Difference between revisions of "Team:XJTU-China/Model"

Line 101: Line 101:
 
                     <a class="btn btn-primary" data-toggle="collapse" href="#populationDynamics" role="button"
 
                     <a class="btn btn-primary" data-toggle="collapse" href="#populationDynamics" role="button"
 
                         aria-expanded="false" aria-controls="collapseExample">The Model of Population Dynamics
 
                         aria-expanded="false" aria-controls="collapseExample">The Model of Population Dynamics
 +
                    </a>
 +
                    <a class="btn btn-primary" data-toggle="collapse" href="#toggleSwitch" role="button"
 +
                        aria-expanded="false" aria-controls="collapseExample">The Model of Toggle Switch
 
                     </a>
 
                     </a>
 
                     <div id='populationDynamics' class='write collapse'>
 
                     <div id='populationDynamics' class='write collapse'>
Line 1,127: Line 1,130:
 
         </div>
 
         </div>
 
         <!-- The model of Toggle Switch -->
 
         <!-- The model of Toggle Switch -->
        <a class="btn btn-primary" data-toggle="collapse" href="#toggleSwitch" role="button" aria-expanded="false"
+
 
            aria-controls="collapseExample">The Model of Toggle Switch
+
        </a>
+
 
         <div id='toggleSwitch' class='write collapse'>
 
         <div id='toggleSwitch' class='write collapse'>
 
             <h1 id='the-model-of-toggle-switch'><span>The model of toggle switch</span></h1>
 
             <h1 id='the-model-of-toggle-switch'><span>The model of toggle switch</span></h1>

Revision as of 08:40, 16 October 2021

Team:XJTU-China/Model

Model

Model

Our modeling includes five steps:

  • Establish the model of population dynamics, which displays the population change of E. coli;
  • Establish the model of toggle switch, where the production of red fluorescent protein (RFP) and green fluorescent protein (GFP) shows the effect of toggle switch;
  • Establish the model of genetic circuits based on the model of toggle switch;
  • Establish the model of synthesis of tryptophan based on Michaelis-Menten equation;
  • Finally, integrate the above models to establish the model of production.

(a) The model of population dynamics

(b) The model of toggle switch

(c) The model of genetic circuits

(d) The model of synthesis of tryptophan

(e) The model of production

The model of population dynamics

First, we establish the model of population dynamics to study the variation of E. coli population density.

Theory

Let N be the population density of E. coli. With the Logistic equation, we know that

(1.1) d N d t = r N ( 1 N K ) ,

where r and K are the growth rate and the environmental capacity of E. coli respectively. Equation ( 1.1 ) shows that:

  • When N < K 2 , the population density grows exponentially;
  • When N > K 2 , the environmental resources have a restrictive effect on E. coli, and finally the population density approaches K .

Parameter

The parameters are shown in the table below.

Parameter Value Reference
k 6.08 × 10 9 CFU / ml https://2018.igem.org/Team:Lund/Model/GrowthCurves/Results
r 0.0073 0.01 min 1 From experiment.

Result

Let the initial value of population density be 0.01 % of the environmental capacity. From the figure, we obtain that the population density reach balance after about 33 h .

Code

main.m

odefun.m

 

The model of toggle switch

Next, to verify the effect of toggle switch, we design a genetic circuits as the figure below shows.

The promoter λ P R controls the production of lacI and green fluorescent protein (GFP), and can be promoted by raising temperature. The promoter P l a c controls the production of cI857 and red fluorescent protein (RFP), and can be promoted by IPTG. cl857 restricts the promoter λ P R , while lacI restricts the promoter P l a c .

Theory

For x , let [ d x ] , [ r x ] and [ p x ] be the concentration of corresponding DNA, RNA and protein. And let [ I P T G ] be the concentration of IPTG.

For the transcription of promoter λ P R , we have

(2.1) { d [ r l a c I ] d t = k s y n , l a c I α λ P R , 0 [ d l a c I ] + k s y n , l a c I α λ P R 1 [ p c I 857 ] [ d l a c I ] k d e , l a c I [ r l a c I ] , d [ r G F P ] d t = k s y n , G F P α λ P R , 0 [ d G F P ] + k s y n , G F P α λ P R 1 [ p c I 857 ] [ d G F P ] k d e , G F P [ r G F P ] ,

where k s y n , x and k d e , x are the synthesis rate and the degradation rate of x respectively, α λ P R , 0 is the background expression rate of λ P R , and α λ P R is the induced expression rate of λ P R . Equation ( 2.1 ) shows that the change rates of [ r l a c I ] and [ r G F P ] decrease as [ p c I 857 ] increases.

For the transcription of promoter P l a c , we have

(2.2) { d [ r c I 857 ] d t = k s y n , c I 857 α P l a c , 0 [ d c I 857 ] + k s y n , c I 857 α P l a c [ I P T G ] [ I P T G ] + [ p l a c I ] [ d c I 857 ] k d e , c I 857 [ r c I 857 ] , d [ r R F P ] d t = k s y n , R F P α P l a c , 0 [ d R F P ] + k s y n , R F P α P l a c [ I P T G ] [ I P T G ] + [ p l a c I ] [ d R F P ] k d e , R F P [ r R F P ] ,

where α P l a c , 0 is the background expression rate of P l a c , and α P l a c is the induced expression rate of P l a c . Equation ( 2.2 ) shows that the change rates of [ r c I 857 ] and [ r R F P ] decrease as [ p l a c I ] increases. And [ I P T G ] can raise the change rates.

For the translation of protein translation, we have

(2.3) { d [ p l a c I ] d t = k p s y n , l a c I [ r l a c I ] k p d e , l a c I [ p l a c I ] , d [ p G F P ] d t = k p s y n , G F P [ r G F P ] k p d e , G F P [ p G F P ] , d [ p c I 857 ] d t = k p s y n , c I 857 [ r c I 857 ] k p d e , c I 857 [ p c I 857 ] , d [ p R F P ] d t = k p s y n , R F P [ r R F P ] k p d e , R F P [ p R F P ] ,

where k p s y n , x and k p d e , x are the synthesis rate and the degradation rate of the protein of x respectively.

Parameter

The parameters are shown in the table below.

PARAMETER VALUE REFERENCE
k s y n , x 0.019 s 1 https://2018.igem.org/Team:NUS_Singapore-A/Model
k d e , x 0.0013 s 1 https://2018.igem.org/Team:NUS_Singapore-A/Model
k p s y n , x 0.47 s 1 https://2018.igem.org/Team:NUS_Singapore-A/Model
k p d e , x 0.136 s 1 https://2018.igem.org/Team:NUS_Singapore-A/Model

Meanwhile, the correction is performed according to the CDS length.

NAME LENGTH CORRECTION RATE
RFP (Benchmark) 678 bp 1
GFP 773 bp 0.877
cI857 714 bp 0.95
lacI 1083 bp 0.626

Result

When t = 1000 s , add IPTG. When t = 2000 s , remove IPTG and raise temperature. The results are shown in the figure below. From the figure, we can see that there are three stable states.

  • At first, the concentration of GFP is more than the concentration of RFP;
  • After adding IPTG, the concentration of RFP outnumbered GFP;
  • After removing IPTG and raising temperature, the rank of RFP and GFP exchanged again.

Code

main.m

odefun.m

 

contact us

Xi'an Jiaotong University
28 Xianning West Road
Xi'an, Shaanxi, China, 710049
xjtu_igem@xjtu.edu.cn

Made with ❤️ by