Difference between revisions of "Team:XJTU-China/model-production"

(Created page with "{{XJTU-China/style}} {{XJTU-China/youtube}} {{XJTU-China/typora}} <html lang="en" dir="ltr"> <head> <title>Team:XJTU-China/model-population-dynamics</title> <meta charset...")
 
Line 10,261: Line 10,261:
 
               </ul>
 
               </ul>
 
             </section>
 
             </section>
             <a class="btn btn-primary return" href="/Team:XJTU-China/Model#establishment-of-model"><span>Return to
+
             <a class="btn btn-primary return mt-5" href="/Team:XJTU-China/Model#establishment-of-model"><span>Return to
 
                 MODEL</span></a>
 
                 MODEL</span></a>
  

Revision as of 06:48, 17 October 2021

Team:XJTU-China/model-population-dynamics

Model

The model of production

Background

Integrate the models we build, the final model of production can be established.

Here, the population of E. coli can influence the production rate in the model of synthesis of tryptophan, while the concentration of pyruvate can influence the growth rate of E. coli. Meanwhile, the production of catalyzers in synthesis of tryptophan is controlled by the genetic circuits.

With these models, we can study the final output (relative concentration) of tryptophan, and determine the optimal production strategy.

Theory

According to the model of population dynamics,

(5.1) { d N d t = r N ( 1 N K ) , r = r ( [ P y r ] ) .

According to the model of genetic circuits, for promoters, we have

(5.2) { d [ r l a c I ] d t = k s y n , l a c I α λ P R , 0 [ d l a c I ] + k s y n , l a c I α λ P R 1 [ p c I 857 ] [ d l a c I ] k d e , l a c I [ r l a c I ] , d [ r a r o G ] d t = k s y n , a r o G α λ P R , 0 [ d a r o G ] + k s y n , a r o G α λ P R 1 [ p c I 857 ] [ d a r o G ] k d e , a r o G [ r a r o G ] , d [ r t r p B ] d t = k s y n , t r p B α λ P R , 0 [ d t r p B ] + k s y n , t r p B α λ P R 1 [ p c I 857 ] [ d t r p B ] k d e , t r p B [ r t r p B ] , d [ r t r p A ] d t = k s y n , t r p A α λ P R , 0 [ d t r p A ] + k s y n , t r p A α λ P R 1 [ p c I 857 ] [ d t r p A ] k d e , t r p A [ r t r p A ] d [ r c I 857 ] d t = k s y n , c I 857 α P l a c , 0 [ d c I 857 ] + k s y n , c I 857 α P l a c [ I P T G ] [ I P T G ] + [ p l a c I ] [ d c I 857 ] k d e , c I 857 [ r c I 857 ] , d [ r p y k A ] d t = k s y n , p y k A α P l a c , 0 [ d p y k A ] + k s y n , p y k A α P l a c [ I P T G ] [ I P T G ] + [ p l a c I ] [ d p y k A ] k d e , p y k A [ r p y k A ] ;

and for protein, we have

(3.3) { d [ p l a c I ] d t = k p s y n , l a c I [ r l a c I ] k p d e , l a c I [ p l a c I ] , d [ p a r o G ] d t = k p s y n , a r o G [ r a r o G ] k p d e , a r o G [ p a r o G ] , d [ p t r p B ] d t = k p s y n , t r p B [ r t r p B ] k p d e , t r p B [ p t r p B ] , d [ p t r p A ] d t = k p s y n , t r p A [ r t r p A ] k p d e , t r p A [ p t r p A ] , d [ p c l 857 ] d t = k p s y n , c l 857 [ r c l 857 ] k p d e , c l 857 [ p c l 857 ] , d [ p p y k A ] d t = k p s y n , p y k A [ r p y k A ] k p d e , p y k A [ p p y k A ] .

According to the model of synthesis of tryptophan,

(5.3) { 1 N d [ G l c ] d t = v m a x , 1 [ G l c ] [ G l c ] + k m , 1 , 1 N d [ P E P ] d t = v m a x , 1 [ G l c ] [ G l c ] + k m , 1 k c a t , a r o G [ a r o G ] [ P E P ] [ P E P ] + k m , a r o G k c a t , p y k A [ p y k A ] [ P E P ] [ P E P ] + k m , p y k A , 1 N d [ D A H P ] d t = k c a t , a r o G [ a r o G ] [ P E P ] [ P E P ] + k m , a r o G v m a x , 2 [ D A H P ] [ D A H P ] + k m , 2 , 1 N d [ P y r ] d t = k c a t , p y k A [ p y k A ] [ P E P ] [ P E P ] + k m , p y k A , 1 N d [ 3 I G P ] d t = v m a x , 2 [ D A H P ] [ D A H P ] + k m , 2 k c a t , t r p A B [ t r p A B ] [ 3 I G P ] [ 3 I G P ] + k m , t r p A B , 1 N d [ T r p ] d t = k c a t , t r p A B [ t r p A B ] [ 3 I G P ] [ 3 I G P ] + k m , t r p A B .

Parameter

The parameters are shown in the table below.

Parameter Value Reference
k 6.08 × 10 9 CFU / ml https://2018.igem.org/Team:Lund/Model/GrowthCurves/Results
k s y n , x 0.019 s 1 https://2018.igem.org/Team:NUS_Singapore-A/Model
k d e , x 0.0013 s 1 https://2018.igem.org/Team:NUS_Singapore-A/Model
k p s y n , x 0.47 s 1 https://2018.igem.org/Team:NUS_Singapore-A/Model
k p d e , x 0.136 s 1 https://2018.igem.org/Team:NUS_Singapore-A/Model

Meanwhile, the correction is performed according to the CDS length.

NAME LENGTH CORRECTION RATE
RFP (Benchmark) 678 bp 1
lacI 1083 bp 0.626
aroG 1053 bp 0.644
trpB 1194 bp 0.568
trpA 807 bp 0.84
cl857 714 bp 0.95
pykA 1443 bp 0.47

Result and conclusion

Let the initial value of [ G l c ] be 20 . Add IPTG at the beginning, and change the time of raising the temperature. Let t 2 be the time of raising temperature. The final outputs of [ P y r ] and [ T r p ] are shown in the figure below.

From the figure, we can see that:

  • When t 2 < 1170 min , the output of tryptophan increases slowly as t 2 increases;
  • When t 2 = 1170 min , the maximun output of tryptophan is 15.43 ( 77.15 % of 20 );
  • When 1170 min < t 2 < 2000 min , the output of tryptophan drops sharply as t 2 increases;
  • Finally, when t 2 > 2000 min , the output of tryptophan is around 8 ( 40 % of 20 ).

Next, let the time of raising temperature be 1170 min , and consider the three models we build before. The figure below shows the population density of E. coli.

From the figure, we can see that:

  • When N < K 2 , the population density grows exponentially;
  • When N > K 2 , the environmental resources have a restrictive effect on E. coli;
  • Finally the population density approaches K ;
  • The population density reach balance at about 33 h .

The figure below shows the concentration change of gene product.

From the figure, we can see that:

  • There are two stable states during the period of time;
  • After raising temperature at 1170 min , the concentrations of cl857 and pykA go down, while the concentrations of lacI, aroG, trpA and trpB go up.

The figure below shows the concentration change during the synthesis of tryptophan.

From the figure, we can see that:

  • When reaction starts, Glc begin to convert to PEP, and PEP immediately turns into Pyr and DAHP;
  • The concentration of DAHP reaches maximum at about 1900 min , and after that it goes down;
  • The product of DAHP is 3IGP, and 3IGP immediately converts to Trp;
  • The final products of reactions are Pyr and Trp, whose concentrations are stable at 3000 min .
Return to MODEL

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by