Team:Vilnius-Lithuania/secret-place/three-dimensional-models

ns[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension(); break;

case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader ); break;

case EXTENSIONS.KHR_TEXTURE_TRANSFORM: extensions[ extensionName ] = new GLTFTextureTransformExtension(); break;

case EXTENSIONS.KHR_MESH_QUANTIZATION: extensions[ extensionName ] = new GLTFMeshQuantizationExtension(); break;

default:

if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) {

console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );

}

}

}

}

parser.setExtensions( extensions ); parser.setPlugins( plugins ); parser.parse( onLoad, onError );

}

}

/* GLTFREGISTRY */ window.GLTFLoader = GLTFLoader; function GLTFRegistry() {

let objects = {};

return {

get: function ( key ) {

return objects[ key ];

},

add: function ( key, object ) {

objects[ key ] = object;

},

remove: function ( key ) {

delete objects[ key ];

},

removeAll: function () {

objects = {};

}

};

}

/*********************************/ /********** EXTENSIONS ***********/ /*********************************/

const EXTENSIONS = { KHR_BINARY_GLTF: 'KHR_binary_glTF', KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression', KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual', KHR_MATERIALS_CLEARCOAT: 'KHR_materials_clearcoat', KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness', KHR_MATERIALS_TRANSMISSION: 'KHR_materials_transmission', KHR_MATERIALS_UNLIT: 'KHR_materials_unlit', KHR_TEXTURE_BASISU: 'KHR_texture_basisu', KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform', KHR_MESH_QUANTIZATION: 'KHR_mesh_quantization', EXT_TEXTURE_WEBP: 'EXT_texture_webp', EXT_MESHOPT_COMPRESSION: 'EXT_meshopt_compression' };

/**

* Punctual Lights Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
*/

class GLTFLightsExtension {

constructor( parser ) {

this.parser = parser; this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;

// Object3D instance caches this.cache = { refs: {}, uses: {} };

}

_markDefs() {

const parser = this.parser; const nodeDefs = this.parser.json.nodes || [];

for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {

const nodeDef = nodeDefs[ nodeIndex ];

if ( nodeDef.extensions && nodeDef.extensions[ this.name ] && nodeDef.extensions[ this.name ].light !== undefined ) {

parser._addNodeRef( this.cache, nodeDef.extensions[ this.name ].light );

}

}

}

_loadLight( lightIndex ) {

const parser = this.parser; const cacheKey = 'light:' + lightIndex; let dependency = parser.cache.get( cacheKey );

if ( dependency ) return dependency;

const json = parser.json; const extensions = ( json.extensions && json.extensions[ this.name ] ) || {}; const lightDefs = extensions.lights || []; const lightDef = lightDefs[ lightIndex ]; let lightNode;

const color = new Color( 0xffffff );

if ( lightDef.color !== undefined ) color.fromArray( lightDef.color );

const range = lightDef.range !== undefined ? lightDef.range : 0;

switch ( lightDef.type ) {

case 'directional': lightNode = new DirectionalLight( color ); lightNode.target.position.set( 0, 0, - 1 ); lightNode.add( lightNode.target ); break;

case 'point': lightNode = new PointLight( color ); lightNode.distance = range; break;

case 'spot': lightNode = new SpotLight( color ); lightNode.distance = range; // Handle spotlight properties. lightDef.spot = lightDef.spot || {}; lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0; lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0; lightNode.angle = lightDef.spot.outerConeAngle; lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle; lightNode.target.position.set( 0, 0, - 1 ); lightNode.add( lightNode.target ); break;

default: throw new Error( 'THREE.GLTFLoader: Unexpected light type: ' + lightDef.type );

}

// Some lights (e.g. spot) default to a position other than the origin. Reset the position // here, because node-level parsing will only override position if explicitly specified. lightNode.position.set( 0, 0, 0 );

lightNode.decay = 2;

if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;

lightNode.name = parser.createUniqueName( lightDef.name || ( 'light_' + lightIndex ) );

dependency = Promise.resolve( lightNode );

parser.cache.add( cacheKey, dependency );

return dependency;

}

createNodeAttachment( nodeIndex ) {

const self = this; const parser = this.parser; const json = parser.json; const nodeDef = json.nodes[ nodeIndex ]; const lightDef = ( nodeDef.extensions && nodeDef.extensions[ this.name ] ) || {}; const lightIndex = lightDef.light;

if ( lightIndex === undefined ) return null;

return this._loadLight( lightIndex ).then( function ( light ) {

return parser._getNodeRef( self.cache, lightIndex, light );

} );

}

}

/**

* Unlit Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit
*/

class GLTFMaterialsUnlitExtension {

constructor() {

this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;

}

getMaterialType() {

return MeshBasicMaterial;

}

extendParams( materialParams, materialDef, parser ) {

const pending = [];

materialParams.color = new Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0;

const metallicRoughness = materialDef.pbrMetallicRoughness;

if ( metallicRoughness ) {

if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {

const array = metallicRoughness.baseColorFactor;

materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ];

}

if ( metallicRoughness.baseColorTexture !== undefined ) {

pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );

}

}

return Promise.all( pending );

}

}

/**

* Clearcoat Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat
*/

class GLTFMaterialsClearcoatExtension {

constructor( parser ) {

this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT;

}

getMaterialType( materialIndex ) {

const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ];

if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;

return MeshPhysicalMaterial;

}

extendMaterialParams( materialIndex, materialParams ) {

const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ];

if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {

return Promise.resolve();

}

const pending = [];

const extension = materialDef.extensions[ this.name ];

if ( extension.clearcoatFactor !== undefined ) {

materialParams.clearcoat = extension.clearcoatFactor;

}

if ( extension.clearcoatTexture !== undefined ) {

pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) );

}

if ( extension.clearcoatRoughnessFactor !== undefined ) {

materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;

}

if ( extension.clearcoatRoughnessTexture !== undefined ) {

pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) );

}

if ( extension.clearcoatNormalTexture !== undefined ) {

pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) );

if ( extension.clearcoatNormalTexture.scale !== undefined ) {

const scale = extension.clearcoatNormalTexture.scale;

// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995 materialParams.clearcoatNormalScale = new Vector2( scale, - scale );

}

}

return Promise.all( pending );

}

}

/**

* Transmission Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_transmission
* Draft: https://github.com/KhronosGroup/glTF/pull/1698
*/

class GLTFMaterialsTransmissionExtension {

constructor( parser ) {

this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION;

}

getMaterialType( materialIndex ) {

const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ];

if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;

return MeshPhysicalMaterial;

}

extendMaterialParams( materialIndex, materialParams ) {

const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ];

if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {

return Promise.resolve();

}

const pending = [];

const extension = materialDef.extensions[ this.name ];

if ( extension.transmissionFactor !== undefined ) {

materialParams.transmission = extension.transmissionFactor;

}

if ( extension.transmissionTexture !== undefined ) {

pending.push( parser.assignTexture( materialParams, 'transmissionMap', extension.transmissionTexture ) );

}

return Promise.all( pending );

}

}

/**

* BasisU Texture Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_basisu
*/

class GLTFTextureBasisUExtension {

constructor( parser ) {

this.parser = parser; this.name = EXTENSIONS.KHR_TEXTURE_BASISU;

}

loadTexture( textureIndex ) {

const parser = this.parser; const json = parser.json;

const textureDef = json.textures[ textureIndex ];

if ( ! textureDef.extensions || ! textureDef.extensions[ this.name ] ) {

return null;

}

const extension = textureDef.extensions[ this.name ]; const source = json.images[ extension.source ]; const loader = parser.options.ktx2Loader;

if ( ! loader ) {

if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {

throw new Error( 'THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures' );

} else {

// Assumes that the extension is optional and that a fallback texture is present return null;

}

}

return parser.loadTextureImage( textureIndex, source, loader );

}

}

/**

* WebP Texture Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_texture_webp
*/

class GLTFTextureWebPExtension {

constructor( parser ) {

this.parser = parser; this.name = EXTENSIONS.EXT_TEXTURE_WEBP; this.isSupported = null;

}

loadTexture( textureIndex ) {

const name = this.name; const parser = this.parser; const json = parser.json;

const textureDef = json.textures[ textureIndex ];

if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {

return null;

}

const extension = textureDef.extensions[ name ]; const source = json.images[ extension.source ];

let loader = parser.textureLoader; if ( source.uri ) {

const handler = parser.options.manager.getHandler( source.uri ); if ( handler !== null ) loader = handler;

}

return this.detectSupport().then( function ( isSupported ) {

if ( isSupported ) return parser.loadTextureImage( textureIndex, source, loader );

if ( json.extensionsRequired && json.extensionsRequired.indexOf( name ) >= 0 ) {

throw new Error( 'THREE.GLTFLoader: WebP required by asset but unsupported.' );

}

// Fall back to PNG or JPEG. return parser.loadTexture( textureIndex );

} );

}

detectSupport() {

if ( ! this.isSupported ) {

this.isSupported = new Promise( function ( resolve ) {

const image = new Image();

// Lossy test image. Support for lossy images doesn't guarantee support for all // WebP images, unfortunately. image.src = '';

image.onload = image.onerror = function () {

resolve( image.height === 1 );

};

} );

}

return this.isSupported;

}

}

/**

* meshopt BufferView Compression Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_meshopt_compression
*/

class GLTFMeshoptCompression {

constructor( parser ) {

this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION; this.parser = parser;

}

loadBufferView( index ) {

const json = this.parser.json; const bufferView = json.bufferViews[ index ];

if ( bufferView.extensions && bufferView.extensions[ this.name ] ) {

const extensionDef = bufferView.extensions[ this.name ];

const buffer = this.parser.getDependency( 'buffer', extensionDef.buffer ); const decoder = this.parser.options.meshoptDecoder;

if ( ! decoder || ! decoder.supported ) {

if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {

throw new Error( 'THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files' );

} else {

// Assumes that the extension is optional and that fallback buffer data is present return null;

}

}

return Promise.all( [ buffer, decoder.ready ] ).then( function ( res ) {

const byteOffset = extensionDef.byteOffset || 0; const byteLength = extensionDef.byteLength || 0;

const count = extensionDef.count; const stride = extensionDef.byteStride;

const result = new ArrayBuffer( count * stride ); const source = new Uint8Array( res[ 0 ], byteOffset, byteLength );

decoder.decodeGltfBuffer( new Uint8Array( result ), count, stride, source, extensionDef.mode, extensionDef.filter ); return result;

} );

} else {

return null;

}

}

}

/* BINARY EXTENSION */ const BINARY_EXTENSION_HEADER_MAGIC = 'glTF'; const BINARY_EXTENSION_HEADER_LENGTH = 12; const BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 };

class GLTFBinaryExtension {

constructor( data ) {

this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null;

const headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH );

this.header = { magic: LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ), version: headerView.getUint32( 4, true ), length: headerView.getUint32( 8, true ) };

if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) {

throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' );

} else if ( this.header.version < 2.0 ) {

throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' );

}

const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH; const chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH ); let chunkIndex = 0;

while ( chunkIndex < chunkContentsLength ) {

const chunkLength = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4;

const chunkType = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4;

if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) {

const contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength ); this.content = LoaderUtils.decodeText( contentArray );

} else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) {

const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice( byteOffset, byteOffset + chunkLength );

}

// Clients must ignore chunks with unknown types.

chunkIndex += chunkLength;

}

if ( this.content === null ) {

throw new Error( 'THREE.GLTFLoader: JSON content not found.' );

}

}

}

/**

* DRACO Mesh Compression Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression
*/

class GLTFDracoMeshCompressionExtension {

constructor( json, dracoLoader ) {

if ( ! dracoLoader ) {

throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' );

}

this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.json = json; this.dracoLoader = dracoLoader; this.dracoLoader.preload();

}

decodePrimitive( primitive, parser ) {

const json = this.json; const dracoLoader = this.dracoLoader; const bufferViewIndex = primitive.extensions[ this.name ].bufferView; const gltfAttributeMap = primitive.extensions[ this.name ].attributes; const threeAttributeMap = {}; const attributeNormalizedMap = {}; const attributeTypeMap = {};

for ( const attributeName in gltfAttributeMap ) {

const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();

threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];

}

for ( const attributeName in primitive.attributes ) {

const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();

if ( gltfAttributeMap[ attributeName ] !== undefined ) {

const accessorDef = json.accessors[ primitive.attributes[ attributeName ] ]; const componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];

attributeTypeMap[ threeAttributeName ] = componentType; attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;

}

}

return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {

return new Promise( function ( resolve ) {

dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {

for ( const attributeName in geometry.attributes ) {

const attribute = geometry.attributes[ attributeName ]; const normalized = attributeNormalizedMap[ attributeName ];

if ( normalized !== undefined ) attribute.normalized = normalized;

}

resolve( geometry );

}, threeAttributeMap, attributeTypeMap );

} );

} );

}

}

/**

* Texture Transform Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_transform
*/

class GLTFTextureTransformExtension {

constructor() {

this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;

}

extendTexture( texture, transform ) {

if ( transform.texCoord !== undefined ) {

console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' );

}

if ( transform.offset === undefined && transform.rotation === undefined && transform.scale === undefined ) {

// See https://github.com/mrdoob/three.js/issues/21819. return texture;

}

texture = texture.clone();

if ( transform.offset !== undefined ) {

texture.offset.fromArray( transform.offset );

}

if ( transform.rotation !== undefined ) {

texture.rotation = transform.rotation;

}

if ( transform.scale !== undefined ) {

texture.repeat.fromArray( transform.scale );

}

texture.needsUpdate = true;

return texture;

}

}

/**

* Specular-Glossiness Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
*/

/**

* A sub class of StandardMaterial with some of the functionality
* changed via the `onBeforeCompile` callback
* @pailhead
*/

class GLTFMeshStandardSGMaterial extends MeshStandardMaterial {

constructor( params ) {

super();

this.isGLTFSpecularGlossinessMaterial = true;

//various chunks that need replacing const specularMapParsFragmentChunk = [ '#ifdef USE_SPECULARMAP', ' uniform sampler2D specularMap;', '#endif' ].join( '\n' );

const glossinessMapParsFragmentChunk = [ '#ifdef USE_GLOSSINESSMAP', ' uniform sampler2D glossinessMap;', '#endif' ].join( '\n' );

const specularMapFragmentChunk = [ 'vec3 specularFactor = specular;', '#ifdef USE_SPECULARMAP', ' vec4 texelSpecular = texture2D( specularMap, vUv );', ' texelSpecular = sRGBToLinear( texelSpecular );', ' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture', ' specularFactor *= texelSpecular.rgb;', '#endif' ].join( '\n' );

const glossinessMapFragmentChunk = [ 'float glossinessFactor = glossiness;', '#ifdef USE_GLOSSINESSMAP', ' vec4 texelGlossiness = texture2D( glossinessMap, vUv );', ' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture', ' glossinessFactor *= texelGlossiness.a;', '#endif' ].join( '\n' );

const lightPhysicalFragmentChunk = [ 'PhysicalMaterial material;', 'material.diffuseColor = diffuseColor.rgb * ( 1. - max( specularFactor.r, max( specularFactor.g, specularFactor.b ) ) );', 'vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );', 'float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );', 'material.specularRoughness = max( 1.0 - glossinessFactor, 0.0525 ); // 0.0525 corresponds to the base mip of a 256 cubemap.', 'material.specularRoughness += geometryRoughness;', 'material.specularRoughness = min( material.specularRoughness, 1.0 );', 'material.specularColor = specularFactor;', ].join( '\n' );

const uniforms = { specular: { value: new Color().setHex( 0xffffff ) }, glossiness: { value: 1 }, specularMap: { value: null }, glossinessMap: { value: null } };

this._extraUniforms = uniforms;

this.onBeforeCompile = function ( shader ) {

for ( const uniformName in uniforms ) {

shader.uniforms[ uniformName ] = uniforms[ uniformName ];

}

shader.fragmentShader = shader.fragmentShader .replace( 'uniform float roughness;', 'uniform vec3 specular;' ) .replace( 'uniform float metalness;', 'uniform float glossiness;' ) .replace( '#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk ) .replace( '#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk ) .replace( '#include <roughnessmap_fragment>', specularMapFragmentChunk ) .replace( '#include <metalnessmap_fragment>', glossinessMapFragmentChunk ) .replace( '#include <lights_physical_fragment>', lightPhysicalFragmentChunk );

};

Object.defineProperties( this, {

specular: { get: function () {

return uniforms.specular.value;

}, set: function ( v ) {

uniforms.specular.value = v;

} },

specularMap: { get: function () {

return uniforms.specularMap.value;

}, set: function ( v ) {

uniforms.specularMap.value = v;

if ( v ) {

this.defines.USE_SPECULARMAP = ; // USE_UV is set by the renderer for specular maps

} else {

delete this.defines.USE_SPECULARMAP;

}

} },

glossiness: { get: function () {

return uniforms.glossiness.value;

}, set: function ( v ) {

uniforms.glossiness.value = v;

} },

glossinessMap: { get: function () {

return uniforms.glossinessMap.value;

}, set: function ( v ) {

uniforms.glossinessMap.value = v;

if ( v ) {

this.defines.USE_GLOSSINESSMAP = ; this.defines.USE_UV = ;

} else {

delete this.defines.USE_GLOSSINESSMAP; delete this.defines.USE_UV;

}

} }

} );

delete this.metalness; delete this.roughness; delete this.metalnessMap; delete this.roughnessMap;

this.setValues( params );

}

copy( source ) {

super.copy( source );

this.specularMap = source.specularMap; this.specular.copy( source.specular ); this.glossinessMap = source.glossinessMap; this.glossiness = source.glossiness; delete this.metalness; delete this.roughness; delete this.metalnessMap; delete this.roughnessMap; return this;

}

}


class GLTFMaterialsPbrSpecularGlossinessExtension {

constructor() {

this.name = EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS;

this.specularGlossinessParams = [ 'color', 'map', 'lightMap', 'lightMapIntensity', 'aoMap', 'aoMapIntensity', 'emissive', 'emissiveIntensity', 'emissiveMap', 'bumpMap', 'bumpScale', 'normalMap', 'normalMapType', 'displacementMap', 'displacementScale', 'displacementBias', 'specularMap', 'specular', 'glossinessMap', 'glossiness', 'alphaMap', 'envMap', 'envMapIntensity', 'refractionRatio', ];

}

getMaterialType() {

return GLTFMeshStandardSGMaterial;

}

extendParams( materialParams, materialDef, parser ) {

const pbrSpecularGlossiness = materialDef.extensions[ this.name ];

materialParams.color = new Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0;

const pending = [];

if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) {

const array = pbrSpecularGlossiness.diffuseFactor;

materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ];

}

if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) {

pending.push( parser.assignTexture( materialParams, 'map', pbrSpecularGlossiness.diffuseTexture ) );

}

materialParams.emissive = new Color( 0.0, 0.0, 0.0 ); materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0; materialParams.specular = new Color( 1.0, 1.0, 1.0 );

if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) {

materialParams.specular.fromArray( pbrSpecularGlossiness.specularFactor );

}

if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) {

const specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture; pending.push( parser.assignTexture( materialParams, 'glossinessMap', specGlossMapDef ) ); pending.push( parser.assignTexture( materialParams, 'specularMap', specGlossMapDef ) );

}

return Promise.all( pending );

}

createMaterial( materialParams ) {

const material = new GLTFMeshStandardSGMaterial( materialParams ); material.fog = true;

material.color = materialParams.color;

material.map = materialParams.map === undefined ? null : materialParams.map;

material.lightMap = null; material.lightMapIntensity = 1.0;

material.aoMap = materialParams.aoMap === undefined ? null : materialParams.aoMap; material.aoMapIntensity = 1.0;

material.emissive = materialParams.emissive; material.emissiveIntensity = 1.0; material.emissiveMap = materialParams.emissiveMap === undefined ? null : materialParams.emissiveMap;

material.bumpMap = materialParams.bumpMap === undefined ? null : materialParams.bumpMap; material.bumpScale = 1;

material.normalMap = materialParams.normalMap === undefined ? null : materialParams.normalMap; material.normalMapType = TangentSpaceNormalMap;

if ( materialParams.normalScale ) material.normalScale = materialParams.normalScale;

material.displacementMap = null; material.displacementScale = 1; material.displacementBias = 0;

material.specularMap = materialParams.specularMap === undefined ? null : materialParams.specularMap; material.specular = materialParams.specular;

material.glossinessMap = materialParams.glossinessMap === undefined ? null : materialParams.glossinessMap; material.glossiness = materialParams.glossiness;

material.alphaMap = null;

material.envMap = materialParams.envMap === undefined ? null : materialParams.envMap; material.envMapIntensity = 1.0;

material.refractionRatio = 0.98;

return material;

}

}

/**

* Mesh Quantization Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization
*/

class GLTFMeshQuantizationExtension {

constructor() {

this.name = EXTENSIONS.KHR_MESH_QUANTIZATION;

}

}

/*********************************/ /********** INTERPOLATION ********/ /*********************************/

// Spline Interpolation // Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation class GLTFCubicSplineInterpolant extends Interpolant {

constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

super( parameterPositions, sampleValues, sampleSize, resultBuffer );

}

copySampleValue_( index ) {

// Copies a sample value to the result buffer. See description of glTF // CUBICSPLINE values layout in interpolate_() function below.

const result = this.resultBuffer, values = this.sampleValues, valueSize = this.valueSize, offset = index * valueSize * 3 + valueSize;

for ( let i = 0; i !== valueSize; i ++ ) {

result[ i ] = values[ offset + i ];

}

return result;

}

}

GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;

GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;

GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) {

const result = this.resultBuffer; const values = this.sampleValues; const stride = this.valueSize;

const stride2 = stride * 2; const stride3 = stride * 3;

const td = t1 - t0;

const p = ( t - t0 ) / td; const pp = p * p; const ppp = pp * p;

const offset1 = i1 * stride3; const offset0 = offset1 - stride3;

const s2 = - 2 * ppp + 3 * pp; const s3 = ppp - pp; const s0 = 1 - s2; const s1 = s3 - pp + p;

// Layout of keyframe output values for CUBICSPLINE animations: // [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ] for ( let i = 0; i !== stride; i ++ ) {

const p0 = values[ offset0 + i + stride ]; // splineVertex_k const m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k) const p1 = values[ offset1 + i + stride ]; // splineVertex_k+1 const m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)

result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;

}

return result;

};

/*********************************/ /********** INTERNALS ************/ /*********************************/

/* CONSTANTS */

const WEBGL_CONSTANTS = { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 };

const WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array };

const WEBGL_FILTERS = { 9728: NearestFilter, 9729: LinearFilter, 9984: NearestMipmapNearestFilter, 9985: LinearMipmapNearestFilter, 9986: NearestMipmapLinearFilter, 9987: LinearMipmapLinearFilter };

const WEBGL_WRAPPINGS = { 33071: ClampToEdgeWrapping, 33648: MirroredRepeatWrapping, 10497: RepeatWrapping };

const WEBGL_TYPE_SIZES = { 'SCALAR': 1, 'VEC2': 2, 'VEC3': 3, 'VEC4': 4, 'MAT2': 4, 'MAT3': 9, 'MAT4': 16 };

const ATTRIBUTES = { POSITION: 'position', NORMAL: 'normal', TANGENT: 'tangent', TEXCOORD_0: 'uv', TEXCOORD_1: 'uv2', COLOR_0: 'color', WEIGHTS_0: 'skinWeight', JOINTS_0: 'skinIndex', };

const PATH_PROPERTIES = { scale: 'scale', translation: 'position', rotation: 'quaternion', weights: 'morphTargetInfluences' };

const INTERPOLATION = { CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each // keyframe track will be initialized with a default interpolation type, then modified. LINEAR: InterpolateLinear, STEP: InterpolateDiscrete };

const ALPHA_MODES = { OPAQUE: 'OPAQUE', MASK: 'MASK', BLEND: 'BLEND' };

/* UTILITY FUNCTIONS */

function resolveURL( url, path ) {

// Invalid URL if ( typeof url !== 'string' || url === ) return ;

// Host Relative URL if ( /^https?:\/\//i.test( path ) && /^\//.test( url ) ) {

path = path.replace( /(^https?:\/\/[^\/]+).*/i, '$1' );

}

// Absolute URL http://,https://,// if ( /^(https?:)?\/\//i.test( url ) ) return url;

// Data URI if ( /^data:.*,.*$/i.test( url ) ) return url;

// Blob URL if ( /^blob:.*$/i.test( url ) ) return url;

// Relative URL return path + url;

}

/**

* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
*/

function createDefaultMaterial( cache ) {

if ( cache[ 'DefaultMaterial' ] === undefined ) {

cache[ 'DefaultMaterial' ] = new MeshStandardMaterial( { color: 0xFFFFFF, emissive: 0x000000, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: FrontSide } );

}

return cache[ 'DefaultMaterial' ];

}

function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) {

// Add unknown glTF extensions to an object's userData.

for ( const name in objectDef.extensions ) {

if ( knownExtensions[ name ] === undefined ) {

object.userData.gltfExtensions = object.userData.gltfExtensions || {}; object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ];

}

}

}

/**

* @param {Object3D|Material|BufferGeometry} object
* @param {GLTF.definition} gltfDef
*/

function assignExtrasToUserData( object, gltfDef ) {

if ( gltfDef.extras !== undefined ) {

if ( typeof gltfDef.extras === 'object' ) {

Object.assign( object.userData, gltfDef.extras );

} else {

console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras );

}

}

}

/**

* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
*
* @param {BufferGeometry} geometry
* @param {Array<GLTF.Target>} targets
* @param {GLTFParser} parser
* @return {Promise<BufferGeometry>}
*/

function addMorphTargets( geometry, targets, parser ) {

let hasMorphPosition = false; let hasMorphNormal = false;

for ( let i = 0, il = targets.length; i < il; i ++ ) {

const target = targets[ i ];

if ( target.POSITION !== undefined ) hasMorphPosition = true; if ( target.NORMAL !== undefined ) hasMorphNormal = true;

if ( hasMorphPosition && hasMorphNormal ) break;

}

if ( ! hasMorphPosition && ! hasMorphNormal ) return Promise.resolve( geometry );

const pendingPositionAccessors = []; const pendingNormalAccessors = [];

for ( let i = 0, il = targets.length; i < il; i ++ ) {

const target = targets[ i ];

if ( hasMorphPosition ) {

const pendingAccessor = target.POSITION !== undefined ? parser.getDependency( 'accessor', target.POSITION ) : geometry.attributes.position;

pendingPositionAccessors.push( pendingAccessor );

}

if ( hasMorphNormal ) {

const pendingAccessor = target.NORMAL !== undefined ? parser.getDependency( 'accessor', target.NORMAL ) : geometry.attributes.normal;

pendingNormalAccessors.push( pendingAccessor );

}

}

return Promise.all( [ Promise.all( pendingPositionAccessors ), Promise.all( pendingNormalAccessors ) ] ).then( function ( accessors ) {

const morphPositions = accessors[ 0 ]; const morphNormals = accessors[ 1 ];

if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions; if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals; geometry.morphTargetsRelative = true;

return geometry;

} );

}

/**

* @param {Mesh} mesh
* @param {GLTF.Mesh} meshDef
*/

function updateMorphTargets( mesh, meshDef ) {

mesh.updateMorphTargets();

if ( meshDef.weights !== undefined ) {

for ( let i = 0, il = meshDef.weights.length; i < il; i ++ ) {

mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ];

}

}

// .extras has user-defined data, so check that .extras.targetNames is an array. if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) {

const targetNames = meshDef.extras.targetNames;

if ( mesh.morphTargetInfluences.length === targetNames.length ) {

mesh.morphTargetDictionary = {};

for ( let i = 0, il = targetNames.length; i < il; i ++ ) {

mesh.morphTargetDictionary[ targetNames[ i ] ] = i;

}

} else {

console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' );

}

}

}

function createPrimitiveKey( primitiveDef ) {

const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]; let geometryKey;

if ( dracoExtension ) {

geometryKey = 'draco:' + dracoExtension.bufferView + ':' + dracoExtension.indices + ':' + createAttributesKey( dracoExtension.attributes );

} else {

geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode;

}

return geometryKey;

}

function createAttributesKey( attributes ) {

let attributesKey = ;

const keys = Object.keys( attributes ).sort();

for ( let i = 0, il = keys.length; i < il; i ++ ) {

attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';';

}

return attributesKey;

}

function getNormalizedComponentScale( constructor ) {

// Reference: // https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization#encoding-quantized-data

switch ( constructor ) {

case Int8Array: return 1 / 127;

case Uint8Array: return 1 / 255;

case Int16Array: return 1 / 32767;

case Uint16Array: return 1 / 65535;

default: throw new Error( 'THREE.GLTFLoader: Unsupported normalized accessor component type.' );

}

}

/* GLTF PARSER */

class GLTFParser {

constructor( json = {}, options = {} ) {

this.json = json; this.extensions = {}; this.plugins = {}; this.options = options;

// loader object cache this.cache = new GLTFRegistry();

// associations between Three.js objects and glTF elements this.associations = new Map();

// BufferGeometry caching this.primitiveCache = {};

// Object3D instance caches this.meshCache = { refs: {}, uses: {} }; this.cameraCache = { refs: {}, uses: {} }; this.lightCache = { refs: {}, uses: {} };

this.textureCache = {};

// Track node names, to ensure no duplicates this.nodeNamesUsed = {};

// Use an ImageBitmapLoader if imageBitmaps are supported. Moves much of the // expensive work of uploading a texture to the GPU off the main thread. if ( typeof createImageBitmap !== 'undefined' && /Firefox/.test( navigator.userAgent ) === false ) {

this.textureLoader = new ImageBitmapLoader( this.options.manager );

} else {

this.textureLoader = new TextureLoader( this.options.manager );

}

this.textureLoader.setCrossOrigin( this.options.crossOrigin ); this.textureLoader.setRequestHeader( this.options.requestHeader );

this.fileLoader = new FileLoader( this.options.manager ); this.fileLoader.setResponseType( 'arraybuffer' );

if ( this.options.crossOrigin === 'use-credentials' ) {

this.fileLoader.setWithCredentials( true );

}

}

setExtensions( extensions ) {

this.extensions = extensions;

}

setPlugins( plugins ) {

this.plugins = plugins;

}

parse( onLoad, onError ) {

const parser = this; const json = this.json; const extensions = this.extensions;

// Clear the loader cache this.cache.removeAll();

// Mark the special nodes/meshes in json for efficient parse this._invokeAll( function ( ext ) {

return ext._markDefs && ext._markDefs();

} );

Promise.all( this._invokeAll( function ( ext ) {

return ext.beforeRoot && ext.beforeRoot();

} ) ).then( function () {

return Promise.all( [

parser.getDependencies( 'scene' ), parser.getDependencies( 'animation' ), parser.getDependencies( 'camera' ),

] );

} ).then( function ( dependencies ) {

const result = { scene: dependencies[ 0 ][ json.scene || 0 ], scenes: dependencies[ 0 ], animations: dependencies[ 1 ], cameras: dependencies[ 2 ], asset: json.asset, parser: parser, userData: {} };

addUnknownExtensionsToUserData( extensions, result, json );

assignExtrasToUserData( result, json );

Promise.all( parser._invokeAll( function ( ext ) {

return ext.afterRoot && ext.afterRoot( result );

} ) ).then( function () {

onLoad( result );

} );

} ).catch( onError );

}

/** * Marks the special nodes/meshes in json for efficient parse. */ _markDefs() {

const nodeDefs = this.json.nodes || []; const skinDefs = this.json.skins || []; const meshDefs = this.json.meshes || [];

// Nothing in the node definition indicates whether it is a Bone or an // Object3D. Use the skins' joint references to mark bones. for ( let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {

const joints = skinDefs[ skinIndex ].joints;

for ( let i = 0, il = joints.length; i < il; i ++ ) {

nodeDefs[ joints[ i ] ].isBone = true;

}

}

// Iterate over all nodes, marking references to shared resources, // as well as skeleton joints. for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {

const nodeDef = nodeDefs[ nodeIndex ];

if ( nodeDef.mesh !== undefined ) {

this._addNodeRef( this.meshCache, nodeDef.mesh );

// Nothing in the mesh definition indicates whether it is // a SkinnedMesh or Mesh. Use the node's mesh reference // to mark SkinnedMesh if node has skin. if ( nodeDef.skin !== undefined ) {

meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;

}

}

if ( nodeDef.camera !== undefined ) {

this._addNodeRef( this.cameraCache, nodeDef.camera );

}

}

}

/** * Counts references to shared node / Object3D resources. These resources * can be reused, or "instantiated", at multiple nodes in the scene * hierarchy. Mesh, Camera, and Light instances are instantiated and must * be marked. Non-scenegraph resources (like Materials, Geometries, and * Textures) can be reused directly and are not marked here. * * Example: CesiumMilkTruck sample model reuses "Wheel" meshes. */ _addNodeRef( cache, index ) {

if ( index === undefined ) return;

if ( cache.refs[ index ] === undefined ) {

cache.refs[ index ] = cache.uses[ index ] = 0;

}

cache.refs[ index ] ++;

}

/** Returns a reference to a shared resource, cloning it if necessary. */ _getNodeRef( cache, index, object ) {

if ( cache.refs[ index ] <= 1 ) return object;

const ref = object.clone();

ref.name += '_instance_' + ( cache.uses[ index ] ++ );

return ref;

}

_invokeOne( func ) {

const extensions = Object.values( this.plugins ); extensions.push( this );

for ( let i = 0; i < extensions.length; i ++ ) {

const result = func( extensions[ i ] );

if ( result ) return result;

}

return null;

}

_invokeAll( func ) {

const extensions = Object.values( this.plugins ); extensions.unshift( this );

const pending = [];

for ( let i = 0; i < extensions.length; i ++ ) {

const result = func( extensions[ i ] );

if ( result ) pending.push( result );

}

return pending;

}

/** * Requests the specified dependency asynchronously, with caching. * @param {string} type * @param {number} index * @return {Promise<Object3D|Material|THREE.Texture|AnimationClip|ArrayBuffer|Object>} */ getDependency( type, index ) {

const cacheKey = type + ':' + index; let dependency = this.cache.get( cacheKey );

if ( ! dependency ) {

switch ( type ) {

case 'scene': dependency = this.loadScene( index ); break;

case 'node': dependency = this.loadNode( index ); break;

case 'mesh': dependency = this._invokeOne( function ( ext ) {

return ext.loadMesh && ext.loadMesh( index );

} ); break;

case 'accessor': dependency = this.loadAccessor( index ); break;

case 'bufferView': dependency = this._invokeOne( function ( ext ) {

return ext.loadBufferView && ext.loadBufferView( index );

} ); break;

case 'buffer': dependency = this.loadBuffer( index ); break;

case 'material': dependency = this._invokeOne( function ( ext ) {

return ext.loadMaterial && ext.loadMaterial( index );

} ); break;

case 'texture': dependency = this._invokeOne( function ( ext ) {

return ext.loadTexture && ext.loadTexture( index );

} ); break;

case 'skin': dependency = this.loadSkin( index ); break;

case 'animation': dependency = this.loadAnimation( index ); break;

case 'camera': dependency = this.loadCamera( index ); break;

default: throw new Error( 'Unknown type: ' + type );

}

this.cache.add( cacheKey, dependency );

}

return dependency;

}

/** * Requests all dependencies of the specified type asynchronously, with caching. * @param {string} type * @return {Promise<Array<Object>>} */ getDependencies( type ) {

let dependencies = this.cache.get( type );

if ( ! dependencies ) {

const parser = this; const defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];

dependencies = Promise.all( defs.map( function ( def, index ) {

return parser.getDependency( type, index );

} ) );

this.cache.add( type, dependencies );

}

return dependencies;

}

/** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferIndex * @return {Promise<ArrayBuffer>} */ loadBuffer( bufferIndex ) {

const bufferDef = this.json.buffers[ bufferIndex ]; const loader = this.fileLoader;

if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {

throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );

}

// If present, GLB container is required to be the first buffer. if ( bufferDef.uri === undefined && bufferIndex === 0 ) {

return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );

}

const options = this.options;

return new Promise( function ( resolve, reject ) {

loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {

reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );

} );

} );

}

/** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferViewIndex * @return {Promise<ArrayBuffer>} */ loadBufferView( bufferViewIndex ) {

const bufferViewDef = this.json.bufferViews[ bufferViewIndex ];

return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {

const byteLength = bufferViewDef.byteLength || 0; const byteOffset = bufferViewDef.byteOffset || 0; return buffer.slice( byteOffset, byteOffset + byteLength );

} );

}

/** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors * @param {number} accessorIndex * @return {Promise<BufferAttribute|InterleavedBufferAttribute>} */ loadAccessor( accessorIndex ) {

const parser = this; const json = this.json;

const accessorDef = this.json.accessors[ accessorIndex ];

if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {

// Ignore empty accessors, which may be used to declare runtime // information about attributes coming from another source (e.g. Draco // compression extension). return Promise.resolve( null );

}

const pendingBufferViews = [];

if ( accessorDef.bufferView !== undefined ) {

pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );

} else {

pendingBufferViews.push( null );

}

if ( accessorDef.sparse !== undefined ) {

pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) ); pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );

}

return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {

const bufferView = bufferViews[ 0 ];

const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ]; const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];

// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12. const elementBytes = TypedArray.BYTES_PER_ELEMENT; const itemBytes = elementBytes * itemSize; const byteOffset = accessorDef.byteOffset || 0; const byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined; const normalized = accessorDef.normalized === true; let array, bufferAttribute;

// The buffer is not interleaved if the stride is the item size in bytes. if ( byteStride && byteStride !== itemBytes ) {

// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer // This makes sure that IBA.count reflects accessor.count properly const ibSlice = Math.floor( byteOffset / byteStride ); const ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count; let ib = parser.cache.get( ibCacheKey );

if ( ! ib ) {

array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes );

// Integer parameters to IB/IBA are in array elements, not bytes. ib = new InterleavedBuffer( array, byteStride / elementBytes );

parser.cache.add( ibCacheKey, ib );

}

bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized );

} else {

if ( bufferView === null ) {

array = new TypedArray( accessorDef.count * itemSize );

} else {

array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );

}

bufferAttribute = new BufferAttribute( array, itemSize, normalized );

}

// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors if ( accessorDef.sparse !== undefined ) {

const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; const TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];

const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;

const sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices ); const sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );

if ( bufferView !== null ) {

// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes. bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized );

}

for ( let i = 0, il = sparseIndices.length; i < il; i ++ ) {

const index = sparseIndices[ i ];

bufferAttribute.setX( index, sparseValues[ i * itemSize ] ); if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] ); if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] ); if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] ); if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' );

}

}

return bufferAttribute;

} );

}

/** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures * @param {number} textureIndex * @return {Promise<THREE.Texture>} */ loadTexture( textureIndex ) {

const json = this.json; const options = this.options; const textureDef = json.textures[ textureIndex ]; const source = json.images[ textureDef.source ];

let loader = this.textureLoader;

if ( source.uri ) {

const handler = options.manager.getHandler( source.uri ); if ( handler !== null ) loader = handler;

}

return this.loadTextureImage( textureIndex, source, loader );

}

loadTextureImage( textureIndex, source, loader ) {

const parser = this; const json = this.json; const options = this.options;

const textureDef = json.textures[ textureIndex ];

const cacheKey = ( source.uri || source.bufferView ) + ':' + textureDef.sampler;

if ( this.textureCache[ cacheKey ] ) {

// See https://github.com/mrdoob/three.js/issues/21559. return this.textureCache[ cacheKey ];

}

const URL = self.URL || self.webkitURL;

let sourceURI = source.uri || ; let isObjectURL = false; let hasAlpha = true;

const isJPEG = sourceURI.search( /\.jpe?g($|\?)/i ) > 0 || sourceURI.search( /^data\:image\/jpeg/ ) === 0;

if ( source.mimeType === 'image/jpeg' || isJPEG ) hasAlpha = false;

if ( source.bufferView !== undefined ) {

// Load binary image data from bufferView, if provided.

sourceURI = parser.getDependency( 'bufferView', source.bufferView ).then( function ( bufferView ) {

if ( source.mimeType === 'image/png' ) {

// Inspect the PNG 'IHDR' chunk to determine whether the image could have an // alpha channel. This check is conservative — the image could have an alpha // channel with all values == 1, and the indexed type (colorType == 3) only // sometimes contains alpha. // // https://en.wikipedia.org/wiki/Portable_Network_Graphics#File_header const colorType = new DataView( bufferView, 25, 1 ).getUint8( 0, false ); hasAlpha = colorType === 6 || colorType === 4 || colorType === 3;

}

isObjectURL = true; const blob = new Blob( [ bufferView ], { type: source.mimeType } ); sourceURI = URL.createObjectURL( blob ); return sourceURI;

} );

} else if ( source.uri === undefined ) {

throw new Error( 'THREE.GLTFLoader: Image ' + textureIndex + ' is missing URI and bufferView' );

}

const promise = Promise.resolve( sourceURI ).then( function ( sourceURI ) {

return new Promise( function ( resolve, reject ) {

let onLoad = resolve;

if ( loader.isImageBitmapLoader === true ) {

onLoad = function ( imageBitmap ) {

const texture = new Texture( imageBitmap ); texture.needsUpdate = true;

resolve( texture );

};

}

loader.load( resolveURL( sourceURI, options.path ), onLoad, undefined, reject );

} );

} ).then( function ( texture ) {

// Clean up resources and configure Texture.

if ( isObjectURL === true ) {

URL.revokeObjectURL( sourceURI );

}

texture.flipY = false;

if ( textureDef.name ) texture.name = textureDef.name;

// When there is definitely no alpha channel in the texture, set RGBFormat to save space. if ( ! hasAlpha ) texture.format = RGBFormat;

const samplers = json.samplers || {}; const sampler = samplers[ textureDef.sampler ] || {};

texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter; texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter; texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping; texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping;

parser.associations.set( texture, { type: 'textures', index: textureIndex } );

return texture;

} ).catch( function () {

console.error( 'THREE.GLTFLoader: Couldn\'t load texture', sourceURI ); return null;

} );

this.textureCache[ cacheKey ] = promise;

return promise;

}

/** * Asynchronously assigns a texture to the given material parameters. * @param {Object} materialParams * @param {string} mapName * @param {Object} mapDef * @return {Promise} */ assignTexture( materialParams, mapName, mapDef ) {

const parser = this;

return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) {

// Materials sample aoMap from UV set 1 and other maps from UV set 0 - this can't be configured // However, we will copy UV set 0 to UV set 1 on demand for aoMap if ( mapDef.texCoord !== undefined && mapDef.texCoord != 0 && ! ( mapName === 'aoMap' && mapDef.texCoord == 1 ) ) {

console.warn( 'THREE.GLTFLoader: Custom UV set ' + mapDef.texCoord + ' for texture ' + mapName + ' not yet supported.' );

}

if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) {

const transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined;

if ( transform ) {

const gltfReference = parser.associations.get( texture ); texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform ); parser.associations.set( texture, gltfReference );

}

}

materialParams[ mapName ] = texture;

} );

}

/** * Assigns final material to a Mesh, Line, or Points instance. The instance * already has a material (generated from the glTF material options alone) * but reuse of the same glTF material may require multiple threejs materials * to accommodate different primitive types, defines, etc. New materials will * be created if necessary, and reused from a cache. * @param {Object3D} mesh Mesh, Line, or Points instance. */ assignFinalMaterial( mesh ) {

const geometry = mesh.geometry; let material = mesh.material;

const useVertexTangents = geometry.attributes.tangent !== undefined; const useVertexColors = geometry.attributes.color !== undefined; const useFlatShading = geometry.attributes.normal === undefined; const useMorphTargets = Object.keys( geometry.morphAttributes ).length > 0; const useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined;

if ( mesh.isPoints ) {

const cacheKey = 'PointsMaterial:' + material.uuid;

let pointsMaterial = this.cache.get( cacheKey );

if ( ! pointsMaterial ) {

pointsMaterial = new PointsMaterial(); Material.prototype.copy.call( pointsMaterial, material ); pointsMaterial.color.copy( material.color ); pointsMaterial.map = material.map; pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px

this.cache.add( cacheKey, pointsMaterial );

}

material = pointsMaterial;

} else if ( mesh.isLine ) {

const cacheKey = 'LineBasicMaterial:' + material.uuid;

let lineMaterial = this.cache.get( cacheKey );

if ( ! lineMaterial ) {

lineMaterial = new LineBasicMaterial(); Material.prototype.copy.call( lineMaterial, material ); lineMaterial.color.copy( material.color );

this.cache.add( cacheKey, lineMaterial );

}

material = lineMaterial;

}

// Clone the material if it will be modified if ( useVertexTangents || useVertexColors || useFlatShading || useMorphTargets ) {

let cacheKey = 'ClonedMaterial:' + material.uuid + ':';

if ( material.isGLTFSpecularGlossinessMaterial ) cacheKey += 'specular-glossiness:'; if ( useVertexTangents ) cacheKey += 'vertex-tangents:'; if ( useVertexColors ) cacheKey += 'vertex-colors:'; if ( useFlatShading ) cacheKey += 'flat-shading:'; if ( useMorphTargets ) cacheKey += 'morph-targets:'; if ( useMorphNormals ) cacheKey += 'morph-normals:';

let cachedMaterial = this.cache.get( cacheKey );

if ( ! cachedMaterial ) {

cachedMaterial = material.clone();

if ( useVertexColors ) cachedMaterial.vertexColors = true; if ( useFlatShading ) cachedMaterial.flatShading = true; if ( useMorphTargets ) cachedMaterial.morphTargets = true; if ( useMorphNormals ) cachedMaterial.morphNormals = true;

if ( useVertexTangents ) {

cachedMaterial.vertexTangents = true;

// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995 if ( cachedMaterial.normalScale ) cachedMaterial.normalScale.y *= - 1; if ( cachedMaterial.clearcoatNormalScale ) cachedMaterial.clearcoatNormalScale.y *= - 1;

}

this.cache.add( cacheKey, cachedMaterial );

this.associations.set( cachedMaterial, this.associations.get( material ) );

}

material = cachedMaterial;

}

// workarounds for mesh and geometry

if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) {

geometry.setAttribute( 'uv2', geometry.attributes.uv );

}

mesh.material = material;

}

getMaterialType( /* materialIndex */ ) {

return MeshStandardMaterial;

}

/** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials * @param {number} materialIndex * @return {Promise<Material>} */ loadMaterial( materialIndex ) {

const parser = this; const json = this.json; const extensions = this.extensions; const materialDef = json.materials[ materialIndex ];

let materialType; const materialParams = {}; const materialExtensions = materialDef.extensions || {};

const pending = [];

if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) {

const sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ]; materialType = sgExtension.getMaterialType(); pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) );

} else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {

const kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ]; materialType = kmuExtension.getMaterialType(); pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );

} else {

// Specification: // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material

const metallicRoughness = materialDef.pbrMetallicRoughness || {};

materialParams.color = new Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0;

if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {

const array = metallicRoughness.baseColorFactor;

materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ];

}

if ( metallicRoughness.baseColorTexture !== undefined ) {

pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );

}

materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0; materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;

if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {

pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) ); pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) );

}

materialType = this._invokeOne( function ( ext ) {

return ext.getMaterialType && ext.getMaterialType( materialIndex );

} );

pending.push( Promise.all( this._invokeAll( function ( ext ) {

return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams );

} ) ) );

}

if ( materialDef.doubleSided === true ) {

materialParams.side = DoubleSide;

}

const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;

if ( alphaMode === ALPHA_MODES.BLEND ) {

materialParams.transparent = true;

// See: https://github.com/mrdoob/three.js/issues/17706 materialParams.depthWrite = false;

} else {

materialParams.transparent = false;

if ( alphaMode === ALPHA_MODES.MASK ) {

materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;

}

}

if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) {

pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) );

// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995 materialParams.normalScale = new Vector2( 1, - 1 );

if ( materialDef.normalTexture.scale !== undefined ) {

materialParams.normalScale.set( materialDef.normalTexture.scale, - materialDef.normalTexture.scale );

}

}

if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) {

pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) );

if ( materialDef.occlusionTexture.strength !== undefined ) {

materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;

}

}

if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) {

materialParams.emissive = new Color().fromArray( materialDef.emissiveFactor );

}

if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) {

pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture ) );

}

return Promise.all( pending ).then( function () {

let material;

if ( materialType === GLTFMeshStandardSGMaterial ) {

material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams );

} else {

material = new materialType( materialParams );

}

if ( materialDef.name ) material.name = materialDef.name;

// baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding. if ( material.map ) material.map.encoding = sRGBEncoding; if ( material.emissiveMap ) material.emissiveMap.encoding = sRGBEncoding;

assignExtrasToUserData( material, materialDef );

parser.associations.set( material, { type: 'materials', index: materialIndex } );

if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );

return material;

} );

}

/** When Object3D instances are targeted by animation, they need unique names. */ createUniqueName( originalName ) {

const sanitizedName = PropertyBinding.sanitizeNodeName( originalName || );

let name = sanitizedName;

for ( let i = 1; this.nodeNamesUsed[ name ]; ++ i ) {

name = sanitizedName + '_' + i;

}

this.nodeNamesUsed[ name ] = true;

return name;

}

/** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry * * Creates BufferGeometries from primitives. * * @param {Array<GLTF.Primitive>} primitives * @return {Promise<Array<BufferGeometry>>} */ loadGeometries( primitives ) {

const parser = this; const extensions = this.extensions; const cache = this.primitiveCache;

function createDracoPrimitive( primitive ) {

return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] .decodePrimitive( primitive, parser ) .then( function ( geometry ) {

return addPrimitiveAttributes( geometry, primitive, parser );

} );

}

const pending = [];

for ( let i = 0, il = primitives.length; i < il; i ++ ) {

const primitive = primitives[ i ]; const cacheKey = createPrimitiveKey( primitive );

// See if we've already created this geometry const cached = cache[ cacheKey ];

if ( cached ) {

// Use the cached geometry if it exists pending.push( cached.promise );

} else {

let geometryPromise;

if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {

// Use DRACO geometry if available geometryPromise = createDracoPrimitive( primitive );

} else {

// Otherwise create a new geometry geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser );

}

// Cache this geometry cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise };

pending.push( geometryPromise );

}

}

return Promise.all( pending );

}

/** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes * @param {number} meshIndex * @return {Promise<Group|Mesh|SkinnedMesh>} */ loadMesh( meshIndex ) {

const parser = this; const json = this.json; const extensions = this.extensions;

const meshDef = json.meshes[ meshIndex ]; const primitives = meshDef.primitives;

const pending = [];

for ( let i = 0, il = primitives.length; i < il; i ++ ) {

const material = primitives[ i ].material === undefined ? createDefaultMaterial( this.cache ) : this.getDependency( 'material', primitives[ i ].material );

pending.push( material );

}

pending.push( parser.loadGeometries( primitives ) );

return Promise.all( pending ).then( function ( results ) {

const materials = results.slice( 0, results.length - 1 ); const geometries = results[ results.length - 1 ];

const meshes = [];

for ( let i = 0, il = geometries.length; i < il; i ++ ) {

const geometry = geometries[ i ]; const primitive = primitives[ i ];

// 1. create Mesh

let mesh;

const material = materials[ i ];

if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === undefined ) {

// .isSkinnedMesh isn't in glTF spec. See ._markDefs() mesh = meshDef.isSkinnedMesh === true ? new SkinnedMesh( geometry, material ) : new Mesh( geometry, material );

if ( mesh.isSkinnedMesh === true && ! mesh.geometry.attributes.skinWeight.normalized ) {

// we normalize floating point skin weight array to fix malformed assets (see #15319) // it's important to skip this for non-float32 data since normalizeSkinWeights assumes non-normalized inputs mesh.normalizeSkinWeights();

}

if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {

mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode );

} else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {

mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode );

}

} else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {

mesh = new LineSegments( geometry, material );

} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {

mesh = new Line( geometry, material );

} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {

mesh = new LineLoop( geometry, material );

} else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {

mesh = new Points( geometry, material );

} else {

throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );

}

if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {

updateMorphTargets( mesh, meshDef );

}

mesh.name = parser.createUniqueName( meshDef.name || ( 'mesh_' + meshIndex ) );

assignExtrasToUserData( mesh, meshDef );

if ( primitive.extensions ) addUnknownExtensionsToUserData( extensions, mesh, primitive );

parser.assignFinalMaterial( mesh );

meshes.push( mesh );

}

if ( meshes.length === 1 ) {

return meshes[ 0 ];

}

const group = new Group();

for ( let i = 0, il = meshes.length; i < il; i ++ ) {

group.add( meshes[ i ] );

}

return group;

} );

}

/** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras * @param {number} cameraIndex * @return {Promise<THREE.Camera>} */ loadCamera( cameraIndex ) {

let camera; const cameraDef = this.json.cameras[ cameraIndex ]; const params = cameraDef[ cameraDef.type ];

if ( ! params ) {

console.warn( 'THREE.GLTFLoader: Missing camera parameters.' ); return;

}

if ( cameraDef.type === 'perspective' ) {

camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );

} else if ( cameraDef.type === 'orthographic' ) {

camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar );

}

if ( cameraDef.name ) camera.name = this.createUniqueName( cameraDef.name );

assignExtrasToUserData( camera, cameraDef );

return Promise.resolve( camera );

}

/** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins * @param {number} skinIndex * @return {Promise<Object>} */ loadSkin( skinIndex ) {

const skinDef = this.json.skins[ skinIndex ];

const skinEntry = { joints: skinDef.joints };

if ( skinDef.inverseBindMatrices === undefined ) {

return Promise.resolve( skinEntry );

}

return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) {

skinEntry.inverseBindMatrices = accessor;

return skinEntry;

} );

}

/** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations * @param {number} animationIndex * @return {Promise<AnimationClip>} */ loadAnimation( animationIndex ) {

const json = this.json;

const animationDef = json.animations[ animationIndex ];

const pendingNodes = []; const pendingInputAccessors = []; const pendingOutputAccessors = []; const pendingSamplers = []; const pendingTargets = [];

for ( let i = 0, il = animationDef.channels.length; i < il; i ++ ) {

const channel = animationDef.channels[ i ]; const sampler = animationDef.samplers[ channel.sampler ]; const target = channel.target; const name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated. const input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input; const output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;

pendingNodes.push( this.getDependency( 'node', name ) ); pendingInputAccessors.push( this.getDependency( 'accessor', input ) ); pendingOutputAccessors.push( this.getDependency( 'accessor', output ) ); pendingSamplers.push( sampler ); pendingTargets.push( target );

}

return Promise.all( [

Promise.all( pendingNodes ), Promise.all( pendingInputAccessors ), Promise.all( pendingOutputAccessors ), Promise.all( pendingSamplers ), Promise.all( pendingTargets )

] ).then( function ( dependencies ) {

const nodes = dependencies[ 0 ]; const inputAccessors = dependencies[ 1 ]; const outputAccessors = dependencies[ 2 ]; const samplers = dependencies[ 3 ]; const targets = dependencies[ 4 ];

const tracks = [];

for ( let i = 0, il = nodes.length; i < il; i ++ ) {

const node = nodes[ i ]; const inputAccessor = inputAccessors[ i ]; const outputAccessor = outputAccessors[ i ]; const sampler = samplers[ i ]; const target = targets[ i ];

if ( node === undefined ) continue;

node.updateMatrix(); node.matrixAutoUpdate = true;

let TypedKeyframeTrack;

switch ( PATH_PROPERTIES[ target.path ] ) {

case PATH_PROPERTIES.weights:

TypedKeyframeTrack = NumberKeyframeTrack; break;

case PATH_PROPERTIES.rotation:

TypedKeyframeTrack = QuaternionKeyframeTrack; break;

case PATH_PROPERTIES.position: case PATH_PROPERTIES.scale: default:

TypedKeyframeTrack = VectorKeyframeTrack; break;

}

const targetName = node.name ? node.name : node.uuid;

const interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear;

const targetNames = [];

if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {

// Node may be a Group (glTF mesh with several primitives) or a Mesh. node.traverse( function ( object ) {

if ( object.isMesh === true && object.morphTargetInfluences ) {

targetNames.push( object.name ? object.name : object.uuid );

}

} );

} else {

targetNames.push( targetName );

}

let outputArray = outputAccessor.array;

if ( outputAccessor.normalized ) {

const scale = getNormalizedComponentScale( outputArray.constructor ); const scaled = new Float32Array( outputArray.length );

for ( let j = 0, jl = outputArray.length; j < jl; j ++ ) {

scaled[ j ] = outputArray[ j ] * scale;

}

outputArray = scaled;

}

for ( let j = 0, jl = targetNames.length; j < jl; j ++ ) {

const track = new TypedKeyframeTrack( targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ], inputAccessor.array, outputArray, interpolation );

// Override interpolation with custom factory method. if ( sampler.interpolation === 'CUBICSPLINE' ) {

track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {

// A CUBICSPLINE keyframe in glTF has three output values for each input value, // representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize() // must be divided by three to get the interpolant's sampleSize argument.

return new GLTFCubicSplineInterpolant( this.times, this.values, this.getValueSize() / 3, result );

};

// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants. track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;

}

tracks.push( track );

}

}

const name = animationDef.name ? animationDef.name : 'animation_' + animationIndex;

return new AnimationClip( name, undefined, tracks );

} );

}

createNodeMesh( nodeIndex ) {

const json = this.json; const parser = this; const nodeDef = json.nodes[ nodeIndex ];

if ( nodeDef.mesh === undefined ) return null;

return parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) {

const node = parser._getNodeRef( parser.meshCache, nodeDef.mesh, mesh );

// if weights are provided on the node, override weights on the mesh. if ( nodeDef.weights !== undefined ) {

node.traverse( function ( o ) {

if ( ! o.isMesh ) return;

for ( let i = 0, il = nodeDef.weights.length; i < il; i ++ ) {

o.morphTargetInfluences[ i ] = nodeDef.weights[ i ];

}

} );

}

return node;

} );

}

/** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy * @param {number} nodeIndex * @return {Promise<Object3D>} */ loadNode( nodeIndex ) {

const json = this.json; const extensions = this.extensions; const parser = this;

const nodeDef = json.nodes[ nodeIndex ];

// reserve node's name before its dependencies, so the root has the intended name. const nodeName = nodeDef.name ? parser.createUniqueName( nodeDef.name ) : ;

return ( function () {

const pending = [];

const meshPromise = parser._invokeOne( function ( ext ) {

return ext.createNodeMesh && ext.createNodeMesh( nodeIndex );

} );

if ( meshPromise ) {

pending.push( meshPromise );

}

if ( nodeDef.camera !== undefined ) {

pending.push( parser.getDependency( 'camera', nodeDef.camera ).then( function ( camera ) {

return parser._getNodeRef( parser.cameraCache, nodeDef.camera, camera );

} ) );

}

parser._invokeAll( function ( ext ) {

return ext.createNodeAttachment && ext.createNodeAttachment( nodeIndex );

} ).forEach( function ( promise ) {

pending.push( promise );

} );

return Promise.all( pending );

}() ).then( function ( objects ) {

let node;

// .isBone isn't in glTF spec. See ._markDefs if ( nodeDef.isBone === true ) {

node = new Bone();

} else if ( objects.length > 1 ) {

node = new Group();

} else if ( objects.length === 1 ) {

node = objects[ 0 ];

} else {

node = new Object3D();

}

if ( node !== objects[ 0 ] ) {

for ( let i = 0, il = objects.length; i < il; i ++ ) {

node.add( objects[ i ] );

}

}

if ( nodeDef.name ) {

node.userData.name = nodeDef.name; node.name = nodeName;

}

assignExtrasToUserData( node, nodeDef );

if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );

if ( nodeDef.matrix !== undefined ) {

const matrix = new Matrix4(); matrix.fromArray( nodeDef.matrix ); node.applyMatrix4( matrix );

} else {

if ( nodeDef.translation !== undefined ) {

node.position.fromArray( nodeDef.translation );

}

if ( nodeDef.rotation !== undefined ) {

node.quaternion.fromArray( nodeDef.rotation );

}

if ( nodeDef.scale !== undefined ) {

node.scale.fromArray( nodeDef.scale );

}

}

parser.associations.set( node, { type: 'nodes', index: nodeIndex } );

return node;

} );

}

/** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes * @param {number} sceneIndex * @return {Promise<Group>} */ loadScene( sceneIndex ) {

const json = this.json; const extensions = this.extensions; const sceneDef = this.json.scenes[ sceneIndex ]; const parser = this;

// Loader returns Group, not Scene. // See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172 const scene = new Group(); if ( sceneDef.name ) scene.name = parser.createUniqueName( sceneDef.name );

assignExtrasToUserData( scene, sceneDef );

if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );

const nodeIds = sceneDef.nodes || [];

const pending = [];

for ( let i = 0, il = nodeIds.length; i < il; i ++ ) {

pending.push( buildNodeHierachy( nodeIds[ i ], scene, json, parser ) );

}

return Promise.all( pending ).then( function () {

return scene;

} );

}

}

function buildNodeHierachy( nodeId, parentObject, json, parser ) {

const nodeDef = json.nodes[ nodeId ];

return parser.getDependency( 'node', nodeId ).then( function ( node ) {

if ( nodeDef.skin === undefined ) return node;

// build skeleton here as well

let skinEntry;

return parser.getDependency( 'skin', nodeDef.skin ).then( function ( skin ) {

skinEntry = skin;

const pendingJoints = [];

for ( let i = 0, il = skinEntry.joints.length; i < il; i ++ ) {

pendingJoints.push( parser.getDependency( 'node', skinEntry.joints[ i ] ) );

}

return Promise.all( pendingJoints );

} ).then( function ( jointNodes ) {

node.traverse( function ( mesh ) {

if ( ! mesh.isMesh ) return;

const bones = []; const boneInverses = [];

for ( let j = 0, jl = jointNodes.length; j < jl; j ++ ) {

const jointNode = jointNodes[ j ];

if ( jointNode ) {

bones.push( jointNode );

const mat = new Matrix4();

if ( skinEntry.inverseBindMatrices !== undefined ) {

mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 );

}

boneInverses.push( mat );

} else {

console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[ j ] );

}

}

mesh.bind( new Skeleton( bones, boneInverses ), mesh.matrixWorld );

} );

return node;

} );

} ).then( function ( node ) {

// build node hierachy

parentObject.add( node );

const pending = [];

if ( nodeDef.children ) {

const children = nodeDef.children;

for ( let i = 0, il = children.length; i < il; i ++ ) {

const child = children[ i ]; pending.push( buildNodeHierachy( child, node, json, parser ) );

}

}

return Promise.all( pending );

} );

}

/**

* @param {BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {GLTFParser} parser
*/

function computeBounds( geometry, primitiveDef, parser ) {

const attributes = primitiveDef.attributes;

const box = new Box3();

if ( attributes.POSITION !== undefined ) {

const accessor = parser.json.accessors[ attributes.POSITION ];

const min = accessor.min; const max = accessor.max;

// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.

if ( min !== undefined && max !== undefined ) {

box.set( new Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ), new Vector3( max[ 0 ], max[ 1 ], max[ 2 ] ) );

if ( accessor.normalized ) {

const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] ); box.min.multiplyScalar( boxScale ); box.max.multiplyScalar( boxScale );

}

} else {

console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );

return;

}

} else {

return;

}

const targets = primitiveDef.targets;

if ( targets !== undefined ) {

const maxDisplacement = new Vector3(); const vector = new Vector3();

for ( let i = 0, il = targets.length; i < il; i ++ ) {

const target = targets[ i ];

if ( target.POSITION !== undefined ) {

const accessor = parser.json.accessors[ target.POSITION ]; const min = accessor.min; const max = accessor.max;

// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.

if ( min !== undefined && max !== undefined ) {

// we need to get max of absolute components because target weight is [-1,1] vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) ); vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) ); vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) );


if ( accessor.normalized ) {

const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] ); vector.multiplyScalar( boxScale );

}

// Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative // to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets // are used to implement key-frame animations and as such only two are active at a time - this results in very large // boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size. maxDisplacement.max( vector );

} else {

console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );

}

}

}

// As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets. box.expandByVector( maxDisplacement );

}

geometry.boundingBox = box;

const sphere = new Sphere();

box.getCenter( sphere.center ); sphere.radius = box.min.distanceTo( box.max ) / 2;

geometry.boundingSphere = sphere;

}

/**

* @param {BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {GLTFParser} parser
* @return {Promise<BufferGeometry>}
*/

function addPrimitiveAttributes( geometry, primitiveDef, parser ) {

const attributes = primitiveDef.attributes;

const pending = [];

function assignAttributeAccessor( accessorIndex, attributeName ) {

return parser.getDependency( 'accessor', accessorIndex ) .then( function ( accessor ) {

geometry.setAttribute( attributeName, accessor );

} );

}

for ( const gltfAttributeName in attributes ) {

const threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase();

// Skip attributes already provided by e.g. Draco extension. if ( threeAttributeName in geometry.attributes ) continue;

pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) );

}

if ( primitiveDef.indices !== undefined && ! geometry.index ) {

const accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) {

geometry.setIndex( accessor );

} );

pending.push( accessor );

}

assignExtrasToUserData( geometry, primitiveDef );

computeBounds( geometry, primitiveDef, parser );

return Promise.all( pending ).then( function () {

return primitiveDef.targets !== undefined ? addMorphTargets( geometry, primitiveDef.targets, parser ) : geometry;

} );

}

/**

* @param {BufferGeometry} geometry
* @param {Number} drawMode
* @return {BufferGeometry}
*/

function toTrianglesDrawMode( geometry, drawMode ) {

let index = geometry.getIndex();

// generate index if not present

if ( index === null ) {

const indices = [];

const position = geometry.getAttribute( 'position' );

if ( position !== undefined ) {

for ( let i = 0; i < position.count; i ++ ) {

indices.push( i );

}

geometry.setIndex( indices ); index = geometry.getIndex();

} else {

console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' ); return geometry;

}

}

//

const numberOfTriangles = index.count - 2; const newIndices = [];

if ( drawMode === TriangleFanDrawMode ) {

// gl.TRIANGLE_FAN

for ( let i = 1; i <= numberOfTriangles; i ++ ) {

newIndices.push( index.getX( 0 ) ); newIndices.push( index.getX( i ) ); newIndices.push( index.getX( i + 1 ) );

}

} else {

// gl.TRIANGLE_STRIP

for ( let i = 0; i < numberOfTriangles; i ++ ) {

if ( i % 2 === 0 ) {

newIndices.push( index.getX( i ) ); newIndices.push( index.getX( i + 1 ) ); newIndices.push( index.getX( i + 2 ) );


} else {

newIndices.push( index.getX( i + 2 ) ); newIndices.push( index.getX( i + 1 ) ); newIndices.push( index.getX( i ) );

}

}

}

if ( ( newIndices.length / 3 ) !== numberOfTriangles ) {

console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' );

}

// build final geometry

const newGeometry = geometry.clone(); newGeometry.setIndex( newIndices );

return newGeometry;

}

   </script>
   <script type="module">

console.log(THREE) var scene = new THREE.Scene();

   	var root = new THREE.Group();

var camera = new THREE.PerspectiveCamera( 75, window.innerWidth / window.innerHeight, 0.1, 1000 ); var renderer = new THREE.WebGLRenderer({ antialias: true, preserveDrawingBuffer: true, alpha: true, });

   	var clock = new THREE.Clock();

var container = document.getElementById("model-view");

const light1 = new THREE.DirectionalLight(0xffffff, 2.5);

   light1.position.set(0, 1, 3);
   scene.add(light1);
   const light2 = new THREE.AmbientLight(0xffffff, 0.7);
   light1.position.set(0, 1, 3);
   scene.add(light2);
   const light3 = new THREE.HemisphereLight();
   scene.add(light3);

renderer.setClearColor(0xcccccc, 0);

camera.position.z = 2; camera.position.y = 0.5; scene.position.y = -0.5; scene.add(camera);

renderer.gammaOutput = true; renderer.gammaFactor = 2.2;

renderer.setPixelRatio(window.devicePixelRatio); renderer.outputEncoding = THREE.sRGBEncoding; renderer.toneMappingExposure = 1; renderer.setSize( container.offsetWidth, container.offsetHeight ); renderer.physicallyCorrectLights = true; container.appendChild(renderer.domElement);


window.addEventListener("resize", function () {}, false);

scene.add(root);

const loader = new GLTFLoader();

let mixer; const actions = [];

function animate () { actions.forEach((action) => { action.play(); }); renderer.render(scene, camera); requestAnimationFrame(animate); };

loader.load("./bioit_uncompressed.glb.png", function(loadedModel) { const meshItem = loadedModel.scene;

meshItem.scale.set(

       0.1,
       0.1,
       0.1

);

root.add(meshItem);

animate(); });

   </script>

</html>