The model of population dynamics
Background
First, we establish the model of population dynamics to study the variation of E. coli population density. Here, we use the Logistic equation to build our model.
The logistic equation (sometimes called the Verhulst model or logistic growth curve) is a model of population growth first published by Pierre Verhulst (1845, 1847). The model is continuous in time, but a modification of the continuous equation to a discrete quadratic recurrence equation known as the logistic map is also widely used.
Theory
Let
where
Parameter
The parameters are shown in the table below.
Parameter | Value | Reference |
---|---|---|
|
|
https://2018.igem.org/Team:Lund/Model/GrowthCurves/Results |
|
|
From experiment. |
Result
Let the initial value of population density be
Conclusion
Equation
- When
, the population density grows exponentially; - When
, the environmental resources have a restrictive effect on E. coli; - Finally the population density approaches
; - The population density reach balance at about
.
Reference
Verhulst, P.-F. "Recherches mathématiques sur la loi d'accroissement de la population." Nouv. mém. de l'Academie Royale des Sci. et Belles-Lettres de Bruxelles 18, 1-41, 1845.
Verhulst, P.-F. "Deuxième mémoire sur la loi d'accroissement de la population." Mém. de l'Academie Royale des Sci., des Lettres et des Beaux-Arts de Belgique 20, 1-32, 1847.
Return to MODELLING Go: The Model of Toggle Switch Go: The Model of Genetic Circuits Go: The Model of Synthesis of Tryptophan Go: The Model of Production