Team:Thrace/Project Design

References

  1. Wu, J., Li, Q., & Fu, X. (2019). Fusobacterium nucleatum Contributes to the Carcinogenesis of Colorectal Cancer by Inducing Inflammation and Suppressing Host Immunity. Translational Oncology, 12(6), 846-851. https://doi.org/10.1016/j.tranon.2019.03.003
  2. Mima, K., Nishihara, R., Qian, Z., Cao, Y., Sukawa, Y., & Nowak, J. et al. (2021). Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis.
  3. Komiya, Y., Shimomura, Y., Higurashi, T., Sugi, Y., Arimoto, J., & Umezawa, S. et al. (2018). Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut, 68(7), 1335-1337. https://doi.org/10.1136/gutjnl-2018-316661
  4. Guven, D., Dizdar, O., Alp, A., Akdoğan Kittana, F., Karakoc, D., & Hamaloglu, E. et al. (2019). Analysis of Fusobacterium nucleatum and Streptococcus gallolyticus in saliva of colorectal cancer patients. Biomarkers In Medicine, 13(9), 725-735. https://doi.org/10.2217/bmm-2019-0020
  5. Castellarin, M., Warren, R., Freeman, J., Dreolini, L., Krzywinski, M., & Strauss, J. et al. (2011). Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Research, 22(2), 299-306. https://doi.org/10.1101/gr.126516.111
  6. Rapado-González, Majem, Álvarez-Castro, Díaz-Peña, Abalo, & Suárez-Cabrera et al. (2019). A Novel Saliva-Based miRNA Signature for Colorectal Cancer Diagnosis. Journal Of Clinical Medicine, 8(12), 2029. https://doi.org/10.3390/jcm8122029
  7. Sazanov, A., Kiselyova, E., Zakharenko, A., Romanov, M., & Zaraysky, M. (2016). Plasma and saliva miR-21 expression in colorectal cancer patients. Journal Of Applied Genetics, 58(2), 231-237. https://doi.org/10.1007/s13353-016-0379-9
  8. Kellner, M., Koob, J., Gootenberg, J., Abudayyeh, O., & Zhang, F. (2019). SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols, 14(10), 2986-3012. https://doi.org/10.1038/s41596-019-0210-2
  9. Lobato, I., & O'Sullivan, C. (2018). Recombinase polymerase amplification: Basics, applications and recent advances. Trac Trends In Analytical Chemistry, 98, 19-35. https://doi.org/10.1016/j.trac.2017.10.015
  10. Abd El Wahed, A., El-Deeb, A., El-Tholoth, M., Abd El Kader, H., Ahmed, A., & Hassan, S. et al. (2013). A Portable Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Foot-and-Mouth Disease Virus. Plos ONE, 8(8), e71642. https://doi.org/10.1371/journal.pone.0071642
  11. Daher, R., Stewart, G., Boissinot, M., & Bergeron, M. (2016). Recombinase Polymerase Amplification for Diagnostic Applications. Clinical Chemistry, 62(7), 947-958. https://doi.org/10.1373/clinchem.2015.24582
  12. Huang, S., Yang, Z., Zou, D., Dong, D., Liu, A., Liu, W., & Huang, L. (2016). Rapid detection of nusG and fadA in Fusobacterium nucleatum by loop-mediated isothermal amplification. Journal Of Medical Microbiology, 65(8), 760-769. https://doi.org/10.1099/jmm.0.000300
  13. Li, H., Xing, S., Xu, J., He, Y., Lai, Y., & Wang, Y. et al. (2021). Aptamer-based CRISPR/Cas12a assay for the ultrasensitive detection of extracellular vesicle proteins. Talanta, 221, 121670. https://doi.org/10.1016/j.talanta.2020.121670
  14. Dai, Y., Somoza, R., Wang, L., Welter, J., Li, Y., Caplan, A., & Liu, C. (2019). Exploring the Trans‐Cleavage Activity of CRISPR‐Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angewandte Chemie, 131(48), 17560-17566. https://doi.org/10.1002/ange.201910772
  15. Concordet, J., & Haeussler, M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research, 46(W1), W242-W245. https://doi.org/10.1093/nar/gky354
  16. De Puig, H., Lee, R., Najjar, D., Tan, X., Soenksen, L., & Angenent-Mari, N. et al. (2021). Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Science Advances, 7(32). https://doi.org/10.1126/sciadv.abh2944
  17. Kramer, M. (2011). Stem‐Loop RT‐qPCR for miRNAs. Current Protocols In Molecular Biology, 95(1). https://doi.org/10.1093/nar/gni178
  18. Chen, C. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33(20), e179-e179. https://doi.org/10.1093/nar/gni178

Figure 1: RPA mechanism Bhat A.I., Rao G.P. (2020) Recombinase Polymerase Amplification. In: Characterization of Plant Viruses. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0334-5_40

Figure 2: SHERLOCK mechanism Mustafa, M., & Makhawi, A. (2021). SHERLOCK and DETECTR: CRISPR-Cas Systems as Potential Rapid Diagnostic Tools for Emerging Infectious Diseases. Journal Of Clinical Microbiology, 59(3). https://doi.org/10.1128/jcm.00745-20

Follow us:

Facebook Twitter Instagram LinkedIn

SPONSORS