Difference between revisions of "Team:Shanghai Metro/Results"

(Prototype team page)
 
Line 1: Line 1:
{{IGEM_TopBar}}
+
<html lang="en">
{{Shanghai_Metro}}
+
<html>
+
 
+
<div class="column full_size">
+
<h1>Results</h1>
+
<p>You can describe the results of your project and your future plans here. </p>
+
</div>
+
 
+
 
+
<div class="column third_size" >
+
 
+
<h3>What should this page contain?</h3>
+
<ul>
+
<li> Clearly and objectively describe the results of your work.</li>
+
<li> Future plans for the project. </li>
+
<li> Considerations for replicating the experiments. </li>
+
</ul>
+
</div>
+
 
+
 
+
 
+
 
+
<div class="column two_thirds_size" >
+
<h3>Describe what your results mean </h3>
+
<ul>
+
<li> Interpretation of the results obtained during your project. Don't just show a plot/figure/graph/other, tell us what you think the data means. This is an important part of your project that the judges will look for. </li>
+
<li> Show data, but remember <b>all measurement and characterization data must also be on the Part's Main Page on the <a href="http://parts.igem.org/Main_Page">Registry</a>.</b> Otherwise these data will not be in consideration for any medals or part awards! </li>
+
<li> Consider including an analysis summary section to discuss what your results mean. Judges like to read what you think your data means, beyond all the data you have acquired during your project. </li>
+
</ul>
+
</div>
+
 
+
 
+
<div class="clear extra_space"></div>
+
 
+
 
+
 
+
<div class="column two_thirds_size" >
+
<h3> Project Achievements </h3>
+
 
+
<p>You can also include a list of bullet points (and links) of the successes and failures you have had over your summer. It is a quick reference page for the judges to see what you achieved during your summer.</p>
+
 
+
<ul>
+
<li>A list of linked bullet points of the successful results during your project</li>
+
<li>A list of linked bullet points of the unsuccessful results during your project. This is about being scientifically honest. If you worked on an area for a long time with no success, tell us so we know where you put your effort.</li>
+
</ul>
+
 
+
</div>
+
 
+
 
+
 
+
<div class="column third_size" >
+
<div class="highlight decoration_A_full">
+
<h3>Inspiration</h3>
+
<p>See how other teams presented their results.</p>
+
<ul>
+
<li><a href="https://2019.igem.org/Team:Newcastle/Results">2019 Newcastle</a></li>
+
<li><a href="https://2019.igem.org/Team:Munich/Results">2019 Munich </a></li>
+
<li><a href="https://2019.igem.org/Team:Tec-Chihuahua/Results">2019 Tec Chihuahua</a></li>
+
<li><a href="https://2020.igem.org/Team:Aalto-Helsinki/Results">2020 Aalto Helsinki</a></li>
+
<li><a href="https://2020.igem.org/Team:GreatBay_SCIE/Results">2020 GreatBay SCIE</a></li>
+
<li><a href="https://2020.igem.org/Team:Queens_Canada/Results">2020 Queens Canada</a></li>
+
 
+
</ul>
+
</div>
+
</div>
+
 
+
  
 +
<head>
 +
    <meta charset="UTF-8">
 +
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
 +
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 +
    <title>Shanghai_Metro</title>
 +
    <link rel="stylesheet"
 +
        href="https://2021.igem.org/wiki/index.php?title=Template:Shanghai_Metro/Main_CSS&action=raw&ctype=text/css" />
  
 +
</head>
  
 +
<body>
 +
    <nav class="head-nav clearfix">
 +
        <div class="top-block"></div>
 +
        <div class="top-nav-bar">
 +
            <ul class="clearfix">
 +
                <span class="small-logo"></span>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro">Home</a>
 +
                </li>
 +
                <li class="active">
 +
                    <a href="">Project</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Description"
 +
                                    class="sub-nav-74">Description</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Experiments"
 +
                                    class="sub-nav-74">Experiments</a></li>
 +
                            <li class="current-sub-nav"><a href="#" class="sub-nav-74">Results</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Proof_Of_Concept"
 +
                                    class="sub-nav-52">Proof Of Concept</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Notebook"
 +
                                    class="sub-nav-52">Notebook</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Safety">Safety</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="">Parts</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Collection" class="sub-nav-74">Parts
 +
                                    Collection</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Engineering"
 +
                                    class="sub-nav-74">Engineering</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="">Human Practices</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Human_Practices"
 +
                                    class="sub-nav-74">Integrated Human Practice</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Communication"
 +
                                    class="sub-nav-74">Communication</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Fundraising"
 +
                                    class="sub-nav-74">Fundraising</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro/Implementation">Implementation</a>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro/Entrepreneurship">Entrepreneurship</a>
 +
                </li>
 +
                <li>
 +
                    <a href="https://2021.igem.org/Team:Shanghai_Metro/Model">Model</a>
 +
                </li>
 +
                <li>
 +
                    <a href="">Team</a>
 +
                    <div class="sub-nav">
 +
                        <ul>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Members" class="sub-nav-74">Team
 +
                                    Members</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Attributions"
 +
                                    class="sub-nav-74">Attributions</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Collaborations"
 +
                                    class="sub-nav-74">Collaborations</a></li>
 +
                            <li><a href="https://2021.igem.org/Team:Shanghai_Metro/Partnership"
 +
                                    class="sub-nav-74">Partnership</a></li>
 +
                        </ul>
 +
                    </div>
 +
                </li>
 +
            </ul>
 +
        </div>
 +
    </nav>
 +
    <div class="sub-content">
 +
        <div class="sub-title">RESULTS</div>
 +
        <div class="article-title">Overview:</div>
 +
        <div class="article-content">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;We extracted plasmid vector Pus232
 +
            and ike/tke components from Pseudomonas putida
 +
            respectively and used restriction endonucleases to digest them for connection. At last, we constructed two
 +
            new plasmids: Pus232-ike2-tke2 and Pus232-ike4-tke4. Both plasmids have minor genetic differences, thus we
 +
            also proceeded with further tests to identify which one is more efficient at growing when the same optimal
 +
            amount of tetracycline is added.</div>
 +
        <div class="article-content"><b>1. Pus232 Electrophoresis</b></div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/5/52/T--Shanghai_Metro--results01.jpg" alt="" />
 +
            <span>Figure 1. Gel electrophoresis of plasmids Pus232.</span>
 +
        </div>
 +
        <div class="article-content">Channel 1~14: Purified plasmid Pus232 from 1~14 E. coli DH5α cultures.</div>
 +
        <div class="article-content">This step is used to test if the plasmids Pus232 extracted from the E. coli DH5α
 +
            are successful and could be used to do double enzyme digestion later in the process.</div>
 +
        <div class="article-content">Based on the three types of structures plasmid may have, we collect the supercoiled
 +
            bands. Channel 2, 5, 6, and 7 are the best bands and are selected for making double enzyme digestion.
 +
            Channel 3, which has a high concentration of plasmid, was once selected but failed.Therefore, channel 2, 5,
 +
            6, and 7 plasmids are selected to do double enzyme digestion of BamHI and XbaI for 2 hours.</div>
 +
        <div class="article-content">Channel 3 might have undergone too long of a P2 cracking phase, which leads to the
 +
            fracture within the DNA. The DNA secreted contains groups of open circular DNA , showing as the bright white
 +
            color in channel 3, but less circular plasmid DNA that we are targeting to collect.</div>
 +
        <div class="article-content"><b>2. ike2/4 Electrophoresis</b></div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/d/dc/T--Shanghai_Metro--results02.jpg" alt="" />
 +
            <span>Figure 2. Gel electrophoresis of ike2 and ike4 PCR products.</span>
 +
        </div>
 +
        <div class="article-content">Channel 1: ike2 electrophoresis failed maybe because bacteria added is too much.
 +
        </div>
 +
        <div class="article-content">Channel 2: ike2 succeeded</div>
 +
        <div class="article-content">Channel 3: ike2 electrophoresis failed maybe because bacteria added is too much.
 +
        </div>
 +
        <div class="article-content">Channel 4: ike4 succeeded</div>
 +
        <div class="article-content">Channel 5: ike4 succeeded</div>
 +
        <div class="article-content">Channel 6: ike4 succeeded</div>
 +
        <div class="article-content">Channel 7: ike4 succeeded</div>
 +
        <div class="article-content">This step is used to check if the ike2 and ike4 extracted from Pseudomonas putidas
 +
            are successful and could be used to do double enzyme digestion later in the process.
 +
            PCR clean-up ike2 and ike4 DNA fragments to do double enzyme digestion of BamHI and XbaI overnight.
 +
        </div>
 +
        <div class="article-content">Channel 1 and 3 failed the test. One possible explanation could be that the
 +
            bacteria added into the PCR solution is too much. </div>
 +
        <div class="article-content"><b>3. Pus232 Double Enzyme Digestion</b></div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/6/6a/T--Shanghai_Metro--results03.jpg" alt="" />
 +
            <span>Figure 3. Gel electrophoresis of Pus232 double enzyme digestion products.</span>
 +
        </div>
 +
        <div class="article-content">Channel 1&2: Pus232 control group</div>
 +
        <div class="article-content">Channel 3~6: Products of Pus232-BamHI+XbaI Double Enzyme Digestion</div>
 +
        <div class="article-content">Channel 7~10: Products of Pus232-BamHI+XbaI Double Enzyme Digestion</div>
 +
        <div class="article-content">Channel 3~10 have shorter bands after the double enzyme digestion, and all of them
 +
            are successful. Gel clean-up the product of Pus232-BamHI+XbaI double enzyme digestion to obtain
 +
            Pus232-backbone. Clean-up the product of ike2 and ike4-BamHI+XbaI overnight double enzyme digestion to
 +
            obtain ike2-fragment and ike4-fragment.</div>
 +
        <div class="article-content">T4 DNA ligase is used to connect Pus232-backbone with ike2-fragment and
 +
            ike4-fragment overnight separately.</div>
 +
        <div class="article-content"><b>4. Pus232-ike2/4 sequencing analysis</b></div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/d/da/T--Shanghai_Metro--results04.jpg" alt="" />
 +
            <span>Figure 4. Blast DNA sequences with theoretical sequences and actual sanger sequencing documents of
 +
                Pus232-ike2.</span>
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/c/c1/T--Shanghai_Metro--results05.jpg" alt="" />
 +
            <span>Figure 5. Blast DNA sequences with theoretical sequences and actual sanger sequencing documents of
 +
                Pus232-ike4.</span>
 +
        </div>
 +
        <div class="article-content">The sequencing results show that both Pus232-ike2 and Pus232-ike4 are constructed
 +
            successfully.</div>
 +
        <div class="article-content"><b>5. Electrophoresis of Pus232-ike2/4 Enzyme Digestion</b></div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/7/74/T--Shanghai_Metro--results06.jpg" alt="" />
 +
            <span>Figure 6. Gel electrophoresis of Pus232-ike2, Pus232-ike4 enzyme digestion products.</span>
 +
        </div>
 +
        <div class="article-content">Channel 1~4: Products of Pus232-ike2-SacII single enzyme digestion, succeed, cut
 +
            the target bands for gel clean-up.</div>
 +
        <div class="article-content">Channel 5~8: Products of Pus232-ike4-SacII single enzyme digestion, succeed, cut
 +
            the target bands for gel clean-up.</div>
 +
        <div class="article-content">Channel 9~12: Products of tke4 PCR, contains some unneeded bands, cut the 4k+ bands
 +
            for gel clean-up.</div>
 +
        <div class="article-content"><b>6. Electrophoresis of tke2/4</b></div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/a/a0/T--Shanghai_Metro--results07.jpg" alt="" />
 +
            <span>Figure 7. Gel electrophoresis of tke2 and tke4 PCR products.</span>
 +
        </div>
 +
        <div class="article-content">Channel 1~3: tke2 KOD, succeed, bands size are correct and unitary, cut for gel
 +
            clean-up.</div>
 +
        <div class="article-content">Channel 4~6: tke4 KOD+DMSO, succeed, contains some unneeded bands, cut the 4k+
 +
            bands for gel clean-up.</div>
 +
        <div class="article-content"><b>7. Recombination of the Linearized Pus232-ike vectors and tke inserts</b></div>
 +
        <div class="article-content">The tke insert and the linearized Pus232-ike vector, with overlapped sequences of
 +
            15 bp on both 5’- and 3’-end, respectively, are mixed and incubated with recombinase Exnase II at 37°C for
 +
            30 min. Pipet 8 μl of the recombination products to 80 μl of the E.coli DH5α competent cells for
 +
            transformation. Pipet 4 μl of the control group Pus232 and Pus232-ike2 to 40 μl of the E.coli DH5α competent
 +
            cells for transformation.</div>
 +
        <div class="article-content"><b>8. Pus232-ike4-tke4 Transformation Plates </b></div>
 +
        <div class="article-content">Control group E.coli DH5α/Pus232 and E.coli DH5α/Pus232-ike2 show blue strains,
 +
            which are desired results because without the tke presence, lacZ protein in Pus232 won’t be replaced, and
 +
            X-Gal we added under the catalysis of lacZ protein, blue products will be produced, thus the strain
 +
            appearing blue(Fig. 8 left and middle). However, the white single strain may be microbial contamination
 +
            (Fig. 8 left).</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/4/48/T--Shanghai_Metro--results08.jpg" alt="" />
 +
            <span>Figure 8. Transformation plates of recombination reaction.</span>
 +
        </div>
 +
        <div class="article-content">Experimental group Pus232-ike4-tke4 had a white single strain when the picture was
 +
            taken (Fig. 8 right). The result could be satisfactory because tke4 replaced lacZ protein in the plasmid,
 +
            stopping it from expressing thus the strain won’t demonstrate any blue color.</div>
 +
        <div class="article-content"><b>9. Functional Test</b></div>
 +
        <div class="article-content">We first identified if we have correct strains with naked-eye observation, with
 +
            tke4 present, the strain color should be white, blue strains may be undesired organisms or microbial
 +
            contamination. Then we took a single strain for OD600 Testing to further determine the range of optimal
 +
            tetracycline amount.</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/6/69/T--Shanghai_Metro--results09.jpg" alt="" />
 +
        </div>
 +
        <div class="article-content" style="text-indent: 30px;">OD<sub>600</sub> Testing results are below:</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/1/1d/T--Shanghai_Metro--results10.jpg" alt="" />
 +
        </div>
 +
        <div class="article-content">With the result, we can generally determine the appropriate tetracycline induction
 +
            concentration range is
 +
            0-0.1μg/mL or more, only less than 1μg/mL. Due to the large concentration range selected in the preliminary
 +
            test, it is impossible to determine the effect of the induced concentration between 0.1-1μg/mL. We perform
 +
            further tests to keep a smaller range until we find the optimal tetracycline amount.
 +
            The result also proved the effect of tetracycline alone, the graphs below show that more tetracycline in
 +
            the. control group Pus232 will suppress the growth of strains. As for our modified plasmid strain, the curve
 +
            is roughly similar to the parabola concave down, which has a maximum or optimal amount in this case.
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/6/6a/T--Shanghai_Metro--results11.jpg" alt="" />
 +
            <span>Figure 9. Biomass Concentration curve of Pus323 Strain with tetracycline</span>
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/2/2b/T--Shanghai_Metro--results12.jpg" alt="" />
 +
            <span>Figure 10. Biomass Concentration curve of Pus323-tke4-ike4 Strain with tetracycline</span>
 +
        </div>
 +
        <div class="article-content">After having a general idea of the best concentration of tetracycline, we set up
 +
            different time knots to measure the concentration of strains, each with a two hours interval. Similarly, the
 +
            OD600 testing will help us to determine the growth of strains. The results of the test are below.</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/9/9b/T--Shanghai_Metro--results13.jpg" alt="" />
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/f/f2/T--Shanghai_Metro--results14.jpg" alt="" />
 +
        </div>
 +
        <div class="article-content">Despite being less effective than 200µg/L concentration amounts at early hour
 +
            measurement, eventually, concentrations at the range of 300-500µg/L are more effective. The results also
 +
            proved that adding tetracycline to ike4-tke4 strain will boost the growth of strain, while the effect to
 +
            Pus232 strain alone is less obvious. This test is more thorough than our first one, and the induced
 +
            concentration of 100-1000μg/L is more detailed. Now it determines that the optimal concentration of
 +
            tetracycline is 300µg/L to 500µg/L.</div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/2/2d/T--Shanghai_Metro--results15.jpg" alt="" />
 +
            <span>Figure 11. Biomass Concentration curve of Pus323-tke4-ike4 Strain with tetracycline against
 +
                hours</span>
 +
        </div>
 +
        <div class="img-wrap no-margin">
 +
            <img src="https://static.igem.org/mediawiki/2021/9/9a/T--Shanghai_Metro--results16.jpg" alt="" />
 +
            <span>Figure 12. Biomass Concentration curve of Pus323 Strain with tetracycline against hours</span>
 +
        </div>
 +
        <div class="article-title">Future approach:</div>
 +
        <div class="article-content">One disadvantage of our technique is that this only applies to the E.coli bacteria
 +
            since the modification is done on the E.coli plasmid. This prevents us from cooperating with companies whose
 +
            bacteria is not modified on E.coli. Therefore, possible future approaches could be to discover how we can
 +
            protect the patent of bacterias other than E.coli. We may transfer our modified plasmid into other bacteria
 +
            strains or design a new plasmid for other types of bacteria.</div>
 +
    </div>
 +
    <footer class="footer">
 +
        <section class="footer-wrap">
 +
            <p class="contact-tips">Contact Info.</p>
 +
            <hr class="line" />
 +
            <p class="margin-bottom-8">Email: <i style="color:#0030e4;">binghan423@163.com; runshigu@126.com</i></p>
 +
            <p>Wechat Official Account: IGEM VIPatent</p>
 +
        </section>
 +
    </footer>
 +
</body>
 +
<script>
 +
    let liTags = document.querySelectorAll(".top-nav-bar > ul > li");
 +
    let len = liTags.length;
 +
    for (let i = 0; i < len; i++) {
 +
        liTags[i].onclick = function (e) {
 +
            //先移除所有的点击样式
 +
            for (let j = 0; j < len; j++) {
 +
                liTags[j].classList.remove("active");
 +
            }
 +
            //再添加点击样式
 +
            let li = e.currentTarget;
 +
            li.classList.add("active");
 +
        }
 +
    }
 +
</script>
  
 
</html>
 
</html>

Revision as of 13:42, 9 October 2021

Shanghai_Metro

RESULTS
Overview:
        We extracted plasmid vector Pus232 and ike/tke components from Pseudomonas putida respectively and used restriction endonucleases to digest them for connection. At last, we constructed two new plasmids: Pus232-ike2-tke2 and Pus232-ike4-tke4. Both plasmids have minor genetic differences, thus we also proceeded with further tests to identify which one is more efficient at growing when the same optimal amount of tetracycline is added.
1. Pus232 Electrophoresis
Figure 1. Gel electrophoresis of plasmids Pus232.
Channel 1~14: Purified plasmid Pus232 from 1~14 E. coli DH5α cultures.
This step is used to test if the plasmids Pus232 extracted from the E. coli DH5α are successful and could be used to do double enzyme digestion later in the process.
Based on the three types of structures plasmid may have, we collect the supercoiled bands. Channel 2, 5, 6, and 7 are the best bands and are selected for making double enzyme digestion. Channel 3, which has a high concentration of plasmid, was once selected but failed.Therefore, channel 2, 5, 6, and 7 plasmids are selected to do double enzyme digestion of BamHI and XbaI for 2 hours.
Channel 3 might have undergone too long of a P2 cracking phase, which leads to the fracture within the DNA. The DNA secreted contains groups of open circular DNA , showing as the bright white color in channel 3, but less circular plasmid DNA that we are targeting to collect.
2. ike2/4 Electrophoresis
Figure 2. Gel electrophoresis of ike2 and ike4 PCR products.
Channel 1: ike2 electrophoresis failed maybe because bacteria added is too much.
Channel 2: ike2 succeeded
Channel 3: ike2 electrophoresis failed maybe because bacteria added is too much.
Channel 4: ike4 succeeded
Channel 5: ike4 succeeded
Channel 6: ike4 succeeded
Channel 7: ike4 succeeded
This step is used to check if the ike2 and ike4 extracted from Pseudomonas putidas are successful and could be used to do double enzyme digestion later in the process. PCR clean-up ike2 and ike4 DNA fragments to do double enzyme digestion of BamHI and XbaI overnight.
Channel 1 and 3 failed the test. One possible explanation could be that the bacteria added into the PCR solution is too much.
3. Pus232 Double Enzyme Digestion
Figure 3. Gel electrophoresis of Pus232 double enzyme digestion products.
Channel 1&2: Pus232 control group
Channel 3~6: Products of Pus232-BamHI+XbaI Double Enzyme Digestion
Channel 7~10: Products of Pus232-BamHI+XbaI Double Enzyme Digestion
Channel 3~10 have shorter bands after the double enzyme digestion, and all of them are successful. Gel clean-up the product of Pus232-BamHI+XbaI double enzyme digestion to obtain Pus232-backbone. Clean-up the product of ike2 and ike4-BamHI+XbaI overnight double enzyme digestion to obtain ike2-fragment and ike4-fragment.
T4 DNA ligase is used to connect Pus232-backbone with ike2-fragment and ike4-fragment overnight separately.
4. Pus232-ike2/4 sequencing analysis
Figure 4. Blast DNA sequences with theoretical sequences and actual sanger sequencing documents of Pus232-ike2.
Figure 5. Blast DNA sequences with theoretical sequences and actual sanger sequencing documents of Pus232-ike4.
The sequencing results show that both Pus232-ike2 and Pus232-ike4 are constructed successfully.
5. Electrophoresis of Pus232-ike2/4 Enzyme Digestion
Figure 6. Gel electrophoresis of Pus232-ike2, Pus232-ike4 enzyme digestion products.
Channel 1~4: Products of Pus232-ike2-SacII single enzyme digestion, succeed, cut the target bands for gel clean-up.
Channel 5~8: Products of Pus232-ike4-SacII single enzyme digestion, succeed, cut the target bands for gel clean-up.
Channel 9~12: Products of tke4 PCR, contains some unneeded bands, cut the 4k+ bands for gel clean-up.
6. Electrophoresis of tke2/4
Figure 7. Gel electrophoresis of tke2 and tke4 PCR products.
Channel 1~3: tke2 KOD, succeed, bands size are correct and unitary, cut for gel clean-up.
Channel 4~6: tke4 KOD+DMSO, succeed, contains some unneeded bands, cut the 4k+ bands for gel clean-up.
7. Recombination of the Linearized Pus232-ike vectors and tke inserts
The tke insert and the linearized Pus232-ike vector, with overlapped sequences of 15 bp on both 5’- and 3’-end, respectively, are mixed and incubated with recombinase Exnase II at 37°C for 30 min. Pipet 8 μl of the recombination products to 80 μl of the E.coli DH5α competent cells for transformation. Pipet 4 μl of the control group Pus232 and Pus232-ike2 to 40 μl of the E.coli DH5α competent cells for transformation.
8. Pus232-ike4-tke4 Transformation Plates
Control group E.coli DH5α/Pus232 and E.coli DH5α/Pus232-ike2 show blue strains, which are desired results because without the tke presence, lacZ protein in Pus232 won’t be replaced, and X-Gal we added under the catalysis of lacZ protein, blue products will be produced, thus the strain appearing blue(Fig. 8 left and middle). However, the white single strain may be microbial contamination (Fig. 8 left).
Figure 8. Transformation plates of recombination reaction.
Experimental group Pus232-ike4-tke4 had a white single strain when the picture was taken (Fig. 8 right). The result could be satisfactory because tke4 replaced lacZ protein in the plasmid, stopping it from expressing thus the strain won’t demonstrate any blue color.
9. Functional Test
We first identified if we have correct strains with naked-eye observation, with tke4 present, the strain color should be white, blue strains may be undesired organisms or microbial contamination. Then we took a single strain for OD600 Testing to further determine the range of optimal tetracycline amount.
OD600 Testing results are below:
With the result, we can generally determine the appropriate tetracycline induction concentration range is 0-0.1μg/mL or more, only less than 1μg/mL. Due to the large concentration range selected in the preliminary test, it is impossible to determine the effect of the induced concentration between 0.1-1μg/mL. We perform further tests to keep a smaller range until we find the optimal tetracycline amount. The result also proved the effect of tetracycline alone, the graphs below show that more tetracycline in the. control group Pus232 will suppress the growth of strains. As for our modified plasmid strain, the curve is roughly similar to the parabola concave down, which has a maximum or optimal amount in this case.
Figure 9. Biomass Concentration curve of Pus323 Strain with tetracycline
Figure 10. Biomass Concentration curve of Pus323-tke4-ike4 Strain with tetracycline
After having a general idea of the best concentration of tetracycline, we set up different time knots to measure the concentration of strains, each with a two hours interval. Similarly, the OD600 testing will help us to determine the growth of strains. The results of the test are below.
Despite being less effective than 200µg/L concentration amounts at early hour measurement, eventually, concentrations at the range of 300-500µg/L are more effective. The results also proved that adding tetracycline to ike4-tke4 strain will boost the growth of strain, while the effect to Pus232 strain alone is less obvious. This test is more thorough than our first one, and the induced concentration of 100-1000μg/L is more detailed. Now it determines that the optimal concentration of tetracycline is 300µg/L to 500µg/L.
Figure 11. Biomass Concentration curve of Pus323-tke4-ike4 Strain with tetracycline against hours
Figure 12. Biomass Concentration curve of Pus323 Strain with tetracycline against hours
Future approach:
One disadvantage of our technique is that this only applies to the E.coli bacteria since the modification is done on the E.coli plasmid. This prevents us from cooperating with companies whose bacteria is not modified on E.coli. Therefore, possible future approaches could be to discover how we can protect the patent of bacterias other than E.coli. We may transfer our modified plasmid into other bacteria strains or design a new plasmid for other types of bacteria.