Difference between revisions of "Team:ECNUAS/Proof Of Concept"

(Prototype team page)
 
Line 1: Line 1:
{{IGEM_TopBar}}
+
<html lang="en">
{{ECNUAS}}
+
<html>
+
  
 +
<head>
 +
    <meta charset="UTF-8">
 +
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
 +
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 +
    <title>ECNUAS</title>
 +
    <link rel="stylesheet"
 +
        href="https://2021.igem.org/wiki/index.php?title=Template:ECNUAS/Main_CSS&action=raw&ctype=text/css" />
  
<div class="column full_size judges-will-not-evaluate">
+
</head>
<h3>★  ALERT! </h3>
+
<p>This page is used by the judges to evaluate your team for the <a href="https://2021.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2021.igem.org/Judging/Awards"> award listed below</a>. </p>
+
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2021.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
</div>
+
 
+
 
+
<div class="clear"></div>
+
 
+
 
+
<div class="column full_size">
+
<h1>Proof of Concept</h1>
+
<h3>Gold Medal Criterion #4</h3>
+
<p>Expand upon your Silver medal work for Proposed Implementation and develop a proof of concept for your project.
+
 
+
<br><br>
+
Please see the <a href="https://2021.igem.org/Judging/Medals">2021 Medals Page</a> for more information. </p>
+
</div>
+
  
 +
<body>
 +
    <nav class="head-nav clearfix">
 +
        <div class="top-block"></div>
 +
        <div class="top-nav-bar">
 +
            <ul class="clearfix">
 +
                <span class="small-logo"></span>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:ECNUAS">Home</a>
 +
                </li>
 +
                <li class="active">
 +
                    <a href="">Project</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Description"
 +
                                    class="sub-nav-74">Description</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Experiments"
 +
                                    class="sub-nav-74">Experiments</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Results" class="sub-nav-74">Results</a></li>
 +
                            <li class="current-sub-nav"><a href="#" class="sub-nav-52">Proof Of
 +
                                    Concept</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Notebook" class="sub-nav-52">Notebook</a>
 +
                            </li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Safety">Safety</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="">Parts</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Collection" class="sub-nav-74">Parts
 +
                                    Collection</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Engineering"
 +
                                    class="sub-nav-74">Engineering</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Contribution"
 +
                                    class="sub-nav-74">Contribution</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="">Human Practices</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Human_Practices"
 +
                                    class="sub-nav-74">Integrated Human Practice</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Communication"
 +
                                    class="sub-nav-74">Communication</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Fundraising"
 +
                                    class="sub-nav-74">Fundraising</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:ECNUAS/Implementation">Implementation</a>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:ECNUAS/Entrepreneurship">Entrepreneurship</a>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:ECNUAS/Model">Model</a>
 +
                </li>
 +
                <li>
 +
                    <a href="">Team</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Members" class="sub-nav-74">Team
 +
                                    Members</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Attributions"
 +
                                    class="sub-nav-74">Attributions</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Collaborations"
 +
                                    class="sub-nav-74">Collaborations</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
            </ul>
 +
        </div>
 +
    </nav>
 +
    <div class="sub-banner">
 +
        <img src="https://static.igem.org/mediawiki/2021/e/ed/T--ECNUAS--parts_collection02.png" alt="" />
 +
    </div>
 +
    <div class="sub-content">
 +
        <div class="sub-title">Proof of Concept </div>
 +
        <div class="article-title">Overview</div>
 +
        <div class="article-content">Atrazine is the most widely used herbicide in the world today. In the middle of the
 +
            last century, it was developed and put into production. The excellent herbicidal efficacy and low price of
 +
            atrazine make it widely popularized. </div>
 +
        <div class="article-content">Researches have shown that atrazine pollution has a gender reversal effect on
 +
            frogs, and it also has a negative effect on some other organisms that interfere with growth and
 +
            reproduction.</div>
 +
        <div class="article-content">Inhalation of a small amount of atrazine can cause physical discomfort, such as
 +
            nausea and dizziness; if you stay in an environment contaminated by atrazine for a long time, the function
 +
            of your immune system and lymphatic system is very likely to be impaired. High-dose atrazine may cause
 +
            cancer. </div>
 +
        <div class="article-content">To summarize, atrazine is toxic and easily enters the human body through food. It
 +
            is dangerous to the human nervous system, immune system, and reproductive system. Thus, it is also currently
 +
            listed as an international environmental priority control pollutant.</div>
 +
        <div class="article-content">We position our final product as a quick and convenient detection device of
 +
            atrazine.
 +
            It is a cell-free atrazine biosensor enabling users to detect cyanuric acid, the metabolite of the herbicide
 +
            Atrazine, fast, easily, conveniently at an affordable price.
 +
        </div>
 +
        <div class="article-content">To realize our idea, we came up with the following design-creation of genetically
 +
            encoded biosensor to detect the concentration of CYA, which is a metabolite of the herbicide Atrazine. In
 +
            this biosensor system, protein atzR is first expressed, which has been previously reported as a CYA binding
 +
            protein and can regulate the promoter Pprovoin5. In the presence of CYA, atzR changes the binding
 +
            conformation with promoter Pprovoin5 upon binding with CYA, so as to activate the expression of downstream
 +
            reporter gene green fluorescent protein(GFP). The fluorescence signal of GFP can be detected by the
 +
            fluorescence detector and the concentration of CYA can be determined by signal intensity. In this system,
 +
            GFP can be further replaced by other visible chromogenic proteins, so as to realize the rapid visual
 +
            detection of CYA.</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/3/34/T--ECNUAS--Proof_of_Concept01.jpg" alt="">
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/a/ac/T--ECNUAS--Proof_of_Concept02.jpg" alt="">
 +
        </div>
 +
        <div class="article-title">Supporting Experiment Results </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/4/48/T--ECNUAS--Proof_of_Concept03.jpg" alt="">
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/8/86/T--ECNUAS--Proof_of_Concept04.jpg" alt="">
 +
        </div>
 +
        <div class="article-title">We have successfully obtained an engineered bacteria (bacteria C) that contains the
 +
            two plasmids above. This engineered bacteria is used to make our preliminary functional test to verify the
 +
            feasibility of our biosensor idea. </div>
 +
        <div class="article-title">Functional Tests</div>
 +
        <div class="img-wrap no-margin">
 +
            <span>Table 1. Fluorescence intensity when the concentration of CYA equals to 30uM and the duration is 4
 +
                hours</span>
 +
            <img src="https://static.igem.org/mediawiki/2021/9/92/T--ECNUAS--Proof_of_Concept05.jpg" alt="">
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/d/d0/T--ECNUAS--Proof_of_Concept06.jpg" alt="">
 +
            <span>Figure 1. Histogram of the fluorescence intensity when the concentration of CYA equals to 30uM and the
 +
                duration is 4 hours</span>
 +
        </div>
 +
        <div class="article-content">Clearly as figure 1 indicated, compared with the blank control, bacteria C presents
 +
            obvious higher fluorescence reaction to the cyanuric acid, the metabolite of the herbicide. In such case, it
 +
            did work in detecting the cyanuric acid.</div>
 +
        <div class="article-content">This experiment result is encouraging since it qualitatively proved the power of
 +
            our engineered bacteria in detecting cyanuric acid. This consolidates the foundation for producing our
 +
            future biosensor. </div>
 +
        <div class="article-content">In addition, we also want to explore the concentration of cyanuric acid and the
 +
            detection effectiveness of our engineered bacteria. </div>
 +
        <div class="img-wrap no-margin">
 +
            <span>Table 2. Fluorescence intensity of bacteria C when when the duration is 4 hours under different
 +
                concentration of the cyanuric acid</span>
 +
            <img src="https://static.igem.org/mediawiki/2021/e/ed/T--ECNUAS--Proof_of_Concept07.jpg" alt="">
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/4/41/T--ECNUAS--Proof_of_Concept08.jpg" alt="">
 +
            <span>Figure 2. Histogram of the fluorescence intensity of bacteria C when the duration is 4 hours under
 +
                different concentration of the cyanuric acid</span>
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/5/5f/T--ECNUAS--Proof_of_Concept09.jpg" alt="">
 +
            <span>Figure 3. Histogram of the fluorescence intensity of bacteria C when the duration is 6 hours under
 +
                different concentration of the cyanuric acid</span>
 +
        </div>
 +
        <div class="article-content">According to the histograms (Fig. 2 and Fig. 3), the fluorescence intensity shows a
 +
            decreasing trend with the increase of concentration of cyanuric acid when we used the bacteria C for tests.
 +
            Therefore, we infer that the cyanuric acid might affect the growth of strains so that the higher the
 +
            concentration of the cyanuric acid, the worse the growth of the bacteria, the less of the amount of the
 +
            effective “biosensor”. This experiment result provide us with some clues for optimizing our experiments.
 +
            Thus, in order to fully eliminate this impact, we consider about continuing the concept of cell-free
 +
            extraction and cell-free expression in the next stage of our project. As long as we obtain enough products
 +
            of cell-free extraction, we could step into the cell-free expression experiments to ensure the performance
 +
            of our biosensor without bacteria.</div>
 +
        <div class="article-content">In the long run, we hope that we will use 3D printing to build the device which
 +
            could load our cell-free biosensor and conduct more function tests with it. In the meantime, as the buffer
 +
            in cell-free expression needs to be freshly configured, it is necessary to explore ways to preserve the
 +
            product if it is made into a portable detection device.</div>
 +
        <div class="article-content">Finally, we hope to carry our device to detect the content of cyanuric acid in
 +
            lake/river water and other environmental water.</div>
 +
    </div>
 +
    <footer class="footer">
 +
        <section class="footer-wrap">
 +
            <div class="footer-contact">Contact Info</div>
 +
            <img class="footer-qrcode" src="https://static.igem.org/mediawiki/2021/9/9a/T--ECNUAS--qrcode.jpg" />
 +
            <p class="contact-tips margin-bottom-10">WWeChat Official Account: <i style="color:#070707;">Silent
 +
                    Spring</i>
 +
            </p>
 +
            <p class="contact-tip">Email Contact: <i style="color:#070707;">samlishensheng@qq.com</i>
 +
            </p>
 +
        </section>
 +
    </footer>
 +
</body>
 +
<script>
 +
    let liTags = document.querySelectorAll(".top-nav-bar > ul > li");
 +
    let len = liTags.length;
 +
    for (let i = 0; i < len; i++) {
 +
        liTags[i].onclick = function (e) {
 +
            //先移除所有的点击样式
 +
            for (let j = 0; j < len; j++) {
 +
                liTags[j].classList.remove("active");
 +
            }
 +
            //再添加点击样式
 +
            let li = e.currentTarget;
 +
            li.classList.add("active");
 +
        }
 +
    }
 +
</script>
  
 
</html>
 
</html>

Revision as of 17:56, 16 October 2021

ECNUAS

Proof of Concept
Overview
Atrazine is the most widely used herbicide in the world today. In the middle of the last century, it was developed and put into production. The excellent herbicidal efficacy and low price of atrazine make it widely popularized.
Researches have shown that atrazine pollution has a gender reversal effect on frogs, and it also has a negative effect on some other organisms that interfere with growth and reproduction.
Inhalation of a small amount of atrazine can cause physical discomfort, such as nausea and dizziness; if you stay in an environment contaminated by atrazine for a long time, the function of your immune system and lymphatic system is very likely to be impaired. High-dose atrazine may cause cancer.
To summarize, atrazine is toxic and easily enters the human body through food. It is dangerous to the human nervous system, immune system, and reproductive system. Thus, it is also currently listed as an international environmental priority control pollutant.
We position our final product as a quick and convenient detection device of atrazine. It is a cell-free atrazine biosensor enabling users to detect cyanuric acid, the metabolite of the herbicide Atrazine, fast, easily, conveniently at an affordable price.
To realize our idea, we came up with the following design-creation of genetically encoded biosensor to detect the concentration of CYA, which is a metabolite of the herbicide Atrazine. In this biosensor system, protein atzR is first expressed, which has been previously reported as a CYA binding protein and can regulate the promoter Pprovoin5. In the presence of CYA, atzR changes the binding conformation with promoter Pprovoin5 upon binding with CYA, so as to activate the expression of downstream reporter gene green fluorescent protein(GFP). The fluorescence signal of GFP can be detected by the fluorescence detector and the concentration of CYA can be determined by signal intensity. In this system, GFP can be further replaced by other visible chromogenic proteins, so as to realize the rapid visual detection of CYA.
Supporting Experiment Results
We have successfully obtained an engineered bacteria (bacteria C) that contains the two plasmids above. This engineered bacteria is used to make our preliminary functional test to verify the feasibility of our biosensor idea.
Functional Tests
Table 1. Fluorescence intensity when the concentration of CYA equals to 30uM and the duration is 4 hours
Figure 1. Histogram of the fluorescence intensity when the concentration of CYA equals to 30uM and the duration is 4 hours
Clearly as figure 1 indicated, compared with the blank control, bacteria C presents obvious higher fluorescence reaction to the cyanuric acid, the metabolite of the herbicide. In such case, it did work in detecting the cyanuric acid.
This experiment result is encouraging since it qualitatively proved the power of our engineered bacteria in detecting cyanuric acid. This consolidates the foundation for producing our future biosensor.
In addition, we also want to explore the concentration of cyanuric acid and the detection effectiveness of our engineered bacteria.
Table 2. Fluorescence intensity of bacteria C when when the duration is 4 hours under different concentration of the cyanuric acid
Figure 2. Histogram of the fluorescence intensity of bacteria C when the duration is 4 hours under different concentration of the cyanuric acid
Figure 3. Histogram of the fluorescence intensity of bacteria C when the duration is 6 hours under different concentration of the cyanuric acid
According to the histograms (Fig. 2 and Fig. 3), the fluorescence intensity shows a decreasing trend with the increase of concentration of cyanuric acid when we used the bacteria C for tests. Therefore, we infer that the cyanuric acid might affect the growth of strains so that the higher the concentration of the cyanuric acid, the worse the growth of the bacteria, the less of the amount of the effective “biosensor”. This experiment result provide us with some clues for optimizing our experiments. Thus, in order to fully eliminate this impact, we consider about continuing the concept of cell-free extraction and cell-free expression in the next stage of our project. As long as we obtain enough products of cell-free extraction, we could step into the cell-free expression experiments to ensure the performance of our biosensor without bacteria.
In the long run, we hope that we will use 3D printing to build the device which could load our cell-free biosensor and conduct more function tests with it. In the meantime, as the buffer in cell-free expression needs to be freshly configured, it is necessary to explore ways to preserve the product if it is made into a portable detection device.
Finally, we hope to carry our device to detect the content of cyanuric acid in lake/river water and other environmental water.