Line 36: | Line 36: | ||
<section class="main"> | <section class="main"> | ||
− | <div class="container mainBox" id="mainBox"> | + | <div class="container mainBox bg-white" id="mainBox"> |
<div class="row" id="container"> | <div class="row" id="container"> | ||
<div class="side col-lg-3"> | <div class="side col-lg-3"> | ||
Line 67: | Line 67: | ||
<div id="intro"> | <div id="intro"> | ||
<h1 id='model'>Model</h1> | <h1 id='model'>Model</h1> | ||
− | <p>Our modeling includes five steps: </p> | + | <div class="highlightBox"> |
− | + | <p>Our modeling includes five steps: </p> | |
− | + | <ul class="pl-5" style="width: 85%;"> | |
− | + | <li>Establish the model of <u>population dynamics</u>, | |
− | + | which displays | |
− | + | the population change of <em>E. coli</em>; | |
− | + | </li> | |
− | + | <li>Establish the model of <u>toggle switch</u>, where | |
− | + | the production of | |
− | + | red fluorescent protein (RFP) and green fluorescent protein (GFP) shows the | |
− | + | effect of toggle | |
− | + | switch; </li> | |
− | + | <li>Establish the model of <u>genetic circuits</u> based | |
− | + | on the model of | |
− | + | toggle switch; </li> | |
− | + | <li>Establish the model of <u>synthesis of | |
− | + | tryptophan</u> based on | |
− | + | Michaelis-Menten equation; </li> | |
− | + | <li>Finally, integrate the above models to establish <u>the model of | |
− | + | production</u>. </li> | |
+ | </ul> | ||
+ | </div> | ||
<p><img src=".\figure\model.png" /></p> | <p><img src=".\figure\model.png" /></p> | ||
<p><a href='./(a) population dynamics.html'>(a) The model of population | <p><a href='./(a) population dynamics.html'>(a) The model of population | ||
Line 99: | Line 101: | ||
</div> | </div> | ||
<!-- The model of Population Dynamics --> | <!-- The model of Population Dynamics --> | ||
− | < | + | <button class="btn btn-primary" type="button" data-toggle="collapse" |
− | + | data-target="#populationDynamics" aria-expanded="false" aria-controls="populationDynamics"> | |
− | </ | + | The Model of Population Dynamics |
− | < | + | </button> |
− | aria-expanded="false" aria-controls=" | + | <button class="btn btn-primary" type="button" data-toggle="collapse" data-target="#toggleSwitch" |
− | </ | + | aria-expanded="false" aria-controls="toggleSwitch"> |
+ | The Model of Toggle Switch | ||
+ | </button> | ||
<div id='populationDynamics' class='write collapse'> | <div id='populationDynamics' class='write collapse'> | ||
<h1 id='the-model-of-population-dynamics'><span>The model of population dynamics</span></h1> | <h1 id='the-model-of-population-dynamics'><span>The model of population dynamics</span></h1> |
Revision as of 08:51, 16 October 2021
Model
Our modeling includes five steps:
- Establish the model of population dynamics, which displays the population change of E. coli;
- Establish the model of toggle switch, where the production of red fluorescent protein (RFP) and green fluorescent protein (GFP) shows the effect of toggle switch;
- Establish the model of genetic circuits based on the model of toggle switch;
- Establish the model of synthesis of tryptophan based on Michaelis-Menten equation;
- Finally, integrate the above models to establish the model of production.
(a) The model of population dynamics
(b) The model of toggle switch
(c) The model of genetic circuits
The model of population dynamics
First, we establish the model of population dynamics to study the variation of E. coli population density.
Theory
Let
where
- When
, the population density grows exponentially; - When
, the environmental resources have a restrictive effect on E. coli, and finally the population density approaches .
Parameter
The parameters are shown in the table below.
Parameter | Value | Reference |
---|---|---|
|
|
https://2018.igem.org/Team:Lund/Model/GrowthCurves/Results |
|
|
From experiment. |
Result
Let the initial value of population density be
Code
main.m
x% initialization
clc;
close all;
clear all;
% numerical solution
[t, N] = ode45(@(t, N) odefcn(t, N)', [0 3000], 6.08*10^9*0.0001);
% draw figure
figure();
plot(t, N, 'LineWidth', 2);
xlabel('Time/min');
ylabel('Population Density')
grid on;
odefun.m
xxxxxxxxxx
function dN = odefcn(t, N)
r = 0.0073;
K = 6.08*10^9;
dN = r*N*(1-N/K);
The model of toggle switch
Next, to verify the effect of toggle switch, we design a genetic circuits as the figure below shows.
The promoter
controls the production of lacI and green fluorescent protein (GFP), and can be promoted by raising temperature. The promoter controls the production of cI857 and red fluorescent protein (RFP), and can be promoted by IPTG. cl857 restricts the promoter , while lacI restricts the promoter .
Theory
For
For the transcription of promoter
where
For the transcription of promoter
where
For the translation of protein translation, we have
where
Parameter
The parameters are shown in the table below.
Meanwhile, the correction is performed according to the CDS length.
NAME | LENGTH | CORRECTION RATE |
---|---|---|
RFP (Benchmark) |
|
|
GFP |
|
|
cI857 |
|
|
lacI |
|
|
Result
When
- At first, the concentration of GFP is more than the concentration of RFP;
- After adding IPTG, the concentration of RFP outnumbered GFP;
- After removing IPTG and raising temperature, the rank of RFP and GFP exchanged again.
Code
main.m
x% initialization
clc;
close all;
clear all;
% initial value
tspan = [0 3000];
c0 = [0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.01];
% add IPTG
t1 = 1000;
iptg1 = 10;
% raise temperature
t2 = 2000;
alpha = 1.2;
% numerical solution
[t, c] = ode45(@(t, c) odefcn(t, c, t1, iptg1, t2, alpha)', tspan, c0);
% draw figure
figure();
plot(t, c(:, 6), 'g', t, c(:, 8), 'r', 'LineWidth', 2);
legend('[pGFP]', '[pRFP]');
xlabel('Time/s');
ylabel('Concentration');
grid on;
odefun.m
xxxxxxxxxx
function dc = odefcn(t, c, t1, iptg1, t2, alpha)
% lambdaPR: lacI, GFP
lambdaPR = 0.5;
alphal0 = 0.5;
alphal1 = 1;
% Plac: cl857, RFP
Plac = 1.3;
alphap0 = 0.5;
alphap1 = 1;
% RFP
ksynr = 0.019;
kder = 0.0013*10;
kpsynr = 0.47;
kpder = 0.136*10;
% GFP
kg = 0.877;
ksyng = kg*ksynr;
kdeg = kg*kder;
kpsyng = kg*kpsynr;
kpdeg = kg*kpder;
% cI857
kc = 0.95;
ksync = kc*ksynr;
kdec = kc*kder;
kpsync = kc*kpsynr;
kpdec = kc*kpder;
% lacI
kl = 0.626;
ksynl = kl*ksynr;
kdel = kl*kder;
kpsynl = kl*kpsynr;
kpdel = kl*kpder;
% add IPTG
iptg = 0;
if (t>t1)
iptg = iptg1;
end
% raise temperature
if (t>t2)
iptg = 0;
alphal1 = alpha;
end
% differential equations
dc(1) = ksynl*alphal0*lambdaPR + ksynl*alphal1*(1/(c(7)))*lambdaPR - kdel*c(1); % [rlacI]
dc(2) = ksyng*alphal0*lambdaPR + ksyng*alphal1*(1/(c(7)))*lambdaPR - kdeg*c(2); % [rGFP]
dc(3) = ksync*alphap0*Plac + ksync*alphap1*(iptg/(iptg+c(5)))*Plac - kdec*c(3); % [rcI857]
dc(4) = ksynr*alphap0*Plac + ksynr*alphap1*(iptg/(iptg+c(5)))*Plac - kder*c(4); % [rRFP]
dc(5) = kpsynl*c(1) - kpdel*c(5); % [placI]
dc(6) = kpsyng*c(2) - kpdeg*c(6); % [pGFP]
dc(7) = kpsync*c(3) - kpdec*c(7); % [pcI857]
dc(8) = kpsynr*c(4) - kpder*c(8); % [pRFP]