Difference between revisions of "Team:ECNUAS/Engineering"

(Prototype team page)
 
Line 1: Line 1:
{{IGEM_TopBar}}
+
<html lang="en">
{{ECNUAS}}
+
<html>
+
  
 +
<head>
 +
    <meta charset="UTF-8">
 +
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
 +
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 +
    <title>ECNUAS</title>
 +
    <link rel="stylesheet"
 +
        href="https://2021.igem.org/wiki/index.php?title=Template:ECNUAS/Main_CSS&action=raw&ctype=text/css" />
  
<div class="column full_size judges-will-not-evaluate">
+
</head>
<h3>★  ALERT! </h3>
+
<p>This page is used by the judges to evaluate your team for the <a href="https://2021.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2021.igem.org/Judging/Awards"> award listed below</a>. </p>
+
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2021.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
</div>
+
 
+
 
+
<div class="clear"></div>
+
 
+
 
+
<div class="column full_size">
+
<h1>Engineering Success</h1>
+
<h3> Silver Medal Criterion #1</h3>
+
 
+
<p>Demonstrate engineering success in a part of your project by going through at least one iteration of the engineering design cycle. This achievement should be distinct from your Contribution for Bronze.
+
<br><br>
+
Please see the <a href="https://2021.igem.org/Judging/Medals">2021 Medals Page</a> for more information.
+
</p>
+
 
+
 
+
<p>If you plan to show engineering success by creating a new Part that has been shown to work as expected, you must document your contribution on the Part's Main Page on the <a href="http://parts.igem.org/Main_Page">Registry</a> for your team to be eligible for this criteria.</p>
+
 
+
</div>
+
  
 +
<body>
 +
    <nav class="head-nav clearfix">
 +
        <div class="top-block"></div>
 +
        <div class="top-nav-bar">
 +
            <ul class="clearfix">
 +
                <span class="small-logo"></span>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:ECNUAS">Home</a>
 +
                </li>
 +
                <li>
 +
                    <a href="">Project</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Description"
 +
                                    class="sub-nav-74">Description</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Experiments"
 +
                                    class="sub-nav-74">Experiments</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Results" class="sub-nav-74">Results</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Proof_Of_Concept" class="sub-nav-52">Proof Of
 +
                                    Concept</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Notebook" class="sub-nav-52">Notebook</a>
 +
                            </li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Safety">Safety</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li class="active">
 +
                    <a href="">Parts</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Collection" class="sub-nav-74">Parts
 +
                                    Collection</a></li>
 +
                            <li class="current-sub-nav"><a href="#" class="sub-nav-74">Engineering</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Contribution"
 +
                                    class="sub-nav-74">Contribution</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="">Human Practices</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Human_Practices"
 +
                                    class="sub-nav-74">Integrated Human Practice</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Communication"
 +
                                    class="sub-nav-74">Communication</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Fundraising"
 +
                                    class="sub-nav-74">Fundraising</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:ECNUAS/Implementation">Implementation</a>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:ECNUAS/Entrepreneurship">Entrepreneurship</a>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:ECNUAS/Model">Model</a>
 +
                </li>
 +
                <li>
 +
                    <a href="">Team</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Members" class="sub-nav-74">Team
 +
                                    Members</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Attributions"
 +
                                    class="sub-nav-74">Attributions</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:ECNUAS/Collaborations"
 +
                                    class="sub-nav-74">Collaborations</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
            </ul>
 +
        </div>
 +
    </nav>
 +
    <div class="sub-banner">
 +
        <img src="https://static.igem.org/mediawiki/2021/e/ed/T--ECNUAS--parts_collection02.png" alt="" />
 +
    </div>
 +
    <div class="sub-content">
 +
        <div class="sub-title">Engineering</div>
 +
        <div class="article-title">Background </div>
 +
        <div class="article-content">Atrazine is a herbicide compound commonly found in agriculture. It can diffuse into
 +
            soil and water. Atrazine can be degraded into cyanuric acid in this process, which leads to the accumulation
 +
            of cyanuric acid in the environment, and has harmful effects on all organisms in the environment. Although
 +
            Atrazine is currently banned in most European countries, the herbicide is still widely used in other parts
 +
            of the world. Atrazine in the environment can be monitored through various chemical analyses, including gas
 +
            chromatography and some physical and chemical detection systems. Although these methods can sensitively
 +
            measure the atrazine content in the environment, the steps are cumbersome, expensive, and time-consuming,
 +
            and require extensive infrastructure and technical expertise. </div>
 +
        <div class="article-title">Design </div>
 +
        <div class="article-content">Biosensor consisting of a cell-free systems that are sensitive and specific to
 +
            specific analytes. It can directly detect the atrazine in sample. Cell-free atrazine biosensor consists of
 +
            three to four components, which can promote gene expression and metabolism in vitro (Figure 1). (1) cell
 +
            lysate/extract, which contains the cellular mechanisms required for protein synthesis; (2) buffer mixture of
 +
            phosphorylated energy substrates, nucleoside triphosphates (NTP), amino acids, salts and other necessary
 +
            cellular cofactors; (3) DNA templates that define the genetic program to be performed in the reaction; and
 +
            the reaction Any other optional exogenous cofactors, substrates or inducers required. The biosensor detect
 +
            cyanuric acid (CYA), a degradation product of atrazine. After atzR binds to CYA, it activates the promoter
 +
            Provoin5, thereby activating downstream genes and inducing the expression of the reporter gene GFP.</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/8/88/T--ECNUAS--Engineering01.jpg" alt="">
 +
            <span>Figure 1. Composition of the cell-free atrazine biosensor.</span>
 +
        </div>
 +
        <div class="article-title">Build </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/8/82/T--ECNUAS--Engineering02.jpg" alt="">
 +
            <span>Figure 2. Schematic maps of Ptat_AtzR (sensor plasmid) and Pprovoin5_amilGFP (reporter
 +
                plasmid).</span>
 +
        </div>
 +
        <div class="article-title">Test </div>
 +
        <div class="article-content">
 +
            After the ice-breaking game, we played a short playlet. <br />
 +
            We invited the children to take part in the drama. In the relaxed and humorous storyline, we gave the
 +
            children a preliminary introduction to the dangers of atrazine, and led them to our theme -- what do we know
 +
            about atrazine?
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/6/63/T--ECNUAS--Engineering03.jpg" alt="">
 +
            <span>Figure 3. Histogram of the fluorescence intensity 4 hours after 30 μM CYA was added in the
 +
                culture.</span>
 +
        </div>
 +
        <div class="article-content">In order to analyze the relationship between the concentration of cyanuric acid and
 +
            the fluorescence intensity, we designed the control groups and collected the data as showing above.
 +
            According to the histograms (Figure 4), the fluorescence intensity shows a decreasing trend with the
 +
            increase of concentration of cyanuric acid when we used the bacteria C for tests. </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/4/45/T--ECNUAS--Engineering04.jpg" alt="">
 +
            <span>Figure 4. Histogram of the fluorescence intensity of bacteria C after 4 and 6 hours under different
 +
                concentration of the cyanuric acid.</span>
 +
        </div>
 +
        <div class="article-title">Learn </div>
 +
        <div class="article-content">In this project, we successfully atrazine biosensor in bacteria. However, cyanuric
 +
            acid might affect the growth of strains so that the higher the concentration of the cyanuric acid, the worse
 +
            the growth of the bacteria, the less of the amount of the effective “biosensor”. In order to fully eliminate
 +
            this impact, we introduced the concept of cell-free extraction and cell-free expression in the next stage of
 +
            our project.</div>
 +
    </div>
 +
    <footer class="footer">
 +
        <section class="footer-wrap">
 +
            <div class="footer-contact">Contact Info</div>
 +
            <img class="footer-qrcode" src="https://static.igem.org/mediawiki/2021/9/9a/T--ECNUAS--qrcode.jpg" />
 +
            <p class="contact-tips margin-bottom-10">WWeChat Official Account: <i style="color:#070707;">Silent
 +
                    Spring</i>
 +
            </p>
 +
            <p class="contact-tip">Email Contact: <i style="color:#070707;">samlishensheng@qq.com</i>
 +
            </p>
 +
        </section>
 +
    </footer>
 +
</body>
 +
<script>
 +
    let liTags = document.querySelectorAll(".top-nav-bar > ul > li");
 +
    let len = liTags.length;
 +
    for (let i = 0; i < len; i++) {
 +
        liTags[i].onclick = function (e) {
 +
            //先移除所有的点击样式
 +
            for (let j = 0; j < len; j++) {
 +
                liTags[j].classList.remove("active");
 +
            }
 +
            //再添加点击样式
 +
            let li = e.currentTarget;
 +
            li.classList.add("active");
 +
        }
 +
    }
 +
</script>
  
 
</html>
 
</html>

Revision as of 14:31, 16 October 2021

ECNUAS

Engineering
Background
Atrazine is a herbicide compound commonly found in agriculture. It can diffuse into soil and water. Atrazine can be degraded into cyanuric acid in this process, which leads to the accumulation of cyanuric acid in the environment, and has harmful effects on all organisms in the environment. Although Atrazine is currently banned in most European countries, the herbicide is still widely used in other parts of the world. Atrazine in the environment can be monitored through various chemical analyses, including gas chromatography and some physical and chemical detection systems. Although these methods can sensitively measure the atrazine content in the environment, the steps are cumbersome, expensive, and time-consuming, and require extensive infrastructure and technical expertise.
Design
Biosensor consisting of a cell-free systems that are sensitive and specific to specific analytes. It can directly detect the atrazine in sample. Cell-free atrazine biosensor consists of three to four components, which can promote gene expression and metabolism in vitro (Figure 1). (1) cell lysate/extract, which contains the cellular mechanisms required for protein synthesis; (2) buffer mixture of phosphorylated energy substrates, nucleoside triphosphates (NTP), amino acids, salts and other necessary cellular cofactors; (3) DNA templates that define the genetic program to be performed in the reaction; and the reaction Any other optional exogenous cofactors, substrates or inducers required. The biosensor detect cyanuric acid (CYA), a degradation product of atrazine. After atzR binds to CYA, it activates the promoter Provoin5, thereby activating downstream genes and inducing the expression of the reporter gene GFP.
Figure 1. Composition of the cell-free atrazine biosensor.
Build
Figure 2. Schematic maps of Ptat_AtzR (sensor plasmid) and Pprovoin5_amilGFP (reporter plasmid).
Test
After the ice-breaking game, we played a short playlet.
We invited the children to take part in the drama. In the relaxed and humorous storyline, we gave the children a preliminary introduction to the dangers of atrazine, and led them to our theme -- what do we know about atrazine?
Figure 3. Histogram of the fluorescence intensity 4 hours after 30 μM CYA was added in the culture.
In order to analyze the relationship between the concentration of cyanuric acid and the fluorescence intensity, we designed the control groups and collected the data as showing above. According to the histograms (Figure 4), the fluorescence intensity shows a decreasing trend with the increase of concentration of cyanuric acid when we used the bacteria C for tests.
Figure 4. Histogram of the fluorescence intensity of bacteria C after 4 and 6 hours under different concentration of the cyanuric acid.
Learn
In this project, we successfully atrazine biosensor in bacteria. However, cyanuric acid might affect the growth of strains so that the higher the concentration of the cyanuric acid, the worse the growth of the bacteria, the less of the amount of the effective “biosensor”. In order to fully eliminate this impact, we introduced the concept of cell-free extraction and cell-free expression in the next stage of our project.