-scalable=yes" />
 
     <link rel="stylesheet" type="text/css"
 
     <link rel="stylesheet" type="text/css"
          href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China&action=raw&ctype=text/css" />
+
        href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China&action=raw&ctype=text/css" />
 
     <link rel="stylesheet" type="text/css"
 
     <link rel="stylesheet" type="text/css"
          href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/font_awesome_min&action=raw&ctype=text/css" />
+
        href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/font_awesome_min&action=raw&ctype=text/css" />
 
     <link rel="stylesheet" type="text/css"
 
     <link rel="stylesheet" type="text/css"
          href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrap&action=raw&ctype=text/css" />
+
        href="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrap&action=raw&ctype=text/css" />
  
 
</head>
 
</head>
  
 
<body>
 
<body>
<!--banner-->
+
    <!--banner-->
<section>
+
    <section>
    <div class="container row fixedBackground">
+
        <div class="container row fixedBackground">
        <div class="fixedBackgroundImg"
+
            <div class="fixedBackgroundImg"
            style="background-image: url(https://static.igem.org/mediawiki/2021/e/eb/T--XJTU-China--poc-bg.png);">
+
                style="background-image: url(https://static.igem.org/mediawiki/2021/e/eb/T--XJTU-China--poc-bg.png);">
 +
            </div>
 +
            <div class="pageHeadline"><span>Design</span></div>
 
         </div>
 
         </div>
        <div class="pageHeadline"><span>Design</span></div>
+
     </section>
     </div>
+
    <!--main-->
</section>
+
    <section class="main">
<!--main-->
+
        <div class="container mainBox" id="mainBox">
<section class="main">
+
            <div class="row" id="container">
    <div class="container mainBox" id="mainBox">
+
                <div class="side col-lg-3">
        <div class="row" id="container">
+
                    <nav class="dr-menu">
            <div class="side col-lg-3">
+
                        <h3>Design</h3>
                <nav class="dr-menu">
+
                        <ul>
                    <h3>Design</h3>
+
                            <li><a class="fa fa-plug" href="#1">&nbsp;Design</a>
                    <ul>
+
                                <ul>
                        <li><a class="fa fa-plug" href="#1">&nbsp;Design</a>
+
                                    <li><a class="fa fa-plug" href="#1-1">&nbsp;Overview</a></li>
                        </li>
+
                                </ul>
                    </ul>
+
                            </li>
                </nav>
+
                        </ul>
            </div>
+
                     </nav>
            <div class="page xjtuText col-lg-8 col-12 justify-content-center">
+
                <a class="anchor" id="1"></a>
+
                <h1 class="mt-5">Design</h1>
+
 
+
                <a class="anchor" id="1-1"></a>
+
                <h2 class="mt-5 ml-4">Overview</h2>
+
                <p>In our project, we plan to realize the efficiently production of tryptophan in <i>E.coli</i>. Based on the
+
                    biosynthesis pathway of tryptophan, aroG(encoding 3-deoxy-7-phosphoheptulonate synthase) and trpBA
+
                    (encoding tryptophan synthase) were used to improve the yield of tryptophan (Fig.1.1). aroG can
+
                    divert the intermediate products of glycolysis into the chorismate synthesis pathway, while trpBA
+
                    can synthesize the precursor chorismate into tryptophan.</p>
+
                <div class="imgWrapper centerize">
+
                    <img src="https://static.igem.org/mediawiki/2021/3/33/T--XJTU-China--POC-Fig1-1.png"
+
                        alt="Fig.1.1" width="70%">
+
                     <span class="description">Fig.1.1</span>
+
 
                 </div>
 
                 </div>
                <p>We consider that excessive tryptophan production could interfere the proliferation of <i>E.coli</i>, for
+
                 <div class="page xjtuText col-lg-8 col-12 justify-content-center">
                    over-expressed aroG will competitive inhibit the glycolysis pathway while large amount of ATP and
+
                    <a class="anchor" id="1"></a>
                    NADPH are consumed during the synthesis. Therefore, a toggle-switch circuit are used to reconciling
+
                     <h1 class="mt-5">Design</h1>
                    the contradiction between cell proliferation and tryptophan production. In one of the bistable
+
                    state, over expression of pykA(encoding pyruvate kinase II) is used to eliminate the competitive
+
                    inhibition of aroG, reducing the production process and enabling a rapid cell proliferation.
+
                    When cells reach a high density, they can be induced into another state where aroG and trpBA are
+
                    expressed to product tryptophan efficiently (Fig.1.2).</p>
+
                <p>Here two types of inducible promoter, Pλ promoter and lacUV5 promoter ,are used, which can be induced
+
                    by heat (>42&#8451;) and IPTG respectively. When lacUV5 promoter activated by IPTG, the cells will enter
+
                    the “proliferation” state; while Pλ promoter is activated by heat, they will turn into the
+
                    “production” state for expression of aroG and trpBA.</p>
+
                 <div class="imgWrapper centerize">
+
                    <img src="https://static.igem.org/mediawiki/2021/8/87/T--XJTU-China--genetic_circuits.png"
+
                        alt="Fig.1.2" width="70%">
+
                     <span class="description">Fig.1.2</span>
+
                </div>
+
                <p>In order to test whether each part are functional individually, our working circuit is divided into
+
                    several devives.</p>
+
  
                <div class="row">
+
                    <a class="anchor" id="1-1"></a>
                     <div class="col-6">
+
                     <h2 class="mt-5 ml-4">Overview</h2>
                         <div class="imgWrapper centerize">
+
                    <p>In our project, we plan to realize the efficiently production of tryptophan in <i>E.coli</i>.
                            <img src="https://static.igem.org/mediawiki/2021/8/81/T--XJTU-China--Partner-Fig1-2a.png"
+
                         Based on the
                                alt="Fig.1.3(a)" width="80%">
+
                        biosynthesis pathway of tryptophan, aroG(encoding 3-deoxy-7-phosphoheptulonate synthase) and
                            <span class="description"><b>Fig.1.3(a)</b> aroG</span>
+
                        trpBA
                         </div>
+
                        (encoding tryptophan synthase) were used to improve the yield of tryptophan (Fig.1.1). aroG can
                         <br>
+
                        divert the intermediate products of glycolysis into the chorismate synthesis pathway, while
                         <div class="imgWrapper centerize">
+
                        trpBA
                            <img src="https://static.igem.org/mediawiki/2021/7/78/T--XJTU-China--Partner-Fig1-2c.png"
+
                        can synthesize the precursor chorismate into tryptophan.</p>
                                alt="Fig.1.3(c)" width="80%">
+
                    <div class="imgWrapper centerize">
                            <span class="description"><b>Fig.1.3(c)</b> pykA</span>
+
                        <img src="https://static.igem.org/mediawiki/2021/3/33/T--XJTU-China--POC-Fig1-1.png" alt="Fig.1.1"
                        </div>
+
                            width="70%">
 +
                        <span class="description">Fig.1.1</span>
 +
                    </div>
 +
                    <p>We consider that excessive tryptophan production could interfere the proliferation of
 +
                         <i>E.coli</i>, for
 +
                         over-expressed aroG will competitive inhibit the glycolysis pathway while large amount of ATP
 +
                        and
 +
                        NADPH are consumed during the synthesis. Therefore, a toggle-switch circuit are used to
 +
                        reconciling
 +
                        the contradiction between cell proliferation and tryptophan production. In one of the bistable
 +
                        state, over expression of pykA(encoding pyruvate kinase II) is used to eliminate the competitive
 +
                        inhibition of aroG, reducing the production process and enabling a rapid cell proliferation.
 +
                        When cells reach a high density, they can be induced into another state where aroG and trpBA are
 +
                        expressed to product tryptophan efficiently (Fig.1.2).</p>
 +
                    <p>Here two types of inducible promoter, Pλ promoter and lacUV5 promoter ,are used, which can be
 +
                         induced
 +
                        by heat (>42&#8451;) and IPTG respectively. When lacUV5 promoter activated by IPTG, the cells
 +
                        will enter
 +
                        the “proliferation” state; while Pλ promoter is activated by heat, they will turn into the
 +
                        “production” state for expression of aroG and trpBA.</p>
 +
                    <div class="imgWrapper centerize">
 +
                        <img src="https://static.igem.org/mediawiki/2021/8/87/T--XJTU-China--genetic_circuits.png"
 +
                            alt="Fig.1.2" width="70%">
 +
                        <span class="description">Fig.1.2</span>
 
                     </div>
 
                     </div>
                     <div class="col-6">
+
                    <p>In order to test whether each part are functional individually, our working circuit is divided
                        <div class="imgWrapper centerize">
+
                        into
                            <img src="https://static.igem.org/mediawiki/2021/b/b8/T--XJTU-China--Partner-Fig1-2b.png"
+
                        several devives.</p>
                                alt="Fig.1.3(b)" width="80%">
+
 
                            <span class="description"><b>Fig.1.3(b)</b> aroG+trpAB</span>
+
                     <div class="row">
 +
                        <div class="col-6">
 +
                            <div class="imgWrapper centerize">
 +
                                <img src="https://static.igem.org/mediawiki/2021/8/81/T--XJTU-China--Partner-Fig1-2a.png"
 +
                                    alt="Fig.1.3(a)" width="80%">
 +
                                <span class="description"><b>Fig.1.3(a)</b> aroG</span>
 +
                            </div>
 +
                            <br>
 +
                            <div class="imgWrapper centerize">
 +
                                <img src="https://static.igem.org/mediawiki/2021/7/78/T--XJTU-China--Partner-Fig1-2c.png"
 +
                                    alt="Fig.1.3(c)" width="80%">
 +
                                <span class="description"><b>Fig.1.3(c)</b> pykA</span>
 +
                            </div>
 
                         </div>
 
                         </div>
                         <br>
+
                         <div class="col-6">
                        <br>
+
                            <div class="imgWrapper centerize">
                        <div class="imgWrapper centerize">
+
                                <img src="https://static.igem.org/mediawiki/2021/b/b8/T--XJTU-China--Partner-Fig1-2b.png"
                            <img src="https://static.igem.org/mediawiki/2021/7/7f/T--XJTU-China--Partner-Fig1-2d.png"
+
                                    alt="Fig.1.3(b)" width="80%">
                                alt="Fig.1.3(d)" width="80%">
+
                                <span class="description"><b>Fig.1.3(b)</b> aroG+trpAB</span>
                            <span class="description"><b>Fig.1.3(d)</b> toogle-switch</span>
+
                            </div>
 +
                            <br>
 +
                            <br>
 +
                            <div class="imgWrapper centerize">
 +
                                <img src="https://static.igem.org/mediawiki/2021/7/7f/T--XJTU-China--Partner-Fig1-2d.png"
 +
                                    alt="Fig.1.3(d)" width="80%">
 +
                                <span class="description"><b>Fig.1.3(d)</b> toogle-switch</span>
 +
                            </div>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
                </div>
 
  
                <p>In order to realize the family application of our project and the automatic control of production
+
                    <p>In order to realize the family application of our project and the automatic control of production
                    conditions, we have designed a cultivation device. It contains controlling, detecting and cultivating
+
                        conditions, we have designed a cultivation device. It contains controlling, detecting and
                    modules (Fig.1.3). The equipment can monitor the cell growth and tryptophan production while
+
                        cultivating
                    conducting fermentation culture, and control the induction culture conditions through singlechip at
+
                        modules (Fig.1.3). The equipment can monitor the cell growth and tryptophan production while
                    different stages with this signal, so as to activate the expression of specific genes in the gene
+
                        conducting fermentation culture, and control the induction culture conditions through singlechip
                    circuit, controlling the cells into “proliferation/production” state.</p>
+
                        at
                <div class="imgWrapper centerize">
+
                        different stages with this signal, so as to activate the expression of specific genes in the
                    <img src="https://static.igem.org/mediawiki/2021/3/30/T--XJTU-China--POC-Fig1-3.jpeg"
+
                        gene
                        alt="Fig.1.4" width="70%">
+
                        circuit, controlling the cells into “proliferation/production” state.</p>
                    <span class="description">Fig.1.4</span>
+
                    <div class="imgWrapper centerize">
 +
                        <img src="https://static.igem.org/mediawiki/2021/3/30/T--XJTU-China--POC-Fig1-3.jpeg" alt="Fig.1.4"
 +
                            width="70%">
 +
                        <span class="description">Fig.1.4</span>
 +
                    </div>
 +
                    <p>Considering it is difficult to realize real-time detection of tryptophan concentration by
 +
                        chemical
 +
                        method in hardware, we also have designed a detecting circuit which can sense the concentration
 +
                        of
 +
                        tryptophan and report green fluorescence of different light intensities (inversely proportional
 +
                        to
 +
                        the concentration of tryptophan) (Fig.1.4). By introducing this circuit into the engineered
 +
                        bacteria,
 +
                        the concentration of tryptophan in culture medium can be converted into light intensity that can
 +
                        be
 +
                        detected by hardware.</p>
 +
                    <div class="imgWrapper centerize">
 +
                        <img src="https://static.igem.org/mediawiki/2021/f/f2/T--XJTU-China--POC-Fig1-4.png" alt="Fig.1.5"
 +
                            width="70%">
 +
                        <span class="description">Fig.1.5</span>
 +
                    </div>
 +
                    <p>Through the interaction of hardware circuit and gene circuit, we can achieve both the automatic
 +
                        control and the high production, giving a full play to the advantages and potential of Synthetic
 +
                        Biology.</p>
 
                 </div>
 
                 </div>
                <p>Considering it is difficult to realize real-time detection of tryptophan concentration by chemical
+
                 <div class="col-lg-1"></div>
                    method in hardware, we also have designed a detecting circuit which can sense the concentration of
+
                    tryptophan and report green fluorescence of different light intensities (inversely proportional to
+
                    the concentration of tryptophan) (Fig.1.4). By introducing this circuit into the engineered bacteria,
+
                    the concentration of tryptophan in culture medium can be converted into light intensity that can be
+
                    detected by hardware.</p>
+
                 <div class="imgWrapper centerize">
+
                    <img src="https://static.igem.org/mediawiki/2021/f/f2/T--XJTU-China--POC-Fig1-4.png"
+
                        alt="Fig.1.5" width="70%">
+
                    <span class="description">Fig.1.5</span>
+
                </div>
+
                <p>Through the interaction of hardware circuit and gene circuit, we can achieve both the automatic
+
                    control and the high production, giving a full play to the advantages and potential of Synthetic
+
                    Biology.</p>
+
 
             </div>
 
             </div>
            <div class="col-lg-1"></div>
 
 
         </div>
 
         </div>
     </div>
+
     </section>
</section>
+
  
<!--JS-->
+
    <!--JS-->
<script type="text/javascript"
+
    <script type="text/javascript"
 
         src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/jquery&action=raw&ctype=text/javascript"></script>
 
         src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/jquery&action=raw&ctype=text/javascript"></script>
<script type="text/javascript"
+
    <script type="text/javascript"
 
         src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrapJS&action=raw&ctype=text/javascript"></script>
 
         src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/bootstrapJS&action=raw&ctype=text/javascript"></script>
<script type="text/javascript"
+
    <script type="text/javascript"
 
         src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/lottie&action=raw&ctype=text/javascript"></script>
 
         src="https://2021.igem.org/wiki/index.php?title=Template:XJTU-China/lottie&action=raw&ctype=text/javascript"></script>
<!--dr-menuSliding-->
+
    <!--dr-menuSliding-->
<script>
+
    <script>
    var fsliding = (function () {
+
        var fsliding = (function () {
        window.addEventListener('scroll', function () {
+
            window.addEventListener('scroll', function () {
            var scroll = $(window).scrollTop();
+
                var scroll = $(window).scrollTop();
            var pageHeight = $(window).height();
+
                var pageHeight = $(window).height();
            var pageWidth = $(window).width();
+
                var pageWidth = $(window).width();
            var drMenu = $(".dr-menu");
+
                var drMenu = $(".dr-menu");
            var containerHeight = $("#container").height();
+
                var containerHeight = $("#container").height();
            var drMenuHeight = drMenu.height();
+
                var drMenuHeight = drMenu.height();
            var headerHeight = $("header").height();
+
                var headerHeight = $("header").height();
  
            if (pageWidth < 992) {
+
                if (pageWidth < 992) {
                drMenu.hide();
+
                    drMenu.hide();
            }
+
            else {
+
                drMenu.show();
+
                // drmenu到底, -5px莫名其妙
+
                if (scroll - 5 - (0.7 * pageHeight - headerHeight) + drMenuHeight >= containerHeight) {
+
                    drMenu.css({
+
                        "position": "relative",
+
                        "top": (containerHeight - drMenuHeight).toString() + "px"
+
                    });
+
                }
+
                //滑动时,-5px莫名其妙
+
                else if (scroll - 5 > 0.7 * pageHeight - headerHeight) {
+
                    drMenu.css({
+
                        "position": "fixed",
+
                        "top": (headerHeight + 100).toString() + "px"
+
                    });
+
 
                 }
 
                 }
                //未滑动时
 
 
                 else {
 
                 else {
                     drMenu.css({
+
                     drMenu.show();
                         "position": "relative",
+
                    // drmenu到底, -5px莫名其妙
                        "top": "0"
+
                    if (scroll - 5 - (0.7 * pageHeight - headerHeight) + drMenuHeight >= containerHeight) {
                     });
+
                         drMenu.css({
 +
                            "position": "relative",
 +
                            "top": (containerHeight - drMenuHeight).toString() + "px"
 +
                        });
 +
                    }
 +
                    //滑动时,-5px莫名其妙
 +
                    else if (scroll - 5 > 0.7 * pageHeight - headerHeight) {
 +
                        drMenu.css({
 +
                            "position": "fixed",
 +
                            "top": (headerHeight + 100).toString() + "px"
 +
                        });
 +
                     }
 +
                    //未滑动时
 +
                    else {
 +
                        drMenu.css({
 +
                            "position": "relative",
 +
                            "top": "0"
 +
                        });
 +
                    }
 
                 }
 
                 }
             }
+
             })
         })
+
         })()
    })()
+
    </script>
</script>
+
 
</body>
 
</body>
  

Revision as of 09:46, 21 October 2021

Team:XJTU-China/Design

Design

Design

Overview

In our project, we plan to realize the efficiently production of tryptophan in E.coli. Based on the biosynthesis pathway of tryptophan, aroG(encoding 3-deoxy-7-phosphoheptulonate synthase) and trpBA (encoding tryptophan synthase) were used to improve the yield of tryptophan (Fig.1.1). aroG can divert the intermediate products of glycolysis into the chorismate synthesis pathway, while trpBA can synthesize the precursor chorismate into tryptophan.

Fig.1.1 Fig.1.1

We consider that excessive tryptophan production could interfere the proliferation of E.coli, for over-expressed aroG will competitive inhibit the glycolysis pathway while large amount of ATP and NADPH are consumed during the synthesis. Therefore, a toggle-switch circuit are used to reconciling the contradiction between cell proliferation and tryptophan production. In one of the bistable state, over expression of pykA(encoding pyruvate kinase II) is used to eliminate the competitive inhibition of aroG, reducing the production process and enabling a rapid cell proliferation. When cells reach a high density, they can be induced into another state where aroG and trpBA are expressed to product tryptophan efficiently (Fig.1.2).

Here two types of inducible promoter, Pλ promoter and lacUV5 promoter ,are used, which can be induced by heat (>42℃) and IPTG respectively. When lacUV5 promoter activated by IPTG, the cells will enter the “proliferation” state; while Pλ promoter is activated by heat, they will turn into the “production” state for expression of aroG and trpBA.

Fig.1.2 Fig.1.2

In order to test whether each part are functional individually, our working circuit is divided into several devives.

Fig.1.3(a) Fig.1.3(a) aroG

Fig.1.3(c) Fig.1.3(c) pykA
Fig.1.3(b) Fig.1.3(b) aroG+trpAB


Fig.1.3(d) Fig.1.3(d) toogle-switch

In order to realize the family application of our project and the automatic control of production conditions, we have designed a cultivation device. It contains controlling, detecting and cultivating modules (Fig.1.3). The equipment can monitor the cell growth and tryptophan production while conducting fermentation culture, and control the induction culture conditions through singlechip at different stages with this signal, so as to activate the expression of specific genes in the gene circuit, controlling the cells into “proliferation/production” state.

Fig.1.4 Fig.1.4

Considering it is difficult to realize real-time detection of tryptophan concentration by chemical method in hardware, we also have designed a detecting circuit which can sense the concentration of tryptophan and report green fluorescence of different light intensities (inversely proportional to the concentration of tryptophan) (Fig.1.4). By introducing this circuit into the engineered bacteria, the concentration of tryptophan in culture medium can be converted into light intensity that can be detected by hardware.

Fig.1.5 Fig.1.5

Through the interaction of hardware circuit and gene circuit, we can achieve both the automatic control and the high production, giving a full play to the advantages and potential of Synthetic Biology.

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by