Difference between revisions of "Team:Shanghai Metro/Engineering"

(Prototype team page)
 
Line 1: Line 1:
{{IGEM_TopBar}}
+
<html lang="en">
{{Shanghai_Metro}}
+
<html>
+
  
 +
<head>
 +
    <meta charset="UTF-8">
 +
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
 +
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 +
    <title>Shanghai_Metro</title>
 +
    <link rel="stylesheet"
 +
        href="https://2021.igem.org/wiki/index.php?title=Template:Shanghai_Metro/Main_CSS&action=raw&ctype=text/css" />
  
<div class="column full_size judges-will-not-evaluate">
+
</head>
<h3>★  ALERT! </h3>
+
<p>This page is used by the judges to evaluate your team for the <a href="https://2021.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2021.igem.org/Judging/Awards"> award listed below</a>. </p>
+
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2021.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
</div>
+
 
+
 
+
<div class="clear"></div>
+
 
+
 
+
<div class="column full_size">
+
<h1>Engineering Success</h1>
+
<h3> Silver Medal Criterion #1</h3>
+
 
+
<p>Demonstrate engineering success in a part of your project by going through at least one iteration of the engineering design cycle. This achievement should be distinct from your Contribution for Bronze.
+
<br><br>
+
Please see the <a href="https://2021.igem.org/Judging/Medals">2021 Medals Page</a> for more information.
+
</p>
+
 
+
 
+
<p>If you plan to show engineering success by creating a new Part that has been shown to work as expected, you must document your contribution on the Part's Main Page on the <a href="http://parts.igem.org/Main_Page">Registry</a> for your team to be eligible for this criteria.</p>
+
 
+
</div>
+
  
 +
<body>
 +
    <nav class="head-nav clearfix">
 +
        <div class="top-block"></div>
 +
        <div class="top-nav-bar">
 +
            <ul class="clearfix">
 +
                <span class="small-logo"></span>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro">Home</a>
 +
                </li>
 +
                <li>
 +
                    <a href="">Project</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Description"
 +
                                    class="sub-nav-74">Description</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Experiments"
 +
                                    class="sub-nav-74">Experiments</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Results"
 +
                                    class="sub-nav-74">Results</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Proof_Of_Concept"
 +
                                    class="sub-nav-52">Proof Of Concept</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Notebook"
 +
                                    class="sub-nav-52">Notebook</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Safety">Safety</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li class="active">
 +
                    <a href="">Parts</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Collection" class="sub-nav-74">Parts
 +
                                    Collection</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Engineering"
 +
                                    class="sub-nav-74">Engineering</a></li>
 +
                            <li class="current-sub-nav"><a href="#" class="sub-nav-74">Contribution</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="">Human Practices</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Human_Practices"
 +
                                    class="sub-nav-74">Integrated Human Practice</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Communication"
 +
                                    class="sub-nav-74">Communication</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Fundraising"
 +
                                    class="sub-nav-74">Fundraising</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro/Implementation">Implementation</a>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro/Entrepreneurship">Entrepreneurship</a>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro/Model">Model</a>
 +
                </li>
 +
                <li>
 +
                    <a href="">Team</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Members" class="sub-nav-74">Team
 +
                                    Members</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Attributions"
 +
                                    class="sub-nav-74">Attributions</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Collaborations"
 +
                                    class="sub-nav-74">Collaborations</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Partnership"
 +
                                    class="sub-nav-74">Partnership</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
            </ul>
 +
        </div>
 +
    </nav>
 +
    <div class="sub-content">
 +
        <div class="sub-title">Engineering</div>
 +
        <div class="article-title">Background </div>
 +
        <div class="article-content">Biological products produced by biotechnology, especially industrial microbial
 +
            fermentation technology, have been widely used in food, medicine, animal feed and daily chemical products.
 +
            With the development of strains and genetic modification technologies, the application range of industrial
 +
            microbial strains will be further expanded, and its market scale will continue to grow. However, in recent
 +
            years, intellectual property disputes related to industrial microbial strains have also been increasing year
 +
            by year. According to the currently publicly reported cases, the main considerations for determining the
 +
            intellectual property rights of industrial microorganisms include microbial morphology, DNA fingerprinting
 +
            and similarity of conservative DNA sequences. Due to the wide distribution of microbes, the limited
 +
            morphological characteristics that can be identified for individual microbes, and the strong
 +
            conservativeness of some microbial genomes, the process of confirming and protecting related intellectual
 +
            property rights is very expensive and lengthy. From the perspective of preventing the propagation and
 +
            passage of strains, the development of concise and effective patented strain protection technology has
 +
            become an urgent problem to be solved.</div>
 +
        <div class="article-title">Design </div>
 +
        <div class="article-content">Type VI protein secretion system (T6SS) is a protein secretion system widely
 +
            distributed in Gram-negative bacteria and can act on both eukaryotic cells and bacterial cells. Under
 +
            natural conditions, bacterial cells encoding T6SS transfer cytotoxic or antibacterial effector factors
 +
            (amidase, glycoside hydrolase, lipase, etc.) to recipient cells through physical contact, thereby inhibiting
 +
            the growth of recipient cells. The bacteria that encode T6SS can translate and produce corresponding immune
 +
            proteins to counteract the damage caused by toxic effectors.</div>
 +
        <div class="article-content">The effector factors of T6SS were designed to constitutively express in industrial
 +
            strains, and the corresponding immune proteins are designed in a controlled and induced mode (for example:
 +
            arabinose, galactose, tetracycline, Zn2+). Only by adding specific inducers to the fermentation broth can
 +
            the normal growth of industrial microbial strains be ensured. This can effectively prevent patented strains
 +
            from being improperly stolen, and have concise and effective indicators for determining rights when disputes
 +
            occur, thereby better protecting the intellectual property rights of strains from infringement.</div>
 +
        <div class="article-title">Build </div>
 +
        <div class="article-content">Tke2 and tke4 are key functional factors that inhibit bacterial growth which are
 +
            controlled tet promotor (Figure 1). The immunity effectors ike2/4 are under lac promotor. The anti-bacterial
 +
            effectors tke2/4 and the immunity effectors ike2/4 were inserted in pUS232 vector (Figure 2).</div>
 +
        <div class="img-wrap">
 +
            <img src="https://static.igem.org/mediawiki/2021/d/d5/T--Shanghai_Metro--Engineering01.jpg" alt="">
 +
            <span>Figure 1. T6SS effector and immune protein expression box.</span>
 +
        </div>
 +
        <div class="img-wrap">
 +
            <img src="https://static.igem.org/mediawiki/2021/d/d0/T--Shanghai_Metro--Engineering02.jpg" alt="">
 +
            <span>Figure 2. Schematic map of T6SS effector and immune expression plasmids.</span>
 +
        </div>
 +
        <div class="article-title">Test </div>
 +
        <div class="article-content">pUS232-ike2 or pUS232-ike4 plasmids were transferred into bacterial strains
 +
            (Escherichia coli DH5α). The expression of immune effectors needs to be induced by tetracycline in the
 +
            appropriate concentration. </div>
 +
        <div class="img-wrap">
 +
            <img src="https://static.igem.org/mediawiki/2021/a/a0/T--Shanghai_Metro--Engineering03.jpg" alt="">
 +
            <span>Figure 3. Escherichia coli DH5α harboring pUS232-ike4 plasmid. Left: bacteria with pUS232 vector;
 +
                right: bacteria with pUS232-ike4 plasmid.</span>
 +
        </div>
 +
        <div class="article-content">As seen in Figure 3, the control DH5α yield blu strains but the experimental group
 +
            pUS232-ike4 had no blue strains, which could indicate that our design worked in DH5α. In addition, we also
 +
            determined the concentration range of tetracycline for the experimental bacterial species growth by
 +
            measuring the growth curves under tetracycline with different concentrations.</div>
 +
        <div class="article-content">In order to determine the appropriate tetracycline induction concentration range
 +
            for better growth of our patent strains, we tested the OD600 of the strains under various concentration of
 +
            tetracycline and collected the data against hours and built the model. According to the scatter-plot
 +
            analysis by MATLAB, the data points have a tendency of oscillation decline, and there is no model of
 +
            elementary function conforming to this trend. Therefore, we decided to use interpolation method to study the
 +
            numerical transformation and obtained the final curve.</div>
 +
        <div class="article-content">Interpolation method selection: although the curve obtained by spline interpolation
 +
            (Spline) is the smoothest, it will produce negative values, which does not conform to the actual situation.
 +
            Therefore, Hermite interpolation method (Pchip) is chosen to keep the shape of the original data.</div>
 +
        <div class="img-wrap">
 +
            <img src="https://static.igem.org/mediawiki/2021/0/06/T--Shanghai_Metro--Engineering04.jpg" alt="">
 +
            <span>Figure 4. Scatter-plot analysis by MATLAB.</span>
 +
        </div>
 +
        <div class="article-content">As the curve above, the X-coordinate shows the concentration of tetracycline and
 +
            the Y-coordinate shows the corresponding OD<sub>600</sub> value of the strain D. In order to find the
 +
            appropriate range
 +
            of the tetracycline concentration, we referred the OD<sub>600</sub> value of the blank control strain after
 +
            6 hours
 +
            without tetracycline:</div>
 +
        <div class="img-wrap">
 +
            <span>Table 2. OD<sub>600</sub> value of the strain E: Pus232 after 6 hours</span>
 +
            <img src="https://static.igem.org/mediawiki/2021/b/b0/T--Shanghai_Metro--Engineering05.jpg" alt="">
 +
        </div>
 +
        <div class="article-content">Therefore, we drew a horizontal line where OD600 equals 0.3268 and find the cross
 +
            points of these two lines where Xs are 17, 26, 78 and 113. As seen from the graph, it indicates that the
 +
            growth of our patent strain (strain D) could grow normally even better the normal strain (strain E) when we
 +
            add the tetracycline within the range from 17 µg/L to 26 µg/L, or the more recommended 78 µg/L to 113µg/L.
 +
            To sum up, this model and this recommended concentration range could be used for the future application of
 +
            our patented-strain protection technology.</div>
 +
    </div>
 +
    <footer class="footer">
 +
        <section class="footer-wrap">
 +
            <p class="contact-tips">Contact Info.</p>
 +
            <hr class="line" />
 +
            <p class="margin-bottom-8">Email: <i style="color:#0030e4;">binghan423@163.com; runshigu@126.com</i></p>
 +
            <p>Wechat Official Account: IGEM VIPatent</p>
 +
        </section>
 +
    </footer>
 +
</body>
 +
<script>
 +
    let liTags = document.querySelectorAll(".top-nav-bar > ul > li");
 +
    let len = liTags.length;
 +
    for (let i = 0; i < len; i++) {
 +
        liTags[i].onclick = function (e) {
 +
            //先移除所有的点击样式
 +
            for (let j = 0; j < len; j++) {
 +
                liTags[j].classList.remove("active");
 +
            }
 +
            //再添加点击样式
 +
            let li = e.currentTarget;
 +
            li.classList.add("active");
 +
        }
 +
    }
 +
</script>
  
 
</html>
 
</html>

Revision as of 07:10, 16 October 2021

Shanghai_Metro

Engineering
Background
Biological products produced by biotechnology, especially industrial microbial fermentation technology, have been widely used in food, medicine, animal feed and daily chemical products. With the development of strains and genetic modification technologies, the application range of industrial microbial strains will be further expanded, and its market scale will continue to grow. However, in recent years, intellectual property disputes related to industrial microbial strains have also been increasing year by year. According to the currently publicly reported cases, the main considerations for determining the intellectual property rights of industrial microorganisms include microbial morphology, DNA fingerprinting and similarity of conservative DNA sequences. Due to the wide distribution of microbes, the limited morphological characteristics that can be identified for individual microbes, and the strong conservativeness of some microbial genomes, the process of confirming and protecting related intellectual property rights is very expensive and lengthy. From the perspective of preventing the propagation and passage of strains, the development of concise and effective patented strain protection technology has become an urgent problem to be solved.
Design
Type VI protein secretion system (T6SS) is a protein secretion system widely distributed in Gram-negative bacteria and can act on both eukaryotic cells and bacterial cells. Under natural conditions, bacterial cells encoding T6SS transfer cytotoxic or antibacterial effector factors (amidase, glycoside hydrolase, lipase, etc.) to recipient cells through physical contact, thereby inhibiting the growth of recipient cells. The bacteria that encode T6SS can translate and produce corresponding immune proteins to counteract the damage caused by toxic effectors.
The effector factors of T6SS were designed to constitutively express in industrial strains, and the corresponding immune proteins are designed in a controlled and induced mode (for example: arabinose, galactose, tetracycline, Zn2+). Only by adding specific inducers to the fermentation broth can the normal growth of industrial microbial strains be ensured. This can effectively prevent patented strains from being improperly stolen, and have concise and effective indicators for determining rights when disputes occur, thereby better protecting the intellectual property rights of strains from infringement.
Build
Tke2 and tke4 are key functional factors that inhibit bacterial growth which are controlled tet promotor (Figure 1). The immunity effectors ike2/4 are under lac promotor. The anti-bacterial effectors tke2/4 and the immunity effectors ike2/4 were inserted in pUS232 vector (Figure 2).
Figure 1. T6SS effector and immune protein expression box.
Figure 2. Schematic map of T6SS effector and immune expression plasmids.
Test
pUS232-ike2 or pUS232-ike4 plasmids were transferred into bacterial strains (Escherichia coli DH5α). The expression of immune effectors needs to be induced by tetracycline in the appropriate concentration.
Figure 3. Escherichia coli DH5α harboring pUS232-ike4 plasmid. Left: bacteria with pUS232 vector; right: bacteria with pUS232-ike4 plasmid.
As seen in Figure 3, the control DH5α yield blu strains but the experimental group pUS232-ike4 had no blue strains, which could indicate that our design worked in DH5α. In addition, we also determined the concentration range of tetracycline for the experimental bacterial species growth by measuring the growth curves under tetracycline with different concentrations.
In order to determine the appropriate tetracycline induction concentration range for better growth of our patent strains, we tested the OD600 of the strains under various concentration of tetracycline and collected the data against hours and built the model. According to the scatter-plot analysis by MATLAB, the data points have a tendency of oscillation decline, and there is no model of elementary function conforming to this trend. Therefore, we decided to use interpolation method to study the numerical transformation and obtained the final curve.
Interpolation method selection: although the curve obtained by spline interpolation (Spline) is the smoothest, it will produce negative values, which does not conform to the actual situation. Therefore, Hermite interpolation method (Pchip) is chosen to keep the shape of the original data.
Figure 4. Scatter-plot analysis by MATLAB.
As the curve above, the X-coordinate shows the concentration of tetracycline and the Y-coordinate shows the corresponding OD600 value of the strain D. In order to find the appropriate range of the tetracycline concentration, we referred the OD600 value of the blank control strain after 6 hours without tetracycline:
Table 2. OD600 value of the strain E: Pus232 after 6 hours
Therefore, we drew a horizontal line where OD600 equals 0.3268 and find the cross points of these two lines where Xs are 17, 26, 78 and 113. As seen from the graph, it indicates that the growth of our patent strain (strain D) could grow normally even better the normal strain (strain E) when we add the tetracycline within the range from 17 µg/L to 26 µg/L, or the more recommended 78 µg/L to 113µg/L. To sum up, this model and this recommended concentration range could be used for the future application of our patented-strain protection technology.