1. Finlayson, Graham D.; Schiele, Bernt; Crowley, James L. (1998). "Comprehensive Colour Image Normalization" (PDF). Burkhard and Neumann: 475–490. OCLC 849180213. INSPEC 7210999.
  2. Juan Sanchez; Xavier Binefa (200). Laurini, Robert (ed.). Color Normalization for Digital Video Processing. Lecture Notes in Computer Science. 2929. Springer. pp. 125–139. doi:10.1007/3-540-40053-2_17. ISBN 978-3-540-41177-2.
  3. Richard Szeliski (30 September 2010). Computer Vision: Algorithms and Applications. Springer Science & Business Media. pp. 10–16. ISBN 978-1-84882-935-0.
  4. Chervyakov, N. I.; Lyakhov, P. A.; Deryabin, M. A.; Nagornov, N. N.; Valueva, M. V.; Valuev, G. V. (2020). "Residue Number System-Based Solution for Reducing the Hardware Cost of a Convolutional Neural Network". Neurocomputing. 407: 439–453. doi:10.1016/j.neucom.2020.04.018. S2CID 219470398. Convolutional neural networks (CNNs) represent deep learning architectures that are currently used in a wide range of applications, including computer vision, speech recognition, identification of albuminous sequences in bioinformatics, production control, time series analysis in finance, and many others.