Difference between revisions of "Team:Vilnius-Lithuania/secret-place/three-dimensional-models"

(Created page with "Here is a secret page")
 
Line 1: Line 1:
 
Here is a secret page
 
Here is a secret page
 +
<!DOCTYPE html>
 +
 +
<html>
 +
  <head>
 +
    <style>
 +
      body {
 +
        margin: 0;
 +
      }
 +
#model-view {
 +
position: fixed;
 +
height: 100%;
 +
width: 100%;
 +
}
 +
    </style>
 +
  </head>
 +
  <body>
 +
    <script type="module">
 +
      /**
 +
* @license
 +
* Copyright 2010-2021 Three.js Authors
 +
* SPDX-License-Identifier: MIT
 +
*/
 +
(function (global, factory) {
 +
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
 +
typeof define === 'function' && define.amd ? define(['exports'], factory) :
 +
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {}));
 +
}(this, (function (exports) { 'use strict';
 +
 +
const REVISION = '130';
 +
const MOUSE = {
 +
LEFT: 0,
 +
MIDDLE: 1,
 +
RIGHT: 2,
 +
ROTATE: 0,
 +
DOLLY: 1,
 +
PAN: 2
 +
};
 +
const TOUCH = {
 +
ROTATE: 0,
 +
PAN: 1,
 +
DOLLY_PAN: 2,
 +
DOLLY_ROTATE: 3
 +
};
 +
const CullFaceNone = 0;
 +
const CullFaceBack = 1;
 +
const CullFaceFront = 2;
 +
const CullFaceFrontBack = 3;
 +
const BasicShadowMap = 0;
 +
const PCFShadowMap = 1;
 +
const PCFSoftShadowMap = 2;
 +
const VSMShadowMap = 3;
 +
const FrontSide = 0;
 +
const BackSide = 1;
 +
const DoubleSide = 2;
 +
const FlatShading = 1;
 +
const SmoothShading = 2;
 +
const NoBlending = 0;
 +
const NormalBlending = 1;
 +
const AdditiveBlending = 2;
 +
const SubtractiveBlending = 3;
 +
const MultiplyBlending = 4;
 +
const CustomBlending = 5;
 +
const AddEquation = 100;
 +
const SubtractEquation = 101;
 +
const ReverseSubtractEquation = 102;
 +
const MinEquation = 103;
 +
const MaxEquation = 104;
 +
const ZeroFactor = 200;
 +
const OneFactor = 201;
 +
const SrcColorFactor = 202;
 +
const OneMinusSrcColorFactor = 203;
 +
const SrcAlphaFactor = 204;
 +
const OneMinusSrcAlphaFactor = 205;
 +
const DstAlphaFactor = 206;
 +
const OneMinusDstAlphaFactor = 207;
 +
const DstColorFactor = 208;
 +
const OneMinusDstColorFactor = 209;
 +
const SrcAlphaSaturateFactor = 210;
 +
const NeverDepth = 0;
 +
const AlwaysDepth = 1;
 +
const LessDepth = 2;
 +
const LessEqualDepth = 3;
 +
const EqualDepth = 4;
 +
const GreaterEqualDepth = 5;
 +
const GreaterDepth = 6;
 +
const NotEqualDepth = 7;
 +
const MultiplyOperation = 0;
 +
const MixOperation = 1;
 +
const AddOperation = 2;
 +
const NoToneMapping = 0;
 +
const LinearToneMapping = 1;
 +
const ReinhardToneMapping = 2;
 +
const CineonToneMapping = 3;
 +
const ACESFilmicToneMapping = 4;
 +
const CustomToneMapping = 5;
 +
const UVMapping = 300;
 +
const CubeReflectionMapping = 301;
 +
const CubeRefractionMapping = 302;
 +
const EquirectangularReflectionMapping = 303;
 +
const EquirectangularRefractionMapping = 304;
 +
const CubeUVReflectionMapping = 306;
 +
const CubeUVRefractionMapping = 307;
 +
const RepeatWrapping = 1000;
 +
const ClampToEdgeWrapping = 1001;
 +
const MirroredRepeatWrapping = 1002;
 +
const NearestFilter = 1003;
 +
const NearestMipmapNearestFilter = 1004;
 +
const NearestMipMapNearestFilter = 1004;
 +
const NearestMipmapLinearFilter = 1005;
 +
const NearestMipMapLinearFilter = 1005;
 +
const LinearFilter = 1006;
 +
const LinearMipmapNearestFilter = 1007;
 +
const LinearMipMapNearestFilter = 1007;
 +
const LinearMipmapLinearFilter = 1008;
 +
const LinearMipMapLinearFilter = 1008;
 +
const UnsignedByteType = 1009;
 +
const ByteType = 1010;
 +
const ShortType = 1011;
 +
const UnsignedShortType = 1012;
 +
const IntType = 1013;
 +
const UnsignedIntType = 1014;
 +
const FloatType = 1015;
 +
const HalfFloatType = 1016;
 +
const UnsignedShort4444Type = 1017;
 +
const UnsignedShort5551Type = 1018;
 +
const UnsignedShort565Type = 1019;
 +
const UnsignedInt248Type = 1020;
 +
const AlphaFormat = 1021;
 +
const RGBFormat = 1022;
 +
const RGBAFormat = 1023;
 +
const LuminanceFormat = 1024;
 +
const LuminanceAlphaFormat = 1025;
 +
const RGBEFormat = RGBAFormat;
 +
const DepthFormat = 1026;
 +
const DepthStencilFormat = 1027;
 +
const RedFormat = 1028;
 +
const RedIntegerFormat = 1029;
 +
const RGFormat = 1030;
 +
const RGIntegerFormat = 1031;
 +
const RGBIntegerFormat = 1032;
 +
const RGBAIntegerFormat = 1033;
 +
const RGB_S3TC_DXT1_Format = 33776;
 +
const RGBA_S3TC_DXT1_Format = 33777;
 +
const RGBA_S3TC_DXT3_Format = 33778;
 +
const RGBA_S3TC_DXT5_Format = 33779;
 +
const RGB_PVRTC_4BPPV1_Format = 35840;
 +
const RGB_PVRTC_2BPPV1_Format = 35841;
 +
const RGBA_PVRTC_4BPPV1_Format = 35842;
 +
const RGBA_PVRTC_2BPPV1_Format = 35843;
 +
const RGB_ETC1_Format = 36196;
 +
const RGB_ETC2_Format = 37492;
 +
const RGBA_ETC2_EAC_Format = 37496;
 +
const RGBA_ASTC_4x4_Format = 37808;
 +
const RGBA_ASTC_5x4_Format = 37809;
 +
const RGBA_ASTC_5x5_Format = 37810;
 +
const RGBA_ASTC_6x5_Format = 37811;
 +
const RGBA_ASTC_6x6_Format = 37812;
 +
const RGBA_ASTC_8x5_Format = 37813;
 +
const RGBA_ASTC_8x6_Format = 37814;
 +
const RGBA_ASTC_8x8_Format = 37815;
 +
const RGBA_ASTC_10x5_Format = 37816;
 +
const RGBA_ASTC_10x6_Format = 37817;
 +
const RGBA_ASTC_10x8_Format = 37818;
 +
const RGBA_ASTC_10x10_Format = 37819;
 +
const RGBA_ASTC_12x10_Format = 37820;
 +
const RGBA_ASTC_12x12_Format = 37821;
 +
const RGBA_BPTC_Format = 36492;
 +
const SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
 +
const SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
 +
const SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
 +
const SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
 +
const SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
 +
const SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
 +
const SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
 +
const SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
 +
const SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
 +
const SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
 +
const SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
 +
const SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
 +
const SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
 +
const SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
 +
const LoopOnce = 2200;
 +
const LoopRepeat = 2201;
 +
const LoopPingPong = 2202;
 +
const InterpolateDiscrete = 2300;
 +
const InterpolateLinear = 2301;
 +
const InterpolateSmooth = 2302;
 +
const ZeroCurvatureEnding = 2400;
 +
const ZeroSlopeEnding = 2401;
 +
const WrapAroundEnding = 2402;
 +
const NormalAnimationBlendMode = 2500;
 +
const AdditiveAnimationBlendMode = 2501;
 +
const TrianglesDrawMode = 0;
 +
const TriangleStripDrawMode = 1;
 +
const TriangleFanDrawMode = 2;
 +
const LinearEncoding = 3000;
 +
const sRGBEncoding = 3001;
 +
const GammaEncoding = 3007;
 +
const RGBEEncoding = 3002;
 +
const LogLuvEncoding = 3003;
 +
const RGBM7Encoding = 3004;
 +
const RGBM16Encoding = 3005;
 +
const RGBDEncoding = 3006;
 +
const BasicDepthPacking = 3200;
 +
const RGBADepthPacking = 3201;
 +
const TangentSpaceNormalMap = 0;
 +
const ObjectSpaceNormalMap = 1;
 +
const ZeroStencilOp = 0;
 +
const KeepStencilOp = 7680;
 +
const ReplaceStencilOp = 7681;
 +
const IncrementStencilOp = 7682;
 +
const DecrementStencilOp = 7683;
 +
const IncrementWrapStencilOp = 34055;
 +
const DecrementWrapStencilOp = 34056;
 +
const InvertStencilOp = 5386;
 +
const NeverStencilFunc = 512;
 +
const LessStencilFunc = 513;
 +
const EqualStencilFunc = 514;
 +
const LessEqualStencilFunc = 515;
 +
const GreaterStencilFunc = 516;
 +
const NotEqualStencilFunc = 517;
 +
const GreaterEqualStencilFunc = 518;
 +
const AlwaysStencilFunc = 519;
 +
const StaticDrawUsage = 35044;
 +
const DynamicDrawUsage = 35048;
 +
const StreamDrawUsage = 35040;
 +
const StaticReadUsage = 35045;
 +
const DynamicReadUsage = 35049;
 +
const StreamReadUsage = 35041;
 +
const StaticCopyUsage = 35046;
 +
const DynamicCopyUsage = 35050;
 +
const StreamCopyUsage = 35042;
 +
const GLSL1 = '100';
 +
const GLSL3 = '300 es';
 +
 +
/**
 +
* https://github.com/mrdoob/eventdispatcher.js/
 +
*/
 +
class EventDispatcher {
 +
addEventListener(type, listener) {
 +
if (this._listeners === undefined) this._listeners = {};
 +
const listeners = this._listeners;
 +
 +
if (listeners[type] === undefined) {
 +
listeners[type] = [];
 +
}
 +
 +
if (listeners[type].indexOf(listener) === -1) {
 +
listeners[type].push(listener);
 +
}
 +
}
 +
 +
hasEventListener(type, listener) {
 +
if (this._listeners === undefined) return false;
 +
const listeners = this._listeners;
 +
return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1;
 +
}
 +
 +
removeEventListener(type, listener) {
 +
if (this._listeners === undefined) return;
 +
const listeners = this._listeners;
 +
const listenerArray = listeners[type];
 +
 +
if (listenerArray !== undefined) {
 +
const index = listenerArray.indexOf(listener);
 +
 +
if (index !== -1) {
 +
listenerArray.splice(index, 1);
 +
}
 +
}
 +
}
 +
 +
dispatchEvent(event) {
 +
if (this._listeners === undefined) return;
 +
const listeners = this._listeners;
 +
const listenerArray = listeners[event.type];
 +
 +
if (listenerArray !== undefined) {
 +
event.target = this; // Make a copy, in case listeners are removed while iterating.
 +
 +
const array = listenerArray.slice(0);
 +
 +
for (let i = 0, l = array.length; i < l; i++) {
 +
array[i].call(this, event);
 +
}
 +
 +
event.target = null;
 +
}
 +
}
 +
 +
}
 +
 +
const _lut = [];
 +
 +
for (let i = 0; i < 256; i++) {
 +
_lut[i] = (i < 16 ? '0' : '') + i.toString(16);
 +
}
 +
 +
let _seed = 1234567;
 +
const DEG2RAD = Math.PI / 180;
 +
const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
 +
 +
function generateUUID() {
 +
const d0 = Math.random() * 0xffffffff | 0;
 +
const d1 = Math.random() * 0xffffffff | 0;
 +
const d2 = Math.random() * 0xffffffff | 0;
 +
const d3 = Math.random() * 0xffffffff | 0;
 +
const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space.
 +
 +
return uuid.toUpperCase();
 +
}
 +
 +
function clamp(value, min, max) {
 +
return Math.max(min, Math.min(max, value));
 +
} // compute euclidian modulo of m % n
 +
// https://en.wikipedia.org/wiki/Modulo_operation
 +
 +
 +
function euclideanModulo(n, m) {
 +
return (n % m + m) % m;
 +
} // Linear mapping from range <a1, a2> to range <b1, b2>
 +
 +
 +
function mapLinear(x, a1, a2, b1, b2) {
 +
return b1 + (x - a1) * (b2 - b1) / (a2 - a1);
 +
} // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
 +
 +
 +
function inverseLerp(x, y, value) {
 +
if (x !== y) {
 +
return (value - x) / (y - x);
 +
} else {
 +
return 0;
 +
}
 +
} // https://en.wikipedia.org/wiki/Linear_interpolation
 +
 +
 +
function lerp(x, y, t) {
 +
return (1 - t) * x + t * y;
 +
} // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
 +
 +
 +
function damp(x, y, lambda, dt) {
 +
return lerp(x, y, 1 - Math.exp(-lambda * dt));
 +
} // https://www.desmos.com/calculator/vcsjnyz7x4
 +
 +
 +
function pingpong(x, length = 1) {
 +
return length - Math.abs(euclideanModulo(x, length * 2) - length);
 +
} // http://en.wikipedia.org/wiki/Smoothstep
 +
 +
 +
function smoothstep(x, min, max) {
 +
if (x <= min) return 0;
 +
if (x >= max) return 1;
 +
x = (x - min) / (max - min);
 +
return x * x * (3 - 2 * x);
 +
}
 +
 +
function smootherstep(x, min, max) {
 +
if (x <= min) return 0;
 +
if (x >= max) return 1;
 +
x = (x - min) / (max - min);
 +
return x * x * x * (x * (x * 6 - 15) + 10);
 +
} // Random integer from <low, high> interval
 +
 +
 +
function randInt(low, high) {
 +
return low + Math.floor(Math.random() * (high - low + 1));
 +
} // Random float from <low, high> interval
 +
 +
 +
function randFloat(low, high) {
 +
return low + Math.random() * (high - low);
 +
} // Random float from <-range/2, range/2> interval
 +
 +
 +
function randFloatSpread(range) {
 +
return range * (0.5 - Math.random());
 +
} // Deterministic pseudo-random float in the interval [ 0, 1 ]
 +
 +
 +
function seededRandom(s) {
 +
if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm
 +
 +
_seed = _seed * 16807 % 2147483647;
 +
return (_seed - 1) / 2147483646;
 +
}
 +
 +
function degToRad(degrees) {
 +
return degrees * DEG2RAD;
 +
}
 +
 +
function radToDeg(radians) {
 +
return radians * RAD2DEG;
 +
}
 +
 +
function isPowerOfTwo(value) {
 +
return (value & value - 1) === 0 && value !== 0;
 +
}
 +
 +
function ceilPowerOfTwo(value) {
 +
return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2));
 +
}
 +
 +
function floorPowerOfTwo(value) {
 +
return Math.pow(2, Math.floor(Math.log(value) / Math.LN2));
 +
}
 +
 +
function setQuaternionFromProperEuler(q, a, b, c, order) {
 +
// Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
 +
// rotations are applied to the axes in the order specified by 'order'
 +
// rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
 +
// angles are in radians
 +
const cos = Math.cos;
 +
const sin = Math.sin;
 +
const c2 = cos(b / 2);
 +
const s2 = sin(b / 2);
 +
const c13 = cos((a + c) / 2);
 +
const s13 = sin((a + c) / 2);
 +
const c1_3 = cos((a - c) / 2);
 +
const s1_3 = sin((a - c) / 2);
 +
const c3_1 = cos((c - a) / 2);
 +
const s3_1 = sin((c - a) / 2);
 +
 +
switch (order) {
 +
case 'XYX':
 +
q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13);
 +
break;
 +
 +
case 'YZY':
 +
q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13);
 +
break;
 +
 +
case 'ZXZ':
 +
q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13);
 +
break;
 +
 +
case 'XZX':
 +
q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13);
 +
break;
 +
 +
case 'YXY':
 +
q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13);
 +
break;
 +
 +
case 'ZYZ':
 +
q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13);
 +
break;
 +
 +
default:
 +
console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order);
 +
}
 +
}
 +
 +
var MathUtils = /*#__PURE__*/Object.freeze({
 +
__proto__: null,
 +
DEG2RAD: DEG2RAD,
 +
RAD2DEG: RAD2DEG,
 +
generateUUID: generateUUID,
 +
clamp: clamp,
 +
euclideanModulo: euclideanModulo,
 +
mapLinear: mapLinear,
 +
inverseLerp: inverseLerp,
 +
lerp: lerp,
 +
damp: damp,
 +
pingpong: pingpong,
 +
smoothstep: smoothstep,
 +
smootherstep: smootherstep,
 +
randInt: randInt,
 +
randFloat: randFloat,
 +
randFloatSpread: randFloatSpread,
 +
seededRandom: seededRandom,
 +
degToRad: degToRad,
 +
radToDeg: radToDeg,
 +
isPowerOfTwo: isPowerOfTwo,
 +
ceilPowerOfTwo: ceilPowerOfTwo,
 +
floorPowerOfTwo: floorPowerOfTwo,
 +
setQuaternionFromProperEuler: setQuaternionFromProperEuler
 +
});
 +
 +
class Vector2 {
 +
constructor(x = 0, y = 0) {
 +
this.x = x;
 +
this.y = y;
 +
}
 +
 +
get width() {
 +
return this.x;
 +
}
 +
 +
set width(value) {
 +
this.x = value;
 +
}
 +
 +
get height() {
 +
return this.y;
 +
}
 +
 +
set height(value) {
 +
this.y = value;
 +
}
 +
 +
set(x, y) {
 +
this.x = x;
 +
this.y = y;
 +
return this;
 +
}
 +
 +
setScalar(scalar) {
 +
this.x = scalar;
 +
this.y = scalar;
 +
return this;
 +
}
 +
 +
setX(x) {
 +
this.x = x;
 +
return this;
 +
}
 +
 +
setY(y) {
 +
this.y = y;
 +
return this;
 +
}
 +
 +
setComponent(index, value) {
 +
switch (index) {
 +
case 0:
 +
this.x = value;
 +
break;
 +
 +
case 1:
 +
this.y = value;
 +
break;
 +
 +
default:
 +
throw new Error('index is out of range: ' + index);
 +
}
 +
 +
return this;
 +
}
 +
 +
getComponent(index) {
 +
switch (index) {
 +
case 0:
 +
return this.x;
 +
 +
case 1:
 +
return this.y;
 +
 +
default:
 +
throw new Error('index is out of range: ' + index);
 +
}
 +
}
 +
 +
clone() {
 +
return new this.constructor(this.x, this.y);
 +
}
 +
 +
copy(v) {
 +
this.x = v.x;
 +
this.y = v.y;
 +
return this;
 +
}
 +
 +
add(v, w) {
 +
if (w !== undefined) {
 +
console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
 +
return this.addVectors(v, w);
 +
}
 +
 +
this.x += v.x;
 +
this.y += v.y;
 +
return this;
 +
}
 +
 +
addScalar(s) {
 +
this.x += s;
 +
this.y += s;
 +
return this;
 +
}
 +
 +
addVectors(a, b) {
 +
this.x = a.x + b.x;
 +
this.y = a.y + b.y;
 +
return this;
 +
}
 +
 +
addScaledVector(v, s) {
 +
this.x += v.x * s;
 +
this.y += v.y * s;
 +
return this;
 +
}
 +
 +
sub(v, w) {
 +
if (w !== undefined) {
 +
console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
 +
return this.subVectors(v, w);
 +
}
 +
 +
this.x -= v.x;
 +
this.y -= v.y;
 +
return this;
 +
}
 +
 +
subScalar(s) {
 +
this.x -= s;
 +
this.y -= s;
 +
return this;
 +
}
 +
 +
subVectors(a, b) {
 +
this.x = a.x - b.x;
 +
this.y = a.y - b.y;
 +
return this;
 +
}
 +
 +
multiply(v) {
 +
this.x *= v.x;
 +
this.y *= v.y;
 +
return this;
 +
}
 +
 +
multiplyScalar(scalar) {
 +
this.x *= scalar;
 +
this.y *= scalar;
 +
return this;
 +
}
 +
 +
divide(v) {
 +
this.x /= v.x;
 +
this.y /= v.y;
 +
return this;
 +
}
 +
 +
divideScalar(scalar) {
 +
return this.multiplyScalar(1 / scalar);
 +
}
 +
 +
applyMatrix3(m) {
 +
const x = this.x,
 +
y = this.y;
 +
const e = m.elements;
 +
this.x = e[0] * x + e[3] * y + e[6];
 +
this.y = e[1] * x + e[4] * y + e[7];
 +
return this;
 +
}
 +
 +
min(v) {
 +
this.x = Math.min(this.x, v.x);
 +
this.y = Math.min(this.y, v.y);
 +
return this;
 +
}
 +
 +
max(v) {
 +
this.x = Math.max(this.x, v.x);
 +
this.y = Math.max(this.y, v.y);
 +
return this;
 +
}
 +
 +
clamp(min, max) {
 +
// assumes min < max, componentwise
 +
this.x = Math.max(min.x, Math.min(max.x, this.x));
 +
this.y = Math.max(min.y, Math.min(max.y, this.y));
 +
return this;
 +
}
 +
 +
clampScalar(minVal, maxVal) {
 +
this.x = Math.max(minVal, Math.min(maxVal, this.x));
 +
this.y = Math.max(minVal, Math.min(maxVal, this.y));
 +
return this;
 +
}
 +
 +
clampLength(min, max) {
 +
const length = this.length();
 +
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
 +
}
 +
 +
floor() {
 +
this.x = Math.floor(this.x);
 +
this.y = Math.floor(this.y);
 +
return this;
 +
}
 +
 +
ceil() {
 +
this.x = Math.ceil(this.x);
 +
this.y = Math.ceil(this.y);
 +
return this;
 +
}
 +
 +
round() {
 +
this.x = Math.round(this.x);
 +
this.y = Math.round(this.y);
 +
return this;
 +
}
 +
 +
roundToZero() {
 +
this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
 +
this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
 +
return this;
 +
}
 +
 +
negate() {
 +
this.x = -this.x;
 +
this.y = -this.y;
 +
return this;
 +
}
 +
 +
dot(v) {
 +
return this.x * v.x + this.y * v.y;
 +
}
 +
 +
cross(v) {
 +
return this.x * v.y - this.y * v.x;
 +
}
 +
 +
lengthSq() {
 +
return this.x * this.x + this.y * this.y;
 +
}
 +
 +
length() {
 +
return Math.sqrt(this.x * this.x + this.y * this.y);
 +
}
 +
 +
manhattanLength() {
 +
return Math.abs(this.x) + Math.abs(this.y);
 +
}
 +
 +
normalize() {
 +
return this.divideScalar(this.length() || 1);
 +
}
 +
 +
angle() {
 +
// computes the angle in radians with respect to the positive x-axis
 +
const angle = Math.atan2(-this.y, -this.x) + Math.PI;
 +
return angle;
 +
}
 +
 +
distanceTo(v) {
 +
return Math.sqrt(this.distanceToSquared(v));
 +
}
 +
 +
distanceToSquared(v) {
 +
const dx = this.x - v.x,
 +
dy = this.y - v.y;
 +
return dx * dx + dy * dy;
 +
}
 +
 +
manhattanDistanceTo(v) {
 +
return Math.abs(this.x - v.x) + Math.abs(this.y - v.y);
 +
}
 +
 +
setLength(length) {
 +
return this.normalize().multiplyScalar(length);
 +
}
 +
 +
lerp(v, alpha) {
 +
this.x += (v.x - this.x) * alpha;
 +
this.y += (v.y - this.y) * alpha;
 +
return this;
 +
}
 +
 +
lerpVectors(v1, v2, alpha) {
 +
this.x = v1.x + (v2.x - v1.x) * alpha;
 +
this.y = v1.y + (v2.y - v1.y) * alpha;
 +
return this;
 +
}
 +
 +
equals(v) {
 +
return v.x === this.x && v.y === this.y;
 +
}
 +
 +
fromArray(array, offset = 0) {
 +
this.x = array[offset];
 +
this.y = array[offset + 1];
 +
return this;
 +
}
 +
 +
toArray(array = [], offset = 0) {
 +
array[offset] = this.x;
 +
array[offset + 1] = this.y;
 +
return array;
 +
}
 +
 +
fromBufferAttribute(attribute, index, offset) {
 +
if (offset !== undefined) {
 +
console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().');
 +
}
 +
 +
this.x = attribute.getX(index);
 +
this.y = attribute.getY(index);
 +
return this;
 +
}
 +
 +
rotateAround(center, angle) {
 +
const c = Math.cos(angle),
 +
s = Math.sin(angle);
 +
const x = this.x - center.x;
 +
const y = this.y - center.y;
 +
this.x = x * c - y * s + center.x;
 +
this.y = x * s + y * c + center.y;
 +
return this;
 +
}
 +
 +
random() {
 +
this.x = Math.random();
 +
this.y = Math.random();
 +
return this;
 +
}
 +
 +
}
 +
 +
Vector2.prototype.isVector2 = true;
 +
 +
class Matrix3 {
 +
constructor() {
 +
this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1];
 +
 +
if (arguments.length > 0) {
 +
console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.');
 +
}
 +
}
 +
 +
set(n11, n12, n13, n21, n22, n23, n31, n32, n33) {
 +
const te = this.elements;
 +
te[0] = n11;
 +
te[1] = n21;
 +
te[2] = n31;
 +
te[3] = n12;
 +
te[4] = n22;
 +
te[5] = n32;
 +
te[6] = n13;
 +
te[7] = n23;
 +
te[8] = n33;
 +
return this;
 +
}
 +
 +
identity() {
 +
this.set(1, 0, 0, 0, 1, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
copy(m) {
 +
const te = this.elements;
 +
const me = m.elements;
 +
te[0] = me[0];
 +
te[1] = me[1];
 +
te[2] = me[2];
 +
te[3] = me[3];
 +
te[4] = me[4];
 +
te[5] = me[5];
 +
te[6] = me[6];
 +
te[7] = me[7];
 +
te[8] = me[8];
 +
return this;
 +
}
 +
 +
extractBasis(xAxis, yAxis, zAxis) {
 +
xAxis.setFromMatrix3Column(this, 0);
 +
yAxis.setFromMatrix3Column(this, 1);
 +
zAxis.setFromMatrix3Column(this, 2);
 +
return this;
 +
}
 +
 +
setFromMatrix4(m) {
 +
const me = m.elements;
 +
this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]);
 +
return this;
 +
}
 +
 +
multiply(m) {
 +
return this.multiplyMatrices(this, m);
 +
}
 +
 +
premultiply(m) {
 +
return this.multiplyMatrices(m, this);
 +
}
 +
 +
multiplyMatrices(a, b) {
 +
const ae = a.elements;
 +
const be = b.elements;
 +
const te = this.elements;
 +
const a11 = ae[0],
 +
a12 = ae[3],
 +
a13 = ae[6];
 +
const a21 = ae[1],
 +
a22 = ae[4],
 +
a23 = ae[7];
 +
const a31 = ae[2],
 +
a32 = ae[5],
 +
a33 = ae[8];
 +
const b11 = be[0],
 +
b12 = be[3],
 +
b13 = be[6];
 +
const b21 = be[1],
 +
b22 = be[4],
 +
b23 = be[7];
 +
const b31 = be[2],
 +
b32 = be[5],
 +
b33 = be[8];
 +
te[0] = a11 * b11 + a12 * b21 + a13 * b31;
 +
te[3] = a11 * b12 + a12 * b22 + a13 * b32;
 +
te[6] = a11 * b13 + a12 * b23 + a13 * b33;
 +
te[1] = a21 * b11 + a22 * b21 + a23 * b31;
 +
te[4] = a21 * b12 + a22 * b22 + a23 * b32;
 +
te[7] = a21 * b13 + a22 * b23 + a23 * b33;
 +
te[2] = a31 * b11 + a32 * b21 + a33 * b31;
 +
te[5] = a31 * b12 + a32 * b22 + a33 * b32;
 +
te[8] = a31 * b13 + a32 * b23 + a33 * b33;
 +
return this;
 +
}
 +
 +
multiplyScalar(s) {
 +
const te = this.elements;
 +
te[0] *= s;
 +
te[3] *= s;
 +
te[6] *= s;
 +
te[1] *= s;
 +
te[4] *= s;
 +
te[7] *= s;
 +
te[2] *= s;
 +
te[5] *= s;
 +
te[8] *= s;
 +
return this;
 +
}
 +
 +
determinant() {
 +
const te = this.elements;
 +
const a = te[0],
 +
b = te[1],
 +
c = te[2],
 +
d = te[3],
 +
e = te[4],
 +
f = te[5],
 +
g = te[6],
 +
h = te[7],
 +
i = te[8];
 +
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
 +
}
 +
 +
invert() {
 +
const te = this.elements,
 +
n11 = te[0],
 +
n21 = te[1],
 +
n31 = te[2],
 +
n12 = te[3],
 +
n22 = te[4],
 +
n32 = te[5],
 +
n13 = te[6],
 +
n23 = te[7],
 +
n33 = te[8],
 +
t11 = n33 * n22 - n32 * n23,
 +
t12 = n32 * n13 - n33 * n12,
 +
t13 = n23 * n12 - n22 * n13,
 +
det = n11 * t11 + n21 * t12 + n31 * t13;
 +
if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
 +
const detInv = 1 / det;
 +
te[0] = t11 * detInv;
 +
te[1] = (n31 * n23 - n33 * n21) * detInv;
 +
te[2] = (n32 * n21 - n31 * n22) * detInv;
 +
te[3] = t12 * detInv;
 +
te[4] = (n33 * n11 - n31 * n13) * detInv;
 +
te[5] = (n31 * n12 - n32 * n11) * detInv;
 +
te[6] = t13 * detInv;
 +
te[7] = (n21 * n13 - n23 * n11) * detInv;
 +
te[8] = (n22 * n11 - n21 * n12) * detInv;
 +
return this;
 +
}
 +
 +
transpose() {
 +
let tmp;
 +
const m = this.elements;
 +
tmp = m[1];
 +
m[1] = m[3];
 +
m[3] = tmp;
 +
tmp = m[2];
 +
m[2] = m[6];
 +
m[6] = tmp;
 +
tmp = m[5];
 +
m[5] = m[7];
 +
m[7] = tmp;
 +
return this;
 +
}
 +
 +
getNormalMatrix(matrix4) {
 +
return this.setFromMatrix4(matrix4).invert().transpose();
 +
}
 +
 +
transposeIntoArray(r) {
 +
const m = this.elements;
 +
r[0] = m[0];
 +
r[1] = m[3];
 +
r[2] = m[6];
 +
r[3] = m[1];
 +
r[4] = m[4];
 +
r[5] = m[7];
 +
r[6] = m[2];
 +
r[7] = m[5];
 +
r[8] = m[8];
 +
return this;
 +
}
 +
 +
setUvTransform(tx, ty, sx, sy, rotation, cx, cy) {
 +
const c = Math.cos(rotation);
 +
const s = Math.sin(rotation);
 +
this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1);
 +
return this;
 +
}
 +
 +
scale(sx, sy) {
 +
const te = this.elements;
 +
te[0] *= sx;
 +
te[3] *= sx;
 +
te[6] *= sx;
 +
te[1] *= sy;
 +
te[4] *= sy;
 +
te[7] *= sy;
 +
return this;
 +
}
 +
 +
rotate(theta) {
 +
const c = Math.cos(theta);
 +
const s = Math.sin(theta);
 +
const te = this.elements;
 +
const a11 = te[0],
 +
a12 = te[3],
 +
a13 = te[6];
 +
const a21 = te[1],
 +
a22 = te[4],
 +
a23 = te[7];
 +
te[0] = c * a11 + s * a21;
 +
te[3] = c * a12 + s * a22;
 +
te[6] = c * a13 + s * a23;
 +
te[1] = -s * a11 + c * a21;
 +
te[4] = -s * a12 + c * a22;
 +
te[7] = -s * a13 + c * a23;
 +
return this;
 +
}
 +
 +
translate(tx, ty) {
 +
const te = this.elements;
 +
te[0] += tx * te[2];
 +
te[3] += tx * te[5];
 +
te[6] += tx * te[8];
 +
te[1] += ty * te[2];
 +
te[4] += ty * te[5];
 +
te[7] += ty * te[8];
 +
return this;
 +
}
 +
 +
equals(matrix) {
 +
const te = this.elements;
 +
const me = matrix.elements;
 +
 +
for (let i = 0; i < 9; i++) {
 +
if (te[i] !== me[i]) return false;
 +
}
 +
 +
return true;
 +
}
 +
 +
fromArray(array, offset = 0) {
 +
for (let i = 0; i < 9; i++) {
 +
this.elements[i] = array[i + offset];
 +
}
 +
 +
return this;
 +
}
 +
 +
toArray(array = [], offset = 0) {
 +
const te = this.elements;
 +
array[offset] = te[0];
 +
array[offset + 1] = te[1];
 +
array[offset + 2] = te[2];
 +
array[offset + 3] = te[3];
 +
array[offset + 4] = te[4];
 +
array[offset + 5] = te[5];
 +
array[offset + 6] = te[6];
 +
array[offset + 7] = te[7];
 +
array[offset + 8] = te[8];
 +
return array;
 +
}
 +
 +
clone() {
 +
return new this.constructor().fromArray(this.elements);
 +
}
 +
 +
}
 +
 +
Matrix3.prototype.isMatrix3 = true;
 +
 +
let _canvas;
 +
 +
class ImageUtils {
 +
static getDataURL(image) {
 +
if (/^data:/i.test(image.src)) {
 +
return image.src;
 +
}
 +
 +
if (typeof HTMLCanvasElement == 'undefined') {
 +
return image.src;
 +
}
 +
 +
let canvas;
 +
 +
if (image instanceof HTMLCanvasElement) {
 +
canvas = image;
 +
} else {
 +
if (_canvas === undefined) _canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
 +
_canvas.width = image.width;
 +
_canvas.height = image.height;
 +
 +
const context = _canvas.getContext('2d');
 +
 +
if (image instanceof ImageData) {
 +
context.putImageData(image, 0, 0);
 +
} else {
 +
context.drawImage(image, 0, 0, image.width, image.height);
 +
}
 +
 +
canvas = _canvas;
 +
}
 +
 +
if (canvas.width > 2048 || canvas.height > 2048) {
 +
console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image);
 +
return canvas.toDataURL('image/jpeg', 0.6);
 +
} else {
 +
return canvas.toDataURL('image/png');
 +
}
 +
}
 +
 +
}
 +
 +
let textureId = 0;
 +
 +
class Texture extends EventDispatcher {
 +
constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) {
 +
super();
 +
Object.defineProperty(this, 'id', {
 +
value: textureId++
 +
});
 +
this.uuid = generateUUID();
 +
this.name = '';
 +
this.image = image;
 +
this.mipmaps = [];
 +
this.mapping = mapping;
 +
this.wrapS = wrapS;
 +
this.wrapT = wrapT;
 +
this.magFilter = magFilter;
 +
this.minFilter = minFilter;
 +
this.anisotropy = anisotropy;
 +
this.format = format;
 +
this.internalFormat = null;
 +
this.type = type;
 +
this.offset = new Vector2(0, 0);
 +
this.repeat = new Vector2(1, 1);
 +
this.center = new Vector2(0, 0);
 +
this.rotation = 0;
 +
this.matrixAutoUpdate = true;
 +
this.matrix = new Matrix3();
 +
this.generateMipmaps = true;
 +
this.premultiplyAlpha = false;
 +
this.flipY = true;
 +
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
 +
// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
 +
//
 +
// Also changing the encoding after already used by a Material will not automatically make the Material
 +
// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
 +
 +
this.encoding = encoding;
 +
this.version = 0;
 +
this.onUpdate = null;
 +
}
 +
 +
updateMatrix() {
 +
this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y);
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
copy(source) {
 +
this.name = source.name;
 +
this.image = source.image;
 +
this.mipmaps = source.mipmaps.slice(0);
 +
this.mapping = source.mapping;
 +
this.wrapS = source.wrapS;
 +
this.wrapT = source.wrapT;
 +
this.magFilter = source.magFilter;
 +
this.minFilter = source.minFilter;
 +
this.anisotropy = source.anisotropy;
 +
this.format = source.format;
 +
this.internalFormat = source.internalFormat;
 +
this.type = source.type;
 +
this.offset.copy(source.offset);
 +
this.repeat.copy(source.repeat);
 +
this.center.copy(source.center);
 +
this.rotation = source.rotation;
 +
this.matrixAutoUpdate = source.matrixAutoUpdate;
 +
this.matrix.copy(source.matrix);
 +
this.generateMipmaps = source.generateMipmaps;
 +
this.premultiplyAlpha = source.premultiplyAlpha;
 +
this.flipY = source.flipY;
 +
this.unpackAlignment = source.unpackAlignment;
 +
this.encoding = source.encoding;
 +
return this;
 +
}
 +
 +
toJSON(meta) {
 +
const isRootObject = meta === undefined || typeof meta === 'string';
 +
 +
if (!isRootObject && meta.textures[this.uuid] !== undefined) {
 +
return meta.textures[this.uuid];
 +
}
 +
 +
const output = {
 +
metadata: {
 +
version: 4.5,
 +
type: 'Texture',
 +
generator: 'Texture.toJSON'
 +
},
 +
uuid: this.uuid,
 +
name: this.name,
 +
mapping: this.mapping,
 +
repeat: [this.repeat.x, this.repeat.y],
 +
offset: [this.offset.x, this.offset.y],
 +
center: [this.center.x, this.center.y],
 +
rotation: this.rotation,
 +
wrap: [this.wrapS, this.wrapT],
 +
format: this.format,
 +
type: this.type,
 +
encoding: this.encoding,
 +
minFilter: this.minFilter,
 +
magFilter: this.magFilter,
 +
anisotropy: this.anisotropy,
 +
flipY: this.flipY,
 +
premultiplyAlpha: this.premultiplyAlpha,
 +
unpackAlignment: this.unpackAlignment
 +
};
 +
 +
if (this.image !== undefined) {
 +
// TODO: Move to THREE.Image
 +
const image = this.image;
 +
 +
if (image.uuid === undefined) {
 +
image.uuid = generateUUID(); // UGH
 +
}
 +
 +
if (!isRootObject && meta.images[image.uuid] === undefined) {
 +
let url;
 +
 +
if (Array.isArray(image)) {
 +
// process array of images e.g. CubeTexture
 +
url = [];
 +
 +
for (let i = 0, l = image.length; i < l; i++) {
 +
// check cube texture with data textures
 +
if (image[i].isDataTexture) {
 +
url.push(serializeImage(image[i].image));
 +
} else {
 +
url.push(serializeImage(image[i]));
 +
}
 +
}
 +
} else {
 +
// process single image
 +
url = serializeImage(image);
 +
}
 +
 +
meta.images[image.uuid] = {
 +
uuid: image.uuid,
 +
url: url
 +
};
 +
}
 +
 +
output.image = image.uuid;
 +
}
 +
 +
if (!isRootObject) {
 +
meta.textures[this.uuid] = output;
 +
}
 +
 +
return output;
 +
}
 +
 +
dispose() {
 +
this.dispatchEvent({
 +
type: 'dispose'
 +
});
 +
}
 +
 +
transformUv(uv) {
 +
if (this.mapping !== UVMapping) return uv;
 +
uv.applyMatrix3(this.matrix);
 +
 +
if (uv.x < 0 || uv.x > 1) {
 +
switch (this.wrapS) {
 +
case RepeatWrapping:
 +
uv.x = uv.x - Math.floor(uv.x);
 +
break;
 +
 +
case ClampToEdgeWrapping:
 +
uv.x = uv.x < 0 ? 0 : 1;
 +
break;
 +
 +
case MirroredRepeatWrapping:
 +
if (Math.abs(Math.floor(uv.x) % 2) === 1) {
 +
uv.x = Math.ceil(uv.x) - uv.x;
 +
} else {
 +
uv.x = uv.x - Math.floor(uv.x);
 +
}
 +
 +
break;
 +
}
 +
}
 +
 +
if (uv.y < 0 || uv.y > 1) {
 +
switch (this.wrapT) {
 +
case RepeatWrapping:
 +
uv.y = uv.y - Math.floor(uv.y);
 +
break;
 +
 +
case ClampToEdgeWrapping:
 +
uv.y = uv.y < 0 ? 0 : 1;
 +
break;
 +
 +
case MirroredRepeatWrapping:
 +
if (Math.abs(Math.floor(uv.y) % 2) === 1) {
 +
uv.y = Math.ceil(uv.y) - uv.y;
 +
} else {
 +
uv.y = uv.y - Math.floor(uv.y);
 +
}
 +
 +
break;
 +
}
 +
}
 +
 +
if (this.flipY) {
 +
uv.y = 1 - uv.y;
 +
}
 +
 +
return uv;
 +
}
 +
 +
set needsUpdate(value) {
 +
if (value === true) this.version++;
 +
}
 +
 +
}
 +
 +
Texture.DEFAULT_IMAGE = undefined;
 +
Texture.DEFAULT_MAPPING = UVMapping;
 +
Texture.prototype.isTexture = true;
 +
 +
function serializeImage(image) {
 +
if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
 +
// default images
 +
return ImageUtils.getDataURL(image);
 +
} else {
 +
if (image.data) {
 +
// images of DataTexture
 +
return {
 +
data: Array.prototype.slice.call(image.data),
 +
width: image.width,
 +
height: image.height,
 +
type: image.data.constructor.name
 +
};
 +
} else {
 +
console.warn('THREE.Texture: Unable to serialize Texture.');
 +
return {};
 +
}
 +
}
 +
}
 +
 +
class Vector4 {
 +
constructor(x = 0, y = 0, z = 0, w = 1) {
 +
this.x = x;
 +
this.y = y;
 +
this.z = z;
 +
this.w = w;
 +
}
 +
 +
get width() {
 +
return this.z;
 +
}
 +
 +
set width(value) {
 +
this.z = value;
 +
}
 +
 +
get height() {
 +
return this.w;
 +
}
 +
 +
set height(value) {
 +
this.w = value;
 +
}
 +
 +
set(x, y, z, w) {
 +
this.x = x;
 +
this.y = y;
 +
this.z = z;
 +
this.w = w;
 +
return this;
 +
}
 +
 +
setScalar(scalar) {
 +
this.x = scalar;
 +
this.y = scalar;
 +
this.z = scalar;
 +
this.w = scalar;
 +
return this;
 +
}
 +
 +
setX(x) {
 +
this.x = x;
 +
return this;
 +
}
 +
 +
setY(y) {
 +
this.y = y;
 +
return this;
 +
}
 +
 +
setZ(z) {
 +
this.z = z;
 +
return this;
 +
}
 +
 +
setW(w) {
 +
this.w = w;
 +
return this;
 +
}
 +
 +
setComponent(index, value) {
 +
switch (index) {
 +
case 0:
 +
this.x = value;
 +
break;
 +
 +
case 1:
 +
this.y = value;
 +
break;
 +
 +
case 2:
 +
this.z = value;
 +
break;
 +
 +
case 3:
 +
this.w = value;
 +
break;
 +
 +
default:
 +
throw new Error('index is out of range: ' + index);
 +
}
 +
 +
return this;
 +
}
 +
 +
getComponent(index) {
 +
switch (index) {
 +
case 0:
 +
return this.x;
 +
 +
case 1:
 +
return this.y;
 +
 +
case 2:
 +
return this.z;
 +
 +
case 3:
 +
return this.w;
 +
 +
default:
 +
throw new Error('index is out of range: ' + index);
 +
}
 +
}
 +
 +
clone() {
 +
return new this.constructor(this.x, this.y, this.z, this.w);
 +
}
 +
 +
copy(v) {
 +
this.x = v.x;
 +
this.y = v.y;
 +
this.z = v.z;
 +
this.w = v.w !== undefined ? v.w : 1;
 +
return this;
 +
}
 +
 +
add(v, w) {
 +
if (w !== undefined) {
 +
console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
 +
return this.addVectors(v, w);
 +
}
 +
 +
this.x += v.x;
 +
this.y += v.y;
 +
this.z += v.z;
 +
this.w += v.w;
 +
return this;
 +
}
 +
 +
addScalar(s) {
 +
this.x += s;
 +
this.y += s;
 +
this.z += s;
 +
this.w += s;
 +
return this;
 +
}
 +
 +
addVectors(a, b) {
 +
this.x = a.x + b.x;
 +
this.y = a.y + b.y;
 +
this.z = a.z + b.z;
 +
this.w = a.w + b.w;
 +
return this;
 +
}
 +
 +
addScaledVector(v, s) {
 +
this.x += v.x * s;
 +
this.y += v.y * s;
 +
this.z += v.z * s;
 +
this.w += v.w * s;
 +
return this;
 +
}
 +
 +
sub(v, w) {
 +
if (w !== undefined) {
 +
console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
 +
return this.subVectors(v, w);
 +
}
 +
 +
this.x -= v.x;
 +
this.y -= v.y;
 +
this.z -= v.z;
 +
this.w -= v.w;
 +
return this;
 +
}
 +
 +
subScalar(s) {
 +
this.x -= s;
 +
this.y -= s;
 +
this.z -= s;
 +
this.w -= s;
 +
return this;
 +
}
 +
 +
subVectors(a, b) {
 +
this.x = a.x - b.x;
 +
this.y = a.y - b.y;
 +
this.z = a.z - b.z;
 +
this.w = a.w - b.w;
 +
return this;
 +
}
 +
 +
multiply(v) {
 +
this.x *= v.x;
 +
this.y *= v.y;
 +
this.z *= v.z;
 +
this.w *= v.w;
 +
return this;
 +
}
 +
 +
multiplyScalar(scalar) {
 +
this.x *= scalar;
 +
this.y *= scalar;
 +
this.z *= scalar;
 +
this.w *= scalar;
 +
return this;
 +
}
 +
 +
applyMatrix4(m) {
 +
const x = this.x,
 +
y = this.y,
 +
z = this.z,
 +
w = this.w;
 +
const e = m.elements;
 +
this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w;
 +
this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w;
 +
this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w;
 +
this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w;
 +
return this;
 +
}
 +
 +
divideScalar(scalar) {
 +
return this.multiplyScalar(1 / scalar);
 +
}
 +
 +
setAxisAngleFromQuaternion(q) {
 +
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
 +
// q is assumed to be normalized
 +
this.w = 2 * Math.acos(q.w);
 +
const s = Math.sqrt(1 - q.w * q.w);
 +
 +
if (s < 0.0001) {
 +
this.x = 1;
 +
this.y = 0;
 +
this.z = 0;
 +
} else {
 +
this.x = q.x / s;
 +
this.y = q.y / s;
 +
this.z = q.z / s;
 +
}
 +
 +
return this;
 +
}
 +
 +
setAxisAngleFromRotationMatrix(m) {
 +
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
 +
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
 +
let angle, x, y, z; // variables for result
 +
 +
const epsilon = 0.01,
 +
// margin to allow for rounding errors
 +
epsilon2 = 0.1,
 +
// margin to distinguish between 0 and 180 degrees
 +
te = m.elements,
 +
m11 = te[0],
 +
m12 = te[4],
 +
m13 = te[8],
 +
m21 = te[1],
 +
m22 = te[5],
 +
m23 = te[9],
 +
m31 = te[2],
 +
m32 = te[6],
 +
m33 = te[10];
 +
 +
if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) {
 +
// singularity found
 +
// first check for identity matrix which must have +1 for all terms
 +
// in leading diagonal and zero in other terms
 +
if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) {
 +
// this singularity is identity matrix so angle = 0
 +
this.set(1, 0, 0, 0);
 +
return this; // zero angle, arbitrary axis
 +
} // otherwise this singularity is angle = 180
 +
 +
 +
angle = Math.PI;
 +
const xx = (m11 + 1) / 2;
 +
const yy = (m22 + 1) / 2;
 +
const zz = (m33 + 1) / 2;
 +
const xy = (m12 + m21) / 4;
 +
const xz = (m13 + m31) / 4;
 +
const yz = (m23 + m32) / 4;
 +
 +
if (xx > yy && xx > zz) {
 +
// m11 is the largest diagonal term
 +
if (xx < epsilon) {
 +
x = 0;
 +
y = 0.707106781;
 +
z = 0.707106781;
 +
} else {
 +
x = Math.sqrt(xx);
 +
y = xy / x;
 +
z = xz / x;
 +
}
 +
} else if (yy > zz) {
 +
// m22 is the largest diagonal term
 +
if (yy < epsilon) {
 +
x = 0.707106781;
 +
y = 0;
 +
z = 0.707106781;
 +
} else {
 +
y = Math.sqrt(yy);
 +
x = xy / y;
 +
z = yz / y;
 +
}
 +
} else {
 +
// m33 is the largest diagonal term so base result on this
 +
if (zz < epsilon) {
 +
x = 0.707106781;
 +
y = 0.707106781;
 +
z = 0;
 +
} else {
 +
z = Math.sqrt(zz);
 +
x = xz / z;
 +
y = yz / z;
 +
}
 +
}
 +
 +
this.set(x, y, z, angle);
 +
return this; // return 180 deg rotation
 +
} // as we have reached here there are no singularities so we can handle normally
 +
 +
 +
let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize
 +
 +
if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be
 +
// caught by singularity test above, but I've left it in just in case
 +
 +
this.x = (m32 - m23) / s;
 +
this.y = (m13 - m31) / s;
 +
this.z = (m21 - m12) / s;
 +
this.w = Math.acos((m11 + m22 + m33 - 1) / 2);
 +
return this;
 +
}
 +
 +
min(v) {
 +
this.x = Math.min(this.x, v.x);
 +
this.y = Math.min(this.y, v.y);
 +
this.z = Math.min(this.z, v.z);
 +
this.w = Math.min(this.w, v.w);
 +
return this;
 +
}
 +
 +
max(v) {
 +
this.x = Math.max(this.x, v.x);
 +
this.y = Math.max(this.y, v.y);
 +
this.z = Math.max(this.z, v.z);
 +
this.w = Math.max(this.w, v.w);
 +
return this;
 +
}
 +
 +
clamp(min, max) {
 +
// assumes min < max, componentwise
 +
this.x = Math.max(min.x, Math.min(max.x, this.x));
 +
this.y = Math.max(min.y, Math.min(max.y, this.y));
 +
this.z = Math.max(min.z, Math.min(max.z, this.z));
 +
this.w = Math.max(min.w, Math.min(max.w, this.w));
 +
return this;
 +
}
 +
 +
clampScalar(minVal, maxVal) {
 +
this.x = Math.max(minVal, Math.min(maxVal, this.x));
 +
this.y = Math.max(minVal, Math.min(maxVal, this.y));
 +
this.z = Math.max(minVal, Math.min(maxVal, this.z));
 +
this.w = Math.max(minVal, Math.min(maxVal, this.w));
 +
return this;
 +
}
 +
 +
clampLength(min, max) {
 +
const length = this.length();
 +
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
 +
}
 +
 +
floor() {
 +
this.x = Math.floor(this.x);
 +
this.y = Math.floor(this.y);
 +
this.z = Math.floor(this.z);
 +
this.w = Math.floor(this.w);
 +
return this;
 +
}
 +
 +
ceil() {
 +
this.x = Math.ceil(this.x);
 +
this.y = Math.ceil(this.y);
 +
this.z = Math.ceil(this.z);
 +
this.w = Math.ceil(this.w);
 +
return this;
 +
}
 +
 +
round() {
 +
this.x = Math.round(this.x);
 +
this.y = Math.round(this.y);
 +
this.z = Math.round(this.z);
 +
this.w = Math.round(this.w);
 +
return this;
 +
}
 +
 +
roundToZero() {
 +
this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
 +
this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
 +
this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
 +
this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w);
 +
return this;
 +
}
 +
 +
negate() {
 +
this.x = -this.x;
 +
this.y = -this.y;
 +
this.z = -this.z;
 +
this.w = -this.w;
 +
return this;
 +
}
 +
 +
dot(v) {
 +
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
 +
}
 +
 +
lengthSq() {
 +
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
 +
}
 +
 +
length() {
 +
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
 +
}
 +
 +
manhattanLength() {
 +
return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w);
 +
}
 +
 +
normalize() {
 +
return this.divideScalar(this.length() || 1);
 +
}
 +
 +
setLength(length) {
 +
return this.normalize().multiplyScalar(length);
 +
}
 +
 +
lerp(v, alpha) {
 +
this.x += (v.x - this.x) * alpha;
 +
this.y += (v.y - this.y) * alpha;
 +
this.z += (v.z - this.z) * alpha;
 +
this.w += (v.w - this.w) * alpha;
 +
return this;
 +
}
 +
 +
lerpVectors(v1, v2, alpha) {
 +
this.x = v1.x + (v2.x - v1.x) * alpha;
 +
this.y = v1.y + (v2.y - v1.y) * alpha;
 +
this.z = v1.z + (v2.z - v1.z) * alpha;
 +
this.w = v1.w + (v2.w - v1.w) * alpha;
 +
return this;
 +
}
 +
 +
equals(v) {
 +
return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w;
 +
}
 +
 +
fromArray(array, offset = 0) {
 +
this.x = array[offset];
 +
this.y = array[offset + 1];
 +
this.z = array[offset + 2];
 +
this.w = array[offset + 3];
 +
return this;
 +
}
 +
 +
toArray(array = [], offset = 0) {
 +
array[offset] = this.x;
 +
array[offset + 1] = this.y;
 +
array[offset + 2] = this.z;
 +
array[offset + 3] = this.w;
 +
return array;
 +
}
 +
 +
fromBufferAttribute(attribute, index, offset) {
 +
if (offset !== undefined) {
 +
console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().');
 +
}
 +
 +
this.x = attribute.getX(index);
 +
this.y = attribute.getY(index);
 +
this.z = attribute.getZ(index);
 +
this.w = attribute.getW(index);
 +
return this;
 +
}
 +
 +
random() {
 +
this.x = Math.random();
 +
this.y = Math.random();
 +
this.z = Math.random();
 +
this.w = Math.random();
 +
return this;
 +
}
 +
 +
}
 +
 +
Vector4.prototype.isVector4 = true;
 +
 +
/*
 +
In options, we can specify:
 +
* Texture parameters for an auto-generated target texture
 +
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
 +
*/
 +
 +
class WebGLRenderTarget extends EventDispatcher {
 +
constructor(width, height, options = {}) {
 +
super();
 +
this.width = width;
 +
this.height = height;
 +
this.depth = 1;
 +
this.scissor = new Vector4(0, 0, width, height);
 +
this.scissorTest = false;
 +
this.viewport = new Vector4(0, 0, width, height);
 +
this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
 +
this.texture.image = {
 +
width: width,
 +
height: height,
 +
depth: 1
 +
};
 +
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
 +
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
 +
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
 +
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false;
 +
this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
 +
}
 +
 +
setTexture(texture) {
 +
texture.image = {
 +
width: this.width,
 +
height: this.height,
 +
depth: this.depth
 +
};
 +
this.texture = texture;
 +
}
 +
 +
setSize(width, height, depth = 1) {
 +
if (this.width !== width || this.height !== height || this.depth !== depth) {
 +
this.width = width;
 +
this.height = height;
 +
this.depth = depth;
 +
this.texture.image.width = width;
 +
this.texture.image.height = height;
 +
this.texture.image.depth = depth;
 +
this.dispose();
 +
}
 +
 +
this.viewport.set(0, 0, width, height);
 +
this.scissor.set(0, 0, width, height);
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
copy(source) {
 +
this.width = source.width;
 +
this.height = source.height;
 +
this.depth = source.depth;
 +
this.viewport.copy(source.viewport);
 +
this.texture = source.texture.clone();
 +
this.texture.image = { ...this.texture.image
 +
}; // See #20328.
 +
 +
this.depthBuffer = source.depthBuffer;
 +
this.stencilBuffer = source.stencilBuffer;
 +
this.depthTexture = source.depthTexture;
 +
return this;
 +
}
 +
 +
dispose() {
 +
this.dispatchEvent({
 +
type: 'dispose'
 +
});
 +
}
 +
 +
}
 +
 +
WebGLRenderTarget.prototype.isWebGLRenderTarget = true;
 +
 +
class WebGLMultipleRenderTargets extends WebGLRenderTarget {
 +
constructor(width, height, count) {
 +
super(width, height);
 +
const texture = this.texture;
 +
this.texture = [];
 +
 +
for (let i = 0; i < count; i++) {
 +
this.texture[i] = texture.clone();
 +
}
 +
}
 +
 +
setSize(width, height, depth = 1) {
 +
if (this.width !== width || this.height !== height || this.depth !== depth) {
 +
this.width = width;
 +
this.height = height;
 +
this.depth = depth;
 +
 +
for (let i = 0, il = this.texture.length; i < il; i++) {
 +
this.texture[i].image.width = width;
 +
this.texture[i].image.height = height;
 +
this.texture[i].image.depth = depth;
 +
}
 +
 +
this.dispose();
 +
}
 +
 +
this.viewport.set(0, 0, width, height);
 +
this.scissor.set(0, 0, width, height);
 +
return this;
 +
}
 +
 +
copy(source) {
 +
this.dispose();
 +
this.width = source.width;
 +
this.height = source.height;
 +
this.depth = source.depth;
 +
this.viewport.set(0, 0, this.width, this.height);
 +
this.scissor.set(0, 0, this.width, this.height);
 +
this.depthBuffer = source.depthBuffer;
 +
this.stencilBuffer = source.stencilBuffer;
 +
this.depthTexture = source.depthTexture;
 +
this.texture.length = 0;
 +
 +
for (let i = 0, il = source.texture.length; i < il; i++) {
 +
this.texture[i] = source.texture[i].clone();
 +
}
 +
 +
return this;
 +
}
 +
 +
}
 +
 +
WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true;
 +
 +
class WebGLMultisampleRenderTarget extends WebGLRenderTarget {
 +
constructor(width, height, options) {
 +
super(width, height, options);
 +
this.samples = 4;
 +
}
 +
 +
copy(source) {
 +
super.copy.call(this, source);
 +
this.samples = source.samples;
 +
return this;
 +
}
 +
 +
}
 +
 +
WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true;
 +
 +
class Quaternion {
 +
constructor(x = 0, y = 0, z = 0, w = 1) {
 +
this._x = x;
 +
this._y = y;
 +
this._z = z;
 +
this._w = w;
 +
}
 +
 +
static slerp(qa, qb, qm, t) {
 +
console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.');
 +
return qm.slerpQuaternions(qa, qb, t);
 +
}
 +
 +
static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {
 +
// fuzz-free, array-based Quaternion SLERP operation
 +
let x0 = src0[srcOffset0 + 0],
 +
y0 = src0[srcOffset0 + 1],
 +
z0 = src0[srcOffset0 + 2],
 +
w0 = src0[srcOffset0 + 3];
 +
const x1 = src1[srcOffset1 + 0],
 +
y1 = src1[srcOffset1 + 1],
 +
z1 = src1[srcOffset1 + 2],
 +
w1 = src1[srcOffset1 + 3];
 +
 +
if (t === 0) {
 +
dst[dstOffset + 0] = x0;
 +
dst[dstOffset + 1] = y0;
 +
dst[dstOffset + 2] = z0;
 +
dst[dstOffset + 3] = w0;
 +
return;
 +
}
 +
 +
if (t === 1) {
 +
dst[dstOffset + 0] = x1;
 +
dst[dstOffset + 1] = y1;
 +
dst[dstOffset + 2] = z1;
 +
dst[dstOffset + 3] = w1;
 +
return;
 +
}
 +
 +
if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {
 +
let s = 1 - t;
 +
const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
 +
dir = cos >= 0 ? 1 : -1,
 +
sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems:
 +
 +
if (sqrSin > Number.EPSILON) {
 +
const sin = Math.sqrt(sqrSin),
 +
len = Math.atan2(sin, cos * dir);
 +
s = Math.sin(s * len) / sin;
 +
t = Math.sin(t * len) / sin;
 +
}
 +
 +
const tDir = t * dir;
 +
x0 = x0 * s + x1 * tDir;
 +
y0 = y0 * s + y1 * tDir;
 +
z0 = z0 * s + z1 * tDir;
 +
w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp:
 +
 +
if (s === 1 - t) {
 +
const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);
 +
x0 *= f;
 +
y0 *= f;
 +
z0 *= f;
 +
w0 *= f;
 +
}
 +
}
 +
 +
dst[dstOffset] = x0;
 +
dst[dstOffset + 1] = y0;
 +
dst[dstOffset + 2] = z0;
 +
dst[dstOffset + 3] = w0;
 +
}
 +
 +
static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) {
 +
const x0 = src0[srcOffset0];
 +
const y0 = src0[srcOffset0 + 1];
 +
const z0 = src0[srcOffset0 + 2];
 +
const w0 = src0[srcOffset0 + 3];
 +
const x1 = src1[srcOffset1];
 +
const y1 = src1[srcOffset1 + 1];
 +
const z1 = src1[srcOffset1 + 2];
 +
const w1 = src1[srcOffset1 + 3];
 +
dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
 +
dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
 +
dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
 +
dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
 +
return dst;
 +
}
 +
 +
get x() {
 +
return this._x;
 +
}
 +
 +
set x(value) {
 +
this._x = value;
 +
 +
this._onChangeCallback();
 +
}
 +
 +
get y() {
 +
return this._y;
 +
}
 +
 +
set y(value) {
 +
this._y = value;
 +
 +
this._onChangeCallback();
 +
}
 +
 +
get z() {
 +
return this._z;
 +
}
 +
 +
set z(value) {
 +
this._z = value;
 +
 +
this._onChangeCallback();
 +
}
 +
 +
get w() {
 +
return this._w;
 +
}
 +
 +
set w(value) {
 +
this._w = value;
 +
 +
this._onChangeCallback();
 +
}
 +
 +
set(x, y, z, w) {
 +
this._x = x;
 +
this._y = y;
 +
this._z = z;
 +
this._w = w;
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
clone() {
 +
return new this.constructor(this._x, this._y, this._z, this._w);
 +
}
 +
 +
copy(quaternion) {
 +
this._x = quaternion.x;
 +
this._y = quaternion.y;
 +
this._z = quaternion.z;
 +
this._w = quaternion.w;
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
setFromEuler(euler, update) {
 +
if (!(euler && euler.isEuler)) {
 +
throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.');
 +
}
 +
 +
const x = euler._x,
 +
y = euler._y,
 +
z = euler._z,
 +
order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/
 +
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
 +
// content/SpinCalc.m
 +
 +
const cos = Math.cos;
 +
const sin = Math.sin;
 +
const c1 = cos(x / 2);
 +
const c2 = cos(y / 2);
 +
const c3 = cos(z / 2);
 +
const s1 = sin(x / 2);
 +
const s2 = sin(y / 2);
 +
const s3 = sin(z / 2);
 +
 +
switch (order) {
 +
case 'XYZ':
 +
this._x = s1 * c2 * c3 + c1 * s2 * s3;
 +
this._y = c1 * s2 * c3 - s1 * c2 * s3;
 +
this._z = c1 * c2 * s3 + s1 * s2 * c3;
 +
this._w = c1 * c2 * c3 - s1 * s2 * s3;
 +
break;
 +
 +
case 'YXZ':
 +
this._x = s1 * c2 * c3 + c1 * s2 * s3;
 +
this._y = c1 * s2 * c3 - s1 * c2 * s3;
 +
this._z = c1 * c2 * s3 - s1 * s2 * c3;
 +
this._w = c1 * c2 * c3 + s1 * s2 * s3;
 +
break;
 +
 +
case 'ZXY':
 +
this._x = s1 * c2 * c3 - c1 * s2 * s3;
 +
this._y = c1 * s2 * c3 + s1 * c2 * s3;
 +
this._z = c1 * c2 * s3 + s1 * s2 * c3;
 +
this._w = c1 * c2 * c3 - s1 * s2 * s3;
 +
break;
 +
 +
case 'ZYX':
 +
this._x = s1 * c2 * c3 - c1 * s2 * s3;
 +
this._y = c1 * s2 * c3 + s1 * c2 * s3;
 +
this._z = c1 * c2 * s3 - s1 * s2 * c3;
 +
this._w = c1 * c2 * c3 + s1 * s2 * s3;
 +
break;
 +
 +
case 'YZX':
 +
this._x = s1 * c2 * c3 + c1 * s2 * s3;
 +
this._y = c1 * s2 * c3 + s1 * c2 * s3;
 +
this._z = c1 * c2 * s3 - s1 * s2 * c3;
 +
this._w = c1 * c2 * c3 - s1 * s2 * s3;
 +
break;
 +
 +
case 'XZY':
 +
this._x = s1 * c2 * c3 - c1 * s2 * s3;
 +
this._y = c1 * s2 * c3 - s1 * c2 * s3;
 +
this._z = c1 * c2 * s3 + s1 * s2 * c3;
 +
this._w = c1 * c2 * c3 + s1 * s2 * s3;
 +
break;
 +
 +
default:
 +
console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order);
 +
}
 +
 +
if (update !== false) this._onChangeCallback();
 +
return this;
 +
}
 +
 +
setFromAxisAngle(axis, angle) {
 +
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
 +
// assumes axis is normalized
 +
const halfAngle = angle / 2,
 +
s = Math.sin(halfAngle);
 +
this._x = axis.x * s;
 +
this._y = axis.y * s;
 +
this._z = axis.z * s;
 +
this._w = Math.cos(halfAngle);
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
setFromRotationMatrix(m) {
 +
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
 +
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
 +
const te = m.elements,
 +
m11 = te[0],
 +
m12 = te[4],
 +
m13 = te[8],
 +
m21 = te[1],
 +
m22 = te[5],
 +
m23 = te[9],
 +
m31 = te[2],
 +
m32 = te[6],
 +
m33 = te[10],
 +
trace = m11 + m22 + m33;
 +
 +
if (trace > 0) {
 +
const s = 0.5 / Math.sqrt(trace + 1.0);
 +
this._w = 0.25 / s;
 +
this._x = (m32 - m23) * s;
 +
this._y = (m13 - m31) * s;
 +
this._z = (m21 - m12) * s;
 +
} else if (m11 > m22 && m11 > m33) {
 +
const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
 +
this._w = (m32 - m23) / s;
 +
this._x = 0.25 * s;
 +
this._y = (m12 + m21) / s;
 +
this._z = (m13 + m31) / s;
 +
} else if (m22 > m33) {
 +
const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
 +
this._w = (m13 - m31) / s;
 +
this._x = (m12 + m21) / s;
 +
this._y = 0.25 * s;
 +
this._z = (m23 + m32) / s;
 +
} else {
 +
const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
 +
this._w = (m21 - m12) / s;
 +
this._x = (m13 + m31) / s;
 +
this._y = (m23 + m32) / s;
 +
this._z = 0.25 * s;
 +
}
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
setFromUnitVectors(vFrom, vTo) {
 +
// assumes direction vectors vFrom and vTo are normalized
 +
let r = vFrom.dot(vTo) + 1;
 +
 +
if (r < Number.EPSILON) {
 +
// vFrom and vTo point in opposite directions
 +
r = 0;
 +
 +
if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {
 +
this._x = -vFrom.y;
 +
this._y = vFrom.x;
 +
this._z = 0;
 +
this._w = r;
 +
} else {
 +
this._x = 0;
 +
this._y = -vFrom.z;
 +
this._z = vFrom.y;
 +
this._w = r;
 +
}
 +
} else {
 +
// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
 +
this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
 +
this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
 +
this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
 +
this._w = r;
 +
}
 +
 +
return this.normalize();
 +
}
 +
 +
angleTo(q) {
 +
return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1)));
 +
}
 +
 +
rotateTowards(q, step) {
 +
const angle = this.angleTo(q);
 +
if (angle === 0) return this;
 +
const t = Math.min(1, step / angle);
 +
this.slerp(q, t);
 +
return this;
 +
}
 +
 +
identity() {
 +
return this.set(0, 0, 0, 1);
 +
}
 +
 +
invert() {
 +
// quaternion is assumed to have unit length
 +
return this.conjugate();
 +
}
 +
 +
conjugate() {
 +
this._x *= -1;
 +
this._y *= -1;
 +
this._z *= -1;
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
dot(v) {
 +
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
 +
}
 +
 +
lengthSq() {
 +
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
 +
}
 +
 +
length() {
 +
return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w);
 +
}
 +
 +
normalize() {
 +
let l = this.length();
 +
 +
if (l === 0) {
 +
this._x = 0;
 +
this._y = 0;
 +
this._z = 0;
 +
this._w = 1;
 +
} else {
 +
l = 1 / l;
 +
this._x = this._x * l;
 +
this._y = this._y * l;
 +
this._z = this._z * l;
 +
this._w = this._w * l;
 +
}
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
multiply(q, p) {
 +
if (p !== undefined) {
 +
console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.');
 +
return this.multiplyQuaternions(q, p);
 +
}
 +
 +
return this.multiplyQuaternions(this, q);
 +
}
 +
 +
premultiply(q) {
 +
return this.multiplyQuaternions(q, this);
 +
}
 +
 +
multiplyQuaternions(a, b) {
 +
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
 +
const qax = a._x,
 +
qay = a._y,
 +
qaz = a._z,
 +
qaw = a._w;
 +
const qbx = b._x,
 +
qby = b._y,
 +
qbz = b._z,
 +
qbw = b._w;
 +
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
 +
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
 +
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
 +
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
slerp(qb, t) {
 +
if (t === 0) return this;
 +
if (t === 1) return this.copy(qb);
 +
const x = this._x,
 +
y = this._y,
 +
z = this._z,
 +
w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
 +
 +
let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
 +
 +
if (cosHalfTheta < 0) {
 +
this._w = -qb._w;
 +
this._x = -qb._x;
 +
this._y = -qb._y;
 +
this._z = -qb._z;
 +
cosHalfTheta = -cosHalfTheta;
 +
} else {
 +
this.copy(qb);
 +
}
 +
 +
if (cosHalfTheta >= 1.0) {
 +
this._w = w;
 +
this._x = x;
 +
this._y = y;
 +
this._z = z;
 +
return this;
 +
}
 +
 +
const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
 +
 +
if (sqrSinHalfTheta <= Number.EPSILON) {
 +
const s = 1 - t;
 +
this._w = s * w + t * this._w;
 +
this._x = s * x + t * this._x;
 +
this._y = s * y + t * this._y;
 +
this._z = s * z + t * this._z;
 +
this.normalize();
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
const sinHalfTheta = Math.sqrt(sqrSinHalfTheta);
 +
const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
 +
const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta,
 +
ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
 +
this._w = w * ratioA + this._w * ratioB;
 +
this._x = x * ratioA + this._x * ratioB;
 +
this._y = y * ratioA + this._y * ratioB;
 +
this._z = z * ratioA + this._z * ratioB;
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
slerpQuaternions(qa, qb, t) {
 +
this.copy(qa).slerp(qb, t);
 +
}
 +
 +
equals(quaternion) {
 +
return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w;
 +
}
 +
 +
fromArray(array, offset = 0) {
 +
this._x = array[offset];
 +
this._y = array[offset + 1];
 +
this._z = array[offset + 2];
 +
this._w = array[offset + 3];
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
toArray(array = [], offset = 0) {
 +
array[offset] = this._x;
 +
array[offset + 1] = this._y;
 +
array[offset + 2] = this._z;
 +
array[offset + 3] = this._w;
 +
return array;
 +
}
 +
 +
fromBufferAttribute(attribute, index) {
 +
this._x = attribute.getX(index);
 +
this._y = attribute.getY(index);
 +
this._z = attribute.getZ(index);
 +
this._w = attribute.getW(index);
 +
return this;
 +
}
 +
 +
_onChange(callback) {
 +
this._onChangeCallback = callback;
 +
return this;
 +
}
 +
 +
_onChangeCallback() {}
 +
 +
}
 +
 +
Quaternion.prototype.isQuaternion = true;
 +
 +
class Vector3 {
 +
constructor(x = 0, y = 0, z = 0) {
 +
this.x = x;
 +
this.y = y;
 +
this.z = z;
 +
}
 +
 +
set(x, y, z) {
 +
if (z === undefined) z = this.z; // sprite.scale.set(x,y)
 +
 +
this.x = x;
 +
this.y = y;
 +
this.z = z;
 +
return this;
 +
}
 +
 +
setScalar(scalar) {
 +
this.x = scalar;
 +
this.y = scalar;
 +
this.z = scalar;
 +
return this;
 +
}
 +
 +
setX(x) {
 +
this.x = x;
 +
return this;
 +
}
 +
 +
setY(y) {
 +
this.y = y;
 +
return this;
 +
}
 +
 +
setZ(z) {
 +
this.z = z;
 +
return this;
 +
}
 +
 +
setComponent(index, value) {
 +
switch (index) {
 +
case 0:
 +
this.x = value;
 +
break;
 +
 +
case 1:
 +
this.y = value;
 +
break;
 +
 +
case 2:
 +
this.z = value;
 +
break;
 +
 +
default:
 +
throw new Error('index is out of range: ' + index);
 +
}
 +
 +
return this;
 +
}
 +
 +
getComponent(index) {
 +
switch (index) {
 +
case 0:
 +
return this.x;
 +
 +
case 1:
 +
return this.y;
 +
 +
case 2:
 +
return this.z;
 +
 +
default:
 +
throw new Error('index is out of range: ' + index);
 +
}
 +
}
 +
 +
clone() {
 +
return new this.constructor(this.x, this.y, this.z);
 +
}
 +
 +
copy(v) {
 +
this.x = v.x;
 +
this.y = v.y;
 +
this.z = v.z;
 +
return this;
 +
}
 +
 +
add(v, w) {
 +
if (w !== undefined) {
 +
console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
 +
return this.addVectors(v, w);
 +
}
 +
 +
this.x += v.x;
 +
this.y += v.y;
 +
this.z += v.z;
 +
return this;
 +
}
 +
 +
addScalar(s) {
 +
this.x += s;
 +
this.y += s;
 +
this.z += s;
 +
return this;
 +
}
 +
 +
addVectors(a, b) {
 +
this.x = a.x + b.x;
 +
this.y = a.y + b.y;
 +
this.z = a.z + b.z;
 +
return this;
 +
}
 +
 +
addScaledVector(v, s) {
 +
this.x += v.x * s;
 +
this.y += v.y * s;
 +
this.z += v.z * s;
 +
return this;
 +
}
 +
 +
sub(v, w) {
 +
if (w !== undefined) {
 +
console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
 +
return this.subVectors(v, w);
 +
}
 +
 +
this.x -= v.x;
 +
this.y -= v.y;
 +
this.z -= v.z;
 +
return this;
 +
}
 +
 +
subScalar(s) {
 +
this.x -= s;
 +
this.y -= s;
 +
this.z -= s;
 +
return this;
 +
}
 +
 +
subVectors(a, b) {
 +
this.x = a.x - b.x;
 +
this.y = a.y - b.y;
 +
this.z = a.z - b.z;
 +
return this;
 +
}
 +
 +
multiply(v, w) {
 +
if (w !== undefined) {
 +
console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.');
 +
return this.multiplyVectors(v, w);
 +
}
 +
 +
this.x *= v.x;
 +
this.y *= v.y;
 +
this.z *= v.z;
 +
return this;
 +
}
 +
 +
multiplyScalar(scalar) {
 +
this.x *= scalar;
 +
this.y *= scalar;
 +
this.z *= scalar;
 +
return this;
 +
}
 +
 +
multiplyVectors(a, b) {
 +
this.x = a.x * b.x;
 +
this.y = a.y * b.y;
 +
this.z = a.z * b.z;
 +
return this;
 +
}
 +
 +
applyEuler(euler) {
 +
if (!(euler && euler.isEuler)) {
 +
console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.');
 +
}
 +
 +
return this.applyQuaternion(_quaternion$4.setFromEuler(euler));
 +
}
 +
 +
applyAxisAngle(axis, angle) {
 +
return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle));
 +
}
 +
 +
applyMatrix3(m) {
 +
const x = this.x,
 +
y = this.y,
 +
z = this.z;
 +
const e = m.elements;
 +
this.x = e[0] * x + e[3] * y + e[6] * z;
 +
this.y = e[1] * x + e[4] * y + e[7] * z;
 +
this.z = e[2] * x + e[5] * y + e[8] * z;
 +
return this;
 +
}
 +
 +
applyNormalMatrix(m) {
 +
return this.applyMatrix3(m).normalize();
 +
}
 +
 +
applyMatrix4(m) {
 +
const x = this.x,
 +
y = this.y,
 +
z = this.z;
 +
const e = m.elements;
 +
const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);
 +
this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w;
 +
this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w;
 +
this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w;
 +
return this;
 +
}
 +
 +
applyQuaternion(q) {
 +
const x = this.x,
 +
y = this.y,
 +
z = this.z;
 +
const qx = q.x,
 +
qy = q.y,
 +
qz = q.z,
 +
qw = q.w; // calculate quat * vector
 +
 +
const ix = qw * x + qy * z - qz * y;
 +
const iy = qw * y + qz * x - qx * z;
 +
const iz = qw * z + qx * y - qy * x;
 +
const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat
 +
 +
this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
 +
this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
 +
this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
 +
return this;
 +
}
 +
 +
project(camera) {
 +
return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix);
 +
}
 +
 +
unproject(camera) {
 +
return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld);
 +
}
 +
 +
transformDirection(m) {
 +
// input: THREE.Matrix4 affine matrix
 +
// vector interpreted as a direction
 +
const x = this.x,
 +
y = this.y,
 +
z = this.z;
 +
const e = m.elements;
 +
this.x = e[0] * x + e[4] * y + e[8] * z;
 +
this.y = e[1] * x + e[5] * y + e[9] * z;
 +
this.z = e[2] * x + e[6] * y + e[10] * z;
 +
return this.normalize();
 +
}
 +
 +
divide(v) {
 +
this.x /= v.x;
 +
this.y /= v.y;
 +
this.z /= v.z;
 +
return this;
 +
}
 +
 +
divideScalar(scalar) {
 +
return this.multiplyScalar(1 / scalar);
 +
}
 +
 +
min(v) {
 +
this.x = Math.min(this.x, v.x);
 +
this.y = Math.min(this.y, v.y);
 +
this.z = Math.min(this.z, v.z);
 +
return this;
 +
}
 +
 +
max(v) {
 +
this.x = Math.max(this.x, v.x);
 +
this.y = Math.max(this.y, v.y);
 +
this.z = Math.max(this.z, v.z);
 +
return this;
 +
}
 +
 +
clamp(min, max) {
 +
// assumes min < max, componentwise
 +
this.x = Math.max(min.x, Math.min(max.x, this.x));
 +
this.y = Math.max(min.y, Math.min(max.y, this.y));
 +
this.z = Math.max(min.z, Math.min(max.z, this.z));
 +
return this;
 +
}
 +
 +
clampScalar(minVal, maxVal) {
 +
this.x = Math.max(minVal, Math.min(maxVal, this.x));
 +
this.y = Math.max(minVal, Math.min(maxVal, this.y));
 +
this.z = Math.max(minVal, Math.min(maxVal, this.z));
 +
return this;
 +
}
 +
 +
clampLength(min, max) {
 +
const length = this.length();
 +
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
 +
}
 +
 +
floor() {
 +
this.x = Math.floor(this.x);
 +
this.y = Math.floor(this.y);
 +
this.z = Math.floor(this.z);
 +
return this;
 +
}
 +
 +
ceil() {
 +
this.x = Math.ceil(this.x);
 +
this.y = Math.ceil(this.y);
 +
this.z = Math.ceil(this.z);
 +
return this;
 +
}
 +
 +
round() {
 +
this.x = Math.round(this.x);
 +
this.y = Math.round(this.y);
 +
this.z = Math.round(this.z);
 +
return this;
 +
}
 +
 +
roundToZero() {
 +
this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
 +
this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
 +
this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
 +
return this;
 +
}
 +
 +
negate() {
 +
this.x = -this.x;
 +
this.y = -this.y;
 +
this.z = -this.z;
 +
return this;
 +
}
 +
 +
dot(v) {
 +
return this.x * v.x + this.y * v.y + this.z * v.z;
 +
} // TODO lengthSquared?
 +
 +
 +
lengthSq() {
 +
return this.x * this.x + this.y * this.y + this.z * this.z;
 +
}
 +
 +
length() {
 +
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
 +
}
 +
 +
manhattanLength() {
 +
return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z);
 +
}
 +
 +
normalize() {
 +
return this.divideScalar(this.length() || 1);
 +
}
 +
 +
setLength(length) {
 +
return this.normalize().multiplyScalar(length);
 +
}
 +
 +
lerp(v, alpha) {
 +
this.x += (v.x - this.x) * alpha;
 +
this.y += (v.y - this.y) * alpha;
 +
this.z += (v.z - this.z) * alpha;
 +
return this;
 +
}
 +
 +
lerpVectors(v1, v2, alpha) {
 +
this.x = v1.x + (v2.x - v1.x) * alpha;
 +
this.y = v1.y + (v2.y - v1.y) * alpha;
 +
this.z = v1.z + (v2.z - v1.z) * alpha;
 +
return this;
 +
}
 +
 +
cross(v, w) {
 +
if (w !== undefined) {
 +
console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.');
 +
return this.crossVectors(v, w);
 +
}
 +
 +
return this.crossVectors(this, v);
 +
}
 +
 +
crossVectors(a, b) {
 +
const ax = a.x,
 +
ay = a.y,
 +
az = a.z;
 +
const bx = b.x,
 +
by = b.y,
 +
bz = b.z;
 +
this.x = ay * bz - az * by;
 +
this.y = az * bx - ax * bz;
 +
this.z = ax * by - ay * bx;
 +
return this;
 +
}
 +
 +
projectOnVector(v) {
 +
const denominator = v.lengthSq();
 +
if (denominator === 0) return this.set(0, 0, 0);
 +
const scalar = v.dot(this) / denominator;
 +
return this.copy(v).multiplyScalar(scalar);
 +
}
 +
 +
projectOnPlane(planeNormal) {
 +
_vector$c.copy(this).projectOnVector(planeNormal);
 +
 +
return this.sub(_vector$c);
 +
}
 +
 +
reflect(normal) {
 +
// reflect incident vector off plane orthogonal to normal
 +
// normal is assumed to have unit length
 +
return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal)));
 +
}
 +
 +
angleTo(v) {
 +
const denominator = Math.sqrt(this.lengthSq() * v.lengthSq());
 +
if (denominator === 0) return Math.PI / 2;
 +
const theta = this.dot(v) / denominator; // clamp, to handle numerical problems
 +
 +
return Math.acos(clamp(theta, -1, 1));
 +
}
 +
 +
distanceTo(v) {
 +
return Math.sqrt(this.distanceToSquared(v));
 +
}
 +
 +
distanceToSquared(v) {
 +
const dx = this.x - v.x,
 +
dy = this.y - v.y,
 +
dz = this.z - v.z;
 +
return dx * dx + dy * dy + dz * dz;
 +
}
 +
 +
manhattanDistanceTo(v) {
 +
return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z);
 +
}
 +
 +
setFromSpherical(s) {
 +
return this.setFromSphericalCoords(s.radius, s.phi, s.theta);
 +
}
 +
 +
setFromSphericalCoords(radius, phi, theta) {
 +
const sinPhiRadius = Math.sin(phi) * radius;
 +
this.x = sinPhiRadius * Math.sin(theta);
 +
this.y = Math.cos(phi) * radius;
 +
this.z = sinPhiRadius * Math.cos(theta);
 +
return this;
 +
}
 +
 +
setFromCylindrical(c) {
 +
return this.setFromCylindricalCoords(c.radius, c.theta, c.y);
 +
}
 +
 +
setFromCylindricalCoords(radius, theta, y) {
 +
this.x = radius * Math.sin(theta);
 +
this.y = y;
 +
this.z = radius * Math.cos(theta);
 +
return this;
 +
}
 +
 +
setFromMatrixPosition(m) {
 +
const e = m.elements;
 +
this.x = e[12];
 +
this.y = e[13];
 +
this.z = e[14];
 +
return this;
 +
}
 +
 +
setFromMatrixScale(m) {
 +
const sx = this.setFromMatrixColumn(m, 0).length();
 +
const sy = this.setFromMatrixColumn(m, 1).length();
 +
const sz = this.setFromMatrixColumn(m, 2).length();
 +
this.x = sx;
 +
this.y = sy;
 +
this.z = sz;
 +
return this;
 +
}
 +
 +
setFromMatrixColumn(m, index) {
 +
return this.fromArray(m.elements, index * 4);
 +
}
 +
 +
setFromMatrix3Column(m, index) {
 +
return this.fromArray(m.elements, index * 3);
 +
}
 +
 +
equals(v) {
 +
return v.x === this.x && v.y === this.y && v.z === this.z;
 +
}
 +
 +
fromArray(array, offset = 0) {
 +
this.x = array[offset];
 +
this.y = array[offset + 1];
 +
this.z = array[offset + 2];
 +
return this;
 +
}
 +
 +
toArray(array = [], offset = 0) {
 +
array[offset] = this.x;
 +
array[offset + 1] = this.y;
 +
array[offset + 2] = this.z;
 +
return array;
 +
}
 +
 +
fromBufferAttribute(attribute, index, offset) {
 +
if (offset !== undefined) {
 +
console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().');
 +
}
 +
 +
this.x = attribute.getX(index);
 +
this.y = attribute.getY(index);
 +
this.z = attribute.getZ(index);
 +
return this;
 +
}
 +
 +
random() {
 +
this.x = Math.random();
 +
this.y = Math.random();
 +
this.z = Math.random();
 +
return this;
 +
}
 +
 +
}
 +
 +
Vector3.prototype.isVector3 = true;
 +
 +
const _vector$c = /*@__PURE__*/new Vector3();
 +
 +
const _quaternion$4 = /*@__PURE__*/new Quaternion();
 +
 +
class Box3 {
 +
constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) {
 +
this.min = min;
 +
this.max = max;
 +
}
 +
 +
set(min, max) {
 +
this.min.copy(min);
 +
this.max.copy(max);
 +
return this;
 +
}
 +
 +
setFromArray(array) {
 +
let minX = +Infinity;
 +
let minY = +Infinity;
 +
let minZ = +Infinity;
 +
let maxX = -Infinity;
 +
let maxY = -Infinity;
 +
let maxZ = -Infinity;
 +
 +
for (let i = 0, l = array.length; i < l; i += 3) {
 +
const x = array[i];
 +
const y = array[i + 1];
 +
const z = array[i + 2];
 +
if (x < minX) minX = x;
 +
if (y < minY) minY = y;
 +
if (z < minZ) minZ = z;
 +
if (x > maxX) maxX = x;
 +
if (y > maxY) maxY = y;
 +
if (z > maxZ) maxZ = z;
 +
}
 +
 +
this.min.set(minX, minY, minZ);
 +
this.max.set(maxX, maxY, maxZ);
 +
return this;
 +
}
 +
 +
setFromBufferAttribute(attribute) {
 +
let minX = +Infinity;
 +
let minY = +Infinity;
 +
let minZ = +Infinity;
 +
let maxX = -Infinity;
 +
let maxY = -Infinity;
 +
let maxZ = -Infinity;
 +
 +
for (let i = 0, l = attribute.count; i < l; i++) {
 +
const x = attribute.getX(i);
 +
const y = attribute.getY(i);
 +
const z = attribute.getZ(i);
 +
if (x < minX) minX = x;
 +
if (y < minY) minY = y;
 +
if (z < minZ) minZ = z;
 +
if (x > maxX) maxX = x;
 +
if (y > maxY) maxY = y;
 +
if (z > maxZ) maxZ = z;
 +
}
 +
 +
this.min.set(minX, minY, minZ);
 +
this.max.set(maxX, maxY, maxZ);
 +
return this;
 +
}
 +
 +
setFromPoints(points) {
 +
this.makeEmpty();
 +
 +
for (let i = 0, il = points.length; i < il; i++) {
 +
this.expandByPoint(points[i]);
 +
}
 +
 +
return this;
 +
}
 +
 +
setFromCenterAndSize(center, size) {
 +
const halfSize = _vector$b.copy(size).multiplyScalar(0.5);
 +
 +
this.min.copy(center).sub(halfSize);
 +
this.max.copy(center).add(halfSize);
 +
return this;
 +
}
 +
 +
setFromObject(object) {
 +
this.makeEmpty();
 +
return this.expandByObject(object);
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
copy(box) {
 +
this.min.copy(box.min);
 +
this.max.copy(box.max);
 +
return this;
 +
}
 +
 +
makeEmpty() {
 +
this.min.x = this.min.y = this.min.z = +Infinity;
 +
this.max.x = this.max.y = this.max.z = -Infinity;
 +
return this;
 +
}
 +
 +
isEmpty() {
 +
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
 +
return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z;
 +
}
 +
 +
getCenter(target) {
 +
return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
 +
}
 +
 +
getSize(target) {
 +
return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min);
 +
}
 +
 +
expandByPoint(point) {
 +
this.min.min(point);
 +
this.max.max(point);
 +
return this;
 +
}
 +
 +
expandByVector(vector) {
 +
this.min.sub(vector);
 +
this.max.add(vector);
 +
return this;
 +
}
 +
 +
expandByScalar(scalar) {
 +
this.min.addScalar(-scalar);
 +
this.max.addScalar(scalar);
 +
return this;
 +
}
 +
 +
expandByObject(object) {
 +
// Computes the world-axis-aligned bounding box of an object (including its children),
 +
// accounting for both the object's, and children's, world transforms
 +
object.updateWorldMatrix(false, false);
 +
const geometry = object.geometry;
 +
 +
if (geometry !== undefined) {
 +
if (geometry.boundingBox === null) {
 +
geometry.computeBoundingBox();
 +
}
 +
 +
_box$3.copy(geometry.boundingBox);
 +
 +
_box$3.applyMatrix4(object.matrixWorld);
 +
 +
this.union(_box$3);
 +
}
 +
 +
const children = object.children;
 +
 +
for (let i = 0, l = children.length; i < l; i++) {
 +
this.expandByObject(children[i]);
 +
}
 +
 +
return this;
 +
}
 +
 +
containsPoint(point) {
 +
return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true;
 +
}
 +
 +
containsBox(box) {
 +
return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z;
 +
}
 +
 +
getParameter(point, target) {
 +
// This can potentially have a divide by zero if the box
 +
// has a size dimension of 0.
 +
return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z));
 +
}
 +
 +
intersectsBox(box) {
 +
// using 6 splitting planes to rule out intersections.
 +
return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
 +
}
 +
 +
intersectsSphere(sphere) {
 +
// Find the point on the AABB closest to the sphere center.
 +
this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect.
 +
 +
return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius;
 +
}
 +
 +
intersectsPlane(plane) {
 +
// We compute the minimum and maximum dot product values. If those values
 +
// are on the same side (back or front) of the plane, then there is no intersection.
 +
let min, max;
 +
 +
if (plane.normal.x > 0) {
 +
min = plane.normal.x * this.min.x;
 +
max = plane.normal.x * this.max.x;
 +
} else {
 +
min = plane.normal.x * this.max.x;
 +
max = plane.normal.x * this.min.x;
 +
}
 +
 +
if (plane.normal.y > 0) {
 +
min += plane.normal.y * this.min.y;
 +
max += plane.normal.y * this.max.y;
 +
} else {
 +
min += plane.normal.y * this.max.y;
 +
max += plane.normal.y * this.min.y;
 +
}
 +
 +
if (plane.normal.z > 0) {
 +
min += plane.normal.z * this.min.z;
 +
max += plane.normal.z * this.max.z;
 +
} else {
 +
min += plane.normal.z * this.max.z;
 +
max += plane.normal.z * this.min.z;
 +
}
 +
 +
return min <= -plane.constant && max >= -plane.constant;
 +
}
 +
 +
intersectsTriangle(triangle) {
 +
if (this.isEmpty()) {
 +
return false;
 +
} // compute box center and extents
 +
 +
 +
this.getCenter(_center);
 +
 +
_extents.subVectors(this.max, _center); // translate triangle to aabb origin
 +
 +
 +
_v0$2.subVectors(triangle.a, _center);
 +
 +
_v1$7.subVectors(triangle.b, _center);
 +
 +
_v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle
 +
 +
 +
_f0.subVectors(_v1$7, _v0$2);
 +
 +
_f1.subVectors(_v2$3, _v1$7);
 +
 +
_f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
 +
// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
 +
// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
 +
 +
 +
let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0];
 +
 +
if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
 +
return false;
 +
} // test 3 face normals from the aabb
 +
 +
 +
axes = [1, 0, 0, 0, 1, 0, 0, 0, 1];
 +
 +
if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
 +
return false;
 +
} // finally testing the face normal of the triangle
 +
// use already existing triangle edge vectors here
 +
 +
 +
_triangleNormal.crossVectors(_f0, _f1);
 +
 +
axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z];
 +
return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents);
 +
}
 +
 +
clampPoint(point, target) {
 +
return target.copy(point).clamp(this.min, this.max);
 +
}
 +
 +
distanceToPoint(point) {
 +
const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max);
 +
 +
return clampedPoint.sub(point).length();
 +
}
 +
 +
getBoundingSphere(target) {
 +
this.getCenter(target.center);
 +
target.radius = this.getSize(_vector$b).length() * 0.5;
 +
return target;
 +
}
 +
 +
intersect(box) {
 +
this.min.max(box.min);
 +
this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
 +
 +
if (this.isEmpty()) this.makeEmpty();
 +
return this;
 +
}
 +
 +
union(box) {
 +
this.min.min(box.min);
 +
this.max.max(box.max);
 +
return this;
 +
}
 +
 +
applyMatrix4(matrix) {
 +
// transform of empty box is an empty box.
 +
if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below
 +
 +
_points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000
 +
 +
 +
_points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001
 +
 +
 +
_points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010
 +
 +
 +
_points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011
 +
 +
 +
_points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100
 +
 +
 +
_points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101
 +
 +
 +
_points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110
 +
 +
 +
_points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111
 +
 +
 +
this.setFromPoints(_points);
 +
return this;
 +
}
 +
 +
translate(offset) {
 +
this.min.add(offset);
 +
this.max.add(offset);
 +
return this;
 +
}
 +
 +
equals(box) {
 +
return box.min.equals(this.min) && box.max.equals(this.max);
 +
}
 +
 +
}
 +
 +
Box3.prototype.isBox3 = true;
 +
const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()];
 +
 +
const _vector$b = /*@__PURE__*/new Vector3();
 +
 +
const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices
 +
 +
 +
const _v0$2 = /*@__PURE__*/new Vector3();
 +
 +
const _v1$7 = /*@__PURE__*/new Vector3();
 +
 +
const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors
 +
 +
 +
const _f0 = /*@__PURE__*/new Vector3();
 +
 +
const _f1 = /*@__PURE__*/new Vector3();
 +
 +
const _f2 = /*@__PURE__*/new Vector3();
 +
 +
const _center = /*@__PURE__*/new Vector3();
 +
 +
const _extents = /*@__PURE__*/new Vector3();
 +
 +
const _triangleNormal = /*@__PURE__*/new Vector3();
 +
 +
const _testAxis = /*@__PURE__*/new Vector3();
 +
 +
function satForAxes(axes, v0, v1, v2, extents) {
 +
for (let i = 0, j = axes.length - 3; i <= j; i += 3) {
 +
_testAxis.fromArray(axes, i); // project the aabb onto the seperating axis
 +
 +
 +
const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis
 +
 +
const p0 = v0.dot(_testAxis);
 +
const p1 = v1.dot(_testAxis);
 +
const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r
 +
 +
if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) {
 +
// points of the projected triangle are outside the projected half-length of the aabb
 +
// the axis is seperating and we can exit
 +
return false;
 +
}
 +
}
 +
 +
return true;
 +
}
 +
 +
const _box$2 = /*@__PURE__*/new Box3();
 +
 +
const _v1$6 = /*@__PURE__*/new Vector3();
 +
 +
const _toFarthestPoint = /*@__PURE__*/new Vector3();
 +
 +
const _toPoint = /*@__PURE__*/new Vector3();
 +
 +
class Sphere {
 +
constructor(center = new Vector3(), radius = -1) {
 +
this.center = center;
 +
this.radius = radius;
 +
}
 +
 +
set(center, radius) {
 +
this.center.copy(center);
 +
this.radius = radius;
 +
return this;
 +
}
 +
 +
setFromPoints(points, optionalCenter) {
 +
const center = this.center;
 +
 +
if (optionalCenter !== undefined) {
 +
center.copy(optionalCenter);
 +
} else {
 +
_box$2.setFromPoints(points).getCenter(center);
 +
}
 +
 +
let maxRadiusSq = 0;
 +
 +
for (let i = 0, il = points.length; i < il; i++) {
 +
maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i]));
 +
}
 +
 +
this.radius = Math.sqrt(maxRadiusSq);
 +
return this;
 +
}
 +
 +
copy(sphere) {
 +
this.center.copy(sphere.center);
 +
this.radius = sphere.radius;
 +
return this;
 +
}
 +
 +
isEmpty() {
 +
return this.radius < 0;
 +
}
 +
 +
makeEmpty() {
 +
this.center.set(0, 0, 0);
 +
this.radius = -1;
 +
return this;
 +
}
 +
 +
containsPoint(point) {
 +
return point.distanceToSquared(this.center) <= this.radius * this.radius;
 +
}
 +
 +
distanceToPoint(point) {
 +
return point.distanceTo(this.center) - this.radius;
 +
}
 +
 +
intersectsSphere(sphere) {
 +
const radiusSum = this.radius + sphere.radius;
 +
return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum;
 +
}
 +
 +
intersectsBox(box) {
 +
return box.intersectsSphere(this);
 +
}
 +
 +
intersectsPlane(plane) {
 +
return Math.abs(plane.distanceToPoint(this.center)) <= this.radius;
 +
}
 +
 +
clampPoint(point, target) {
 +
const deltaLengthSq = this.center.distanceToSquared(point);
 +
target.copy(point);
 +
 +
if (deltaLengthSq > this.radius * this.radius) {
 +
target.sub(this.center).normalize();
 +
target.multiplyScalar(this.radius).add(this.center);
 +
}
 +
 +
return target;
 +
}
 +
 +
getBoundingBox(target) {
 +
if (this.isEmpty()) {
 +
// Empty sphere produces empty bounding box
 +
target.makeEmpty();
 +
return target;
 +
}
 +
 +
target.set(this.center, this.center);
 +
target.expandByScalar(this.radius);
 +
return target;
 +
}
 +
 +
applyMatrix4(matrix) {
 +
this.center.applyMatrix4(matrix);
 +
this.radius = this.radius * matrix.getMaxScaleOnAxis();
 +
return this;
 +
}
 +
 +
translate(offset) {
 +
this.center.add(offset);
 +
return this;
 +
}
 +
 +
expandByPoint(point) {
 +
// from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671
 +
_toPoint.subVectors(point, this.center);
 +
 +
const lengthSq = _toPoint.lengthSq();
 +
 +
if (lengthSq > this.radius * this.radius) {
 +
const length = Math.sqrt(lengthSq);
 +
const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius,
 +
// and the other half to position. This gives a tighter enclosure, instead of if
 +
// the whole missing distance were just added to radius.
 +
 +
this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length));
 +
this.radius += missingRadiusHalf;
 +
}
 +
 +
return this;
 +
}
 +
 +
union(sphere) {
 +
// from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769
 +
// To enclose another sphere into this sphere, we only need to enclose two points:
 +
// 1) Enclose the farthest point on the other sphere into this sphere.
 +
// 2) Enclose the opposite point of the farthest point into this sphere.
 +
_toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius);
 +
 +
this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint));
 +
this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint));
 +
return this;
 +
}
 +
 +
equals(sphere) {
 +
return sphere.center.equals(this.center) && sphere.radius === this.radius;
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
}
 +
 +
const _vector$a = /*@__PURE__*/new Vector3();
 +
 +
const _segCenter = /*@__PURE__*/new Vector3();
 +
 +
const _segDir = /*@__PURE__*/new Vector3();
 +
 +
const _diff = /*@__PURE__*/new Vector3();
 +
 +
const _edge1 = /*@__PURE__*/new Vector3();
 +
 +
const _edge2 = /*@__PURE__*/new Vector3();
 +
 +
const _normal$1 = /*@__PURE__*/new Vector3();
 +
 +
class Ray {
 +
constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) {
 +
this.origin = origin;
 +
this.direction = direction;
 +
}
 +
 +
set(origin, direction) {
 +
this.origin.copy(origin);
 +
this.direction.copy(direction);
 +
return this;
 +
}
 +
 +
copy(ray) {
 +
this.origin.copy(ray.origin);
 +
this.direction.copy(ray.direction);
 +
return this;
 +
}
 +
 +
at(t, target) {
 +
return target.copy(this.direction).multiplyScalar(t).add(this.origin);
 +
}
 +
 +
lookAt(v) {
 +
this.direction.copy(v).sub(this.origin).normalize();
 +
return this;
 +
}
 +
 +
recast(t) {
 +
this.origin.copy(this.at(t, _vector$a));
 +
return this;
 +
}
 +
 +
closestPointToPoint(point, target) {
 +
target.subVectors(point, this.origin);
 +
const directionDistance = target.dot(this.direction);
 +
 +
if (directionDistance < 0) {
 +
return target.copy(this.origin);
 +
}
 +
 +
return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
 +
}
 +
 +
distanceToPoint(point) {
 +
return Math.sqrt(this.distanceSqToPoint(point));
 +
}
 +
 +
distanceSqToPoint(point) {
 +
const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray
 +
 +
 +
if (directionDistance < 0) {
 +
return this.origin.distanceToSquared(point);
 +
}
 +
 +
_vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
 +
 +
return _vector$a.distanceToSquared(point);
 +
}
 +
 +
distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) {
 +
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
 +
// It returns the min distance between the ray and the segment
 +
// defined by v0 and v1
 +
// It can also set two optional targets :
 +
// - The closest point on the ray
 +
// - The closest point on the segment
 +
_segCenter.copy(v0).add(v1).multiplyScalar(0.5);
 +
 +
_segDir.copy(v1).sub(v0).normalize();
 +
 +
_diff.copy(this.origin).sub(_segCenter);
 +
 +
const segExtent = v0.distanceTo(v1) * 0.5;
 +
const a01 = -this.direction.dot(_segDir);
 +
 +
const b0 = _diff.dot(this.direction);
 +
 +
const b1 = -_diff.dot(_segDir);
 +
 +
const c = _diff.lengthSq();
 +
 +
const det = Math.abs(1 - a01 * a01);
 +
let s0, s1, sqrDist, extDet;
 +
 +
if (det > 0) {
 +
// The ray and segment are not parallel.
 +
s0 = a01 * b1 - b0;
 +
s1 = a01 * b0 - b1;
 +
extDet = segExtent * det;
 +
 +
if (s0 >= 0) {
 +
if (s1 >= -extDet) {
 +
if (s1 <= extDet) {
 +
// region 0
 +
// Minimum at interior points of ray and segment.
 +
const invDet = 1 / det;
 +
s0 *= invDet;
 +
s1 *= invDet;
 +
sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c;
 +
} else {
 +
// region 1
 +
s1 = segExtent;
 +
s0 = Math.max(0, -(a01 * s1 + b0));
 +
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
 +
}
 +
} else {
 +
// region 5
 +
s1 = -segExtent;
 +
s0 = Math.max(0, -(a01 * s1 + b0));
 +
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
 +
}
 +
} else {
 +
if (s1 <= -extDet) {
 +
// region 4
 +
s0 = Math.max(0, -(-a01 * segExtent + b0));
 +
s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
 +
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
 +
} else if (s1 <= extDet) {
 +
// region 3
 +
s0 = 0;
 +
s1 = Math.min(Math.max(-segExtent, -b1), segExtent);
 +
sqrDist = s1 * (s1 + 2 * b1) + c;
 +
} else {
 +
// region 2
 +
s0 = Math.max(0, -(a01 * segExtent + b0));
 +
s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
 +
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
 +
}
 +
}
 +
} else {
 +
// Ray and segment are parallel.
 +
s1 = a01 > 0 ? -segExtent : segExtent;
 +
s0 = Math.max(0, -(a01 * s1 + b0));
 +
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
 +
}
 +
 +
if (optionalPointOnRay) {
 +
optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin);
 +
}
 +
 +
if (optionalPointOnSegment) {
 +
optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter);
 +
}
 +
 +
return sqrDist;
 +
}
 +
 +
intersectSphere(sphere, target) {
 +
_vector$a.subVectors(sphere.center, this.origin);
 +
 +
const tca = _vector$a.dot(this.direction);
 +
 +
const d2 = _vector$a.dot(_vector$a) - tca * tca;
 +
const radius2 = sphere.radius * sphere.radius;
 +
if (d2 > radius2) return null;
 +
const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere
 +
 +
const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere
 +
 +
const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null
 +
 +
if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray:
 +
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
 +
// in order to always return an intersect point that is in front of the ray.
 +
 +
if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0
 +
 +
return this.at(t0, target);
 +
}
 +
 +
intersectsSphere(sphere) {
 +
return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius;
 +
}
 +
 +
distanceToPlane(plane) {
 +
const denominator = plane.normal.dot(this.direction);
 +
 +
if (denominator === 0) {
 +
// line is coplanar, return origin
 +
if (plane.distanceToPoint(this.origin) === 0) {
 +
return 0;
 +
} // Null is preferable to undefined since undefined means.... it is undefined
 +
 +
 +
return null;
 +
}
 +
 +
const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane
 +
 +
return t >= 0 ? t : null;
 +
}
 +
 +
intersectPlane(plane, target) {
 +
const t = this.distanceToPlane(plane);
 +
 +
if (t === null) {
 +
return null;
 +
}
 +
 +
return this.at(t, target);
 +
}
 +
 +
intersectsPlane(plane) {
 +
// check if the ray lies on the plane first
 +
const distToPoint = plane.distanceToPoint(this.origin);
 +
 +
if (distToPoint === 0) {
 +
return true;
 +
}
 +
 +
const denominator = plane.normal.dot(this.direction);
 +
 +
if (denominator * distToPoint < 0) {
 +
return true;
 +
} // ray origin is behind the plane (and is pointing behind it)
 +
 +
 +
return false;
 +
}
 +
 +
intersectBox(box, target) {
 +
let tmin, tmax, tymin, tymax, tzmin, tzmax;
 +
const invdirx = 1 / this.direction.x,
 +
invdiry = 1 / this.direction.y,
 +
invdirz = 1 / this.direction.z;
 +
const origin = this.origin;
 +
 +
if (invdirx >= 0) {
 +
tmin = (box.min.x - origin.x) * invdirx;
 +
tmax = (box.max.x - origin.x) * invdirx;
 +
} else {
 +
tmin = (box.max.x - origin.x) * invdirx;
 +
tmax = (box.min.x - origin.x) * invdirx;
 +
}
 +
 +
if (invdiry >= 0) {
 +
tymin = (box.min.y - origin.y) * invdiry;
 +
tymax = (box.max.y - origin.y) * invdiry;
 +
} else {
 +
tymin = (box.max.y - origin.y) * invdiry;
 +
tymax = (box.min.y - origin.y) * invdiry;
 +
}
 +
 +
if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN
 +
// (result of 0 * Infinity). x !== x returns true if x is NaN
 +
 +
if (tymin > tmin || tmin !== tmin) tmin = tymin;
 +
if (tymax < tmax || tmax !== tmax) tmax = tymax;
 +
 +
if (invdirz >= 0) {
 +
tzmin = (box.min.z - origin.z) * invdirz;
 +
tzmax = (box.max.z - origin.z) * invdirz;
 +
} else {
 +
tzmin = (box.max.z - origin.z) * invdirz;
 +
tzmax = (box.min.z - origin.z) * invdirz;
 +
}
 +
 +
if (tmin > tzmax || tzmin > tmax) return null;
 +
if (tzmin > tmin || tmin !== tmin) tmin = tzmin;
 +
if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side)
 +
 +
if (tmax < 0) return null;
 +
return this.at(tmin >= 0 ? tmin : tmax, target);
 +
}
 +
 +
intersectsBox(box) {
 +
return this.intersectBox(box, _vector$a) !== null;
 +
}
 +
 +
intersectTriangle(a, b, c, backfaceCulling, target) {
 +
// Compute the offset origin, edges, and normal.
 +
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
 +
_edge1.subVectors(b, a);
 +
 +
_edge2.subVectors(c, a);
 +
 +
_normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
 +
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
 +
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
 +
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
 +
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
 +
 +
 +
let DdN = this.direction.dot(_normal$1);
 +
let sign;
 +
 +
if (DdN > 0) {
 +
if (backfaceCulling) return null;
 +
sign = 1;
 +
} else if (DdN < 0) {
 +
sign = -1;
 +
DdN = -DdN;
 +
} else {
 +
return null;
 +
}
 +
 +
_diff.subVectors(this.origin, a);
 +
 +
const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection
 +
 +
if (DdQxE2 < 0) {
 +
return null;
 +
}
 +
 +
const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection
 +
 +
if (DdE1xQ < 0) {
 +
return null;
 +
} // b1+b2 > 1, no intersection
 +
 +
 +
if (DdQxE2 + DdE1xQ > DdN) {
 +
return null;
 +
} // Line intersects triangle, check if ray does.
 +
 +
 +
const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection
 +
 +
 +
if (QdN < 0) {
 +
return null;
 +
} // Ray intersects triangle.
 +
 +
 +
return this.at(QdN / DdN, target);
 +
}
 +
 +
applyMatrix4(matrix4) {
 +
this.origin.applyMatrix4(matrix4);
 +
this.direction.transformDirection(matrix4);
 +
return this;
 +
}
 +
 +
equals(ray) {
 +
return ray.origin.equals(this.origin) && ray.direction.equals(this.direction);
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
}
 +
 +
class Matrix4 {
 +
constructor() {
 +
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
 +
 +
if (arguments.length > 0) {
 +
console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.');
 +
}
 +
}
 +
 +
set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) {
 +
const te = this.elements;
 +
te[0] = n11;
 +
te[4] = n12;
 +
te[8] = n13;
 +
te[12] = n14;
 +
te[1] = n21;
 +
te[5] = n22;
 +
te[9] = n23;
 +
te[13] = n24;
 +
te[2] = n31;
 +
te[6] = n32;
 +
te[10] = n33;
 +
te[14] = n34;
 +
te[3] = n41;
 +
te[7] = n42;
 +
te[11] = n43;
 +
te[15] = n44;
 +
return this;
 +
}
 +
 +
identity() {
 +
this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
clone() {
 +
return new Matrix4().fromArray(this.elements);
 +
}
 +
 +
copy(m) {
 +
const te = this.elements;
 +
const me = m.elements;
 +
te[0] = me[0];
 +
te[1] = me[1];
 +
te[2] = me[2];
 +
te[3] = me[3];
 +
te[4] = me[4];
 +
te[5] = me[5];
 +
te[6] = me[6];
 +
te[7] = me[7];
 +
te[8] = me[8];
 +
te[9] = me[9];
 +
te[10] = me[10];
 +
te[11] = me[11];
 +
te[12] = me[12];
 +
te[13] = me[13];
 +
te[14] = me[14];
 +
te[15] = me[15];
 +
return this;
 +
}
 +
 +
copyPosition(m) {
 +
const te = this.elements,
 +
me = m.elements;
 +
te[12] = me[12];
 +
te[13] = me[13];
 +
te[14] = me[14];
 +
return this;
 +
}
 +
 +
setFromMatrix3(m) {
 +
const me = m.elements;
 +
this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
extractBasis(xAxis, yAxis, zAxis) {
 +
xAxis.setFromMatrixColumn(this, 0);
 +
yAxis.setFromMatrixColumn(this, 1);
 +
zAxis.setFromMatrixColumn(this, 2);
 +
return this;
 +
}
 +
 +
makeBasis(xAxis, yAxis, zAxis) {
 +
this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
extractRotation(m) {
 +
// this method does not support reflection matrices
 +
const te = this.elements;
 +
const me = m.elements;
 +
 +
const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length();
 +
 +
const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length();
 +
 +
const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length();
 +
 +
te[0] = me[0] * scaleX;
 +
te[1] = me[1] * scaleX;
 +
te[2] = me[2] * scaleX;
 +
te[3] = 0;
 +
te[4] = me[4] * scaleY;
 +
te[5] = me[5] * scaleY;
 +
te[6] = me[6] * scaleY;
 +
te[7] = 0;
 +
te[8] = me[8] * scaleZ;
 +
te[9] = me[9] * scaleZ;
 +
te[10] = me[10] * scaleZ;
 +
te[11] = 0;
 +
te[12] = 0;
 +
te[13] = 0;
 +
te[14] = 0;
 +
te[15] = 1;
 +
return this;
 +
}
 +
 +
makeRotationFromEuler(euler) {
 +
if (!(euler && euler.isEuler)) {
 +
console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.');
 +
}
 +
 +
const te = this.elements;
 +
const x = euler.x,
 +
y = euler.y,
 +
z = euler.z;
 +
const a = Math.cos(x),
 +
b = Math.sin(x);
 +
const c = Math.cos(y),
 +
d = Math.sin(y);
 +
const e = Math.cos(z),
 +
f = Math.sin(z);
 +
 +
if (euler.order === 'XYZ') {
 +
const ae = a * e,
 +
af = a * f,
 +
be = b * e,
 +
bf = b * f;
 +
te[0] = c * e;
 +
te[4] = -c * f;
 +
te[8] = d;
 +
te[1] = af + be * d;
 +
te[5] = ae - bf * d;
 +
te[9] = -b * c;
 +
te[2] = bf - ae * d;
 +
te[6] = be + af * d;
 +
te[10] = a * c;
 +
} else if (euler.order === 'YXZ') {
 +
const ce = c * e,
 +
cf = c * f,
 +
de = d * e,
 +
df = d * f;
 +
te[0] = ce + df * b;
 +
te[4] = de * b - cf;
 +
te[8] = a * d;
 +
te[1] = a * f;
 +
te[5] = a * e;
 +
te[9] = -b;
 +
te[2] = cf * b - de;
 +
te[6] = df + ce * b;
 +
te[10] = a * c;
 +
} else if (euler.order === 'ZXY') {
 +
const ce = c * e,
 +
cf = c * f,
 +
de = d * e,
 +
df = d * f;
 +
te[0] = ce - df * b;
 +
te[4] = -a * f;
 +
te[8] = de + cf * b;
 +
te[1] = cf + de * b;
 +
te[5] = a * e;
 +
te[9] = df - ce * b;
 +
te[2] = -a * d;
 +
te[6] = b;
 +
te[10] = a * c;
 +
} else if (euler.order === 'ZYX') {
 +
const ae = a * e,
 +
af = a * f,
 +
be = b * e,
 +
bf = b * f;
 +
te[0] = c * e;
 +
te[4] = be * d - af;
 +
te[8] = ae * d + bf;
 +
te[1] = c * f;
 +
te[5] = bf * d + ae;
 +
te[9] = af * d - be;
 +
te[2] = -d;
 +
te[6] = b * c;
 +
te[10] = a * c;
 +
} else if (euler.order === 'YZX') {
 +
const ac = a * c,
 +
ad = a * d,
 +
bc = b * c,
 +
bd = b * d;
 +
te[0] = c * e;
 +
te[4] = bd - ac * f;
 +
te[8] = bc * f + ad;
 +
te[1] = f;
 +
te[5] = a * e;
 +
te[9] = -b * e;
 +
te[2] = -d * e;
 +
te[6] = ad * f + bc;
 +
te[10] = ac - bd * f;
 +
} else if (euler.order === 'XZY') {
 +
const ac = a * c,
 +
ad = a * d,
 +
bc = b * c,
 +
bd = b * d;
 +
te[0] = c * e;
 +
te[4] = -f;
 +
te[8] = d * e;
 +
te[1] = ac * f + bd;
 +
te[5] = a * e;
 +
te[9] = ad * f - bc;
 +
te[2] = bc * f - ad;
 +
te[6] = b * e;
 +
te[10] = bd * f + ac;
 +
} // bottom row
 +
 +
 +
te[3] = 0;
 +
te[7] = 0;
 +
te[11] = 0; // last column
 +
 +
te[12] = 0;
 +
te[13] = 0;
 +
te[14] = 0;
 +
te[15] = 1;
 +
return this;
 +
}
 +
 +
makeRotationFromQuaternion(q) {
 +
return this.compose(_zero, q, _one);
 +
}
 +
 +
lookAt(eye, target, up) {
 +
const te = this.elements;
 +
 +
_z.subVectors(eye, target);
 +
 +
if (_z.lengthSq() === 0) {
 +
// eye and target are in the same position
 +
_z.z = 1;
 +
}
 +
 +
_z.normalize();
 +
 +
_x.crossVectors(up, _z);
 +
 +
if (_x.lengthSq() === 0) {
 +
// up and z are parallel
 +
if (Math.abs(up.z) === 1) {
 +
_z.x += 0.0001;
 +
} else {
 +
_z.z += 0.0001;
 +
}
 +
 +
_z.normalize();
 +
 +
_x.crossVectors(up, _z);
 +
}
 +
 +
_x.normalize();
 +
 +
_y.crossVectors(_z, _x);
 +
 +
te[0] = _x.x;
 +
te[4] = _y.x;
 +
te[8] = _z.x;
 +
te[1] = _x.y;
 +
te[5] = _y.y;
 +
te[9] = _z.y;
 +
te[2] = _x.z;
 +
te[6] = _y.z;
 +
te[10] = _z.z;
 +
return this;
 +
}
 +
 +
multiply(m, n) {
 +
if (n !== undefined) {
 +
console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.');
 +
return this.multiplyMatrices(m, n);
 +
}
 +
 +
return this.multiplyMatrices(this, m);
 +
}
 +
 +
premultiply(m) {
 +
return this.multiplyMatrices(m, this);
 +
}
 +
 +
multiplyMatrices(a, b) {
 +
const ae = a.elements;
 +
const be = b.elements;
 +
const te = this.elements;
 +
const a11 = ae[0],
 +
a12 = ae[4],
 +
a13 = ae[8],
 +
a14 = ae[12];
 +
const a21 = ae[1],
 +
a22 = ae[5],
 +
a23 = ae[9],
 +
a24 = ae[13];
 +
const a31 = ae[2],
 +
a32 = ae[6],
 +
a33 = ae[10],
 +
a34 = ae[14];
 +
const a41 = ae[3],
 +
a42 = ae[7],
 +
a43 = ae[11],
 +
a44 = ae[15];
 +
const b11 = be[0],
 +
b12 = be[4],
 +
b13 = be[8],
 +
b14 = be[12];
 +
const b21 = be[1],
 +
b22 = be[5],
 +
b23 = be[9],
 +
b24 = be[13];
 +
const b31 = be[2],
 +
b32 = be[6],
 +
b33 = be[10],
 +
b34 = be[14];
 +
const b41 = be[3],
 +
b42 = be[7],
 +
b43 = be[11],
 +
b44 = be[15];
 +
te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
 +
te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
 +
te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
 +
te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
 +
te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
 +
te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
 +
te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
 +
te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
 +
te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
 +
te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
 +
te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
 +
te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
 +
te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
 +
te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
 +
te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
 +
te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
 +
return this;
 +
}
 +
 +
multiplyScalar(s) {
 +
const te = this.elements;
 +
te[0] *= s;
 +
te[4] *= s;
 +
te[8] *= s;
 +
te[12] *= s;
 +
te[1] *= s;
 +
te[5] *= s;
 +
te[9] *= s;
 +
te[13] *= s;
 +
te[2] *= s;
 +
te[6] *= s;
 +
te[10] *= s;
 +
te[14] *= s;
 +
te[3] *= s;
 +
te[7] *= s;
 +
te[11] *= s;
 +
te[15] *= s;
 +
return this;
 +
}
 +
 +
determinant() {
 +
const te = this.elements;
 +
const n11 = te[0],
 +
n12 = te[4],
 +
n13 = te[8],
 +
n14 = te[12];
 +
const n21 = te[1],
 +
n22 = te[5],
 +
n23 = te[9],
 +
n24 = te[13];
 +
const n31 = te[2],
 +
n32 = te[6],
 +
n33 = te[10],
 +
n34 = te[14];
 +
const n41 = te[3],
 +
n42 = te[7],
 +
n43 = te[11],
 +
n44 = te[15]; //TODO: make this more efficient
 +
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
 +
 +
return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31);
 +
}
 +
 +
transpose() {
 +
const te = this.elements;
 +
let tmp;
 +
tmp = te[1];
 +
te[1] = te[4];
 +
te[4] = tmp;
 +
tmp = te[2];
 +
te[2] = te[8];
 +
te[8] = tmp;
 +
tmp = te[6];
 +
te[6] = te[9];
 +
te[9] = tmp;
 +
tmp = te[3];
 +
te[3] = te[12];
 +
te[12] = tmp;
 +
tmp = te[7];
 +
te[7] = te[13];
 +
te[13] = tmp;
 +
tmp = te[11];
 +
te[11] = te[14];
 +
te[14] = tmp;
 +
return this;
 +
}
 +
 +
setPosition(x, y, z) {
 +
const te = this.elements;
 +
 +
if (x.isVector3) {
 +
te[12] = x.x;
 +
te[13] = x.y;
 +
te[14] = x.z;
 +
} else {
 +
te[12] = x;
 +
te[13] = y;
 +
te[14] = z;
 +
}
 +
 +
return this;
 +
}
 +
 +
invert() {
 +
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
 +
const te = this.elements,
 +
n11 = te[0],
 +
n21 = te[1],
 +
n31 = te[2],
 +
n41 = te[3],
 +
n12 = te[4],
 +
n22 = te[5],
 +
n32 = te[6],
 +
n42 = te[7],
 +
n13 = te[8],
 +
n23 = te[9],
 +
n33 = te[10],
 +
n43 = te[11],
 +
n14 = te[12],
 +
n24 = te[13],
 +
n34 = te[14],
 +
n44 = te[15],
 +
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
 +
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
 +
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
 +
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
 +
const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
 +
if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
 +
const detInv = 1 / det;
 +
te[0] = t11 * detInv;
 +
te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv;
 +
te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv;
 +
te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv;
 +
te[4] = t12 * detInv;
 +
te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv;
 +
te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv;
 +
te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv;
 +
te[8] = t13 * detInv;
 +
te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv;
 +
te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv;
 +
te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv;
 +
te[12] = t14 * detInv;
 +
te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv;
 +
te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv;
 +
te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv;
 +
return this;
 +
}
 +
 +
scale(v) {
 +
const te = this.elements;
 +
const x = v.x,
 +
y = v.y,
 +
z = v.z;
 +
te[0] *= x;
 +
te[4] *= y;
 +
te[8] *= z;
 +
te[1] *= x;
 +
te[5] *= y;
 +
te[9] *= z;
 +
te[2] *= x;
 +
te[6] *= y;
 +
te[10] *= z;
 +
te[3] *= x;
 +
te[7] *= y;
 +
te[11] *= z;
 +
return this;
 +
}
 +
 +
getMaxScaleOnAxis() {
 +
const te = this.elements;
 +
const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2];
 +
const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6];
 +
const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10];
 +
return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq));
 +
}
 +
 +
makeTranslation(x, y, z) {
 +
this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
makeRotationX(theta) {
 +
const c = Math.cos(theta),
 +
s = Math.sin(theta);
 +
this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
makeRotationY(theta) {
 +
const c = Math.cos(theta),
 +
s = Math.sin(theta);
 +
this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
makeRotationZ(theta) {
 +
const c = Math.cos(theta),
 +
s = Math.sin(theta);
 +
this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
makeRotationAxis(axis, angle) {
 +
// Based on http://www.gamedev.net/reference/articles/article1199.asp
 +
const c = Math.cos(angle);
 +
const s = Math.sin(angle);
 +
const t = 1 - c;
 +
const x = axis.x,
 +
y = axis.y,
 +
z = axis.z;
 +
const tx = t * x,
 +
ty = t * y;
 +
this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
makeScale(x, y, z) {
 +
this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
makeShear(xy, xz, yx, yz, zx, zy) {
 +
this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1);
 +
return this;
 +
}
 +
 +
compose(position, quaternion, scale) {
 +
const te = this.elements;
 +
const x = quaternion._x,
 +
y = quaternion._y,
 +
z = quaternion._z,
 +
w = quaternion._w;
 +
const x2 = x + x,
 +
y2 = y + y,
 +
z2 = z + z;
 +
const xx = x * x2,
 +
xy = x * y2,
 +
xz = x * z2;
 +
const yy = y * y2,
 +
yz = y * z2,
 +
zz = z * z2;
 +
const wx = w * x2,
 +
wy = w * y2,
 +
wz = w * z2;
 +
const sx = scale.x,
 +
sy = scale.y,
 +
sz = scale.z;
 +
te[0] = (1 - (yy + zz)) * sx;
 +
te[1] = (xy + wz) * sx;
 +
te[2] = (xz - wy) * sx;
 +
te[3] = 0;
 +
te[4] = (xy - wz) * sy;
 +
te[5] = (1 - (xx + zz)) * sy;
 +
te[6] = (yz + wx) * sy;
 +
te[7] = 0;
 +
te[8] = (xz + wy) * sz;
 +
te[9] = (yz - wx) * sz;
 +
te[10] = (1 - (xx + yy)) * sz;
 +
te[11] = 0;
 +
te[12] = position.x;
 +
te[13] = position.y;
 +
te[14] = position.z;
 +
te[15] = 1;
 +
return this;
 +
}
 +
 +
decompose(position, quaternion, scale) {
 +
const te = this.elements;
 +
 +
let sx = _v1$5.set(te[0], te[1], te[2]).length();
 +
 +
const sy = _v1$5.set(te[4], te[5], te[6]).length();
 +
 +
const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale
 +
 +
 +
const det = this.determinant();
 +
if (det < 0) sx = -sx;
 +
position.x = te[12];
 +
position.y = te[13];
 +
position.z = te[14]; // scale the rotation part
 +
 +
_m1$2.copy(this);
 +
 +
const invSX = 1 / sx;
 +
const invSY = 1 / sy;
 +
const invSZ = 1 / sz;
 +
_m1$2.elements[0] *= invSX;
 +
_m1$2.elements[1] *= invSX;
 +
_m1$2.elements[2] *= invSX;
 +
_m1$2.elements[4] *= invSY;
 +
_m1$2.elements[5] *= invSY;
 +
_m1$2.elements[6] *= invSY;
 +
_m1$2.elements[8] *= invSZ;
 +
_m1$2.elements[9] *= invSZ;
 +
_m1$2.elements[10] *= invSZ;
 +
quaternion.setFromRotationMatrix(_m1$2);
 +
scale.x = sx;
 +
scale.y = sy;
 +
scale.z = sz;
 +
return this;
 +
}
 +
 +
makePerspective(left, right, top, bottom, near, far) {
 +
if (far === undefined) {
 +
console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.');
 +
}
 +
 +
const te = this.elements;
 +
const x = 2 * near / (right - left);
 +
const y = 2 * near / (top - bottom);
 +
const a = (right + left) / (right - left);
 +
const b = (top + bottom) / (top - bottom);
 +
const c = -(far + near) / (far - near);
 +
const d = -2 * far * near / (far - near);
 +
te[0] = x;
 +
te[4] = 0;
 +
te[8] = a;
 +
te[12] = 0;
 +
te[1] = 0;
 +
te[5] = y;
 +
te[9] = b;
 +
te[13] = 0;
 +
te[2] = 0;
 +
te[6] = 0;
 +
te[10] = c;
 +
te[14] = d;
 +
te[3] = 0;
 +
te[7] = 0;
 +
te[11] = -1;
 +
te[15] = 0;
 +
return this;
 +
}
 +
 +
makeOrthographic(left, right, top, bottom, near, far) {
 +
const te = this.elements;
 +
const w = 1.0 / (right - left);
 +
const h = 1.0 / (top - bottom);
 +
const p = 1.0 / (far - near);
 +
const x = (right + left) * w;
 +
const y = (top + bottom) * h;
 +
const z = (far + near) * p;
 +
te[0] = 2 * w;
 +
te[4] = 0;
 +
te[8] = 0;
 +
te[12] = -x;
 +
te[1] = 0;
 +
te[5] = 2 * h;
 +
te[9] = 0;
 +
te[13] = -y;
 +
te[2] = 0;
 +
te[6] = 0;
 +
te[10] = -2 * p;
 +
te[14] = -z;
 +
te[3] = 0;
 +
te[7] = 0;
 +
te[11] = 0;
 +
te[15] = 1;
 +
return this;
 +
}
 +
 +
equals(matrix) {
 +
const te = this.elements;
 +
const me = matrix.elements;
 +
 +
for (let i = 0; i < 16; i++) {
 +
if (te[i] !== me[i]) return false;
 +
}
 +
 +
return true;
 +
}
 +
 +
fromArray(array, offset = 0) {
 +
for (let i = 0; i < 16; i++) {
 +
this.elements[i] = array[i + offset];
 +
}
 +
 +
return this;
 +
}
 +
 +
toArray(array = [], offset = 0) {
 +
const te = this.elements;
 +
array[offset] = te[0];
 +
array[offset + 1] = te[1];
 +
array[offset + 2] = te[2];
 +
array[offset + 3] = te[3];
 +
array[offset + 4] = te[4];
 +
array[offset + 5] = te[5];
 +
array[offset + 6] = te[6];
 +
array[offset + 7] = te[7];
 +
array[offset + 8] = te[8];
 +
array[offset + 9] = te[9];
 +
array[offset + 10] = te[10];
 +
array[offset + 11] = te[11];
 +
array[offset + 12] = te[12];
 +
array[offset + 13] = te[13];
 +
array[offset + 14] = te[14];
 +
array[offset + 15] = te[15];
 +
return array;
 +
}
 +
 +
}
 +
 +
Matrix4.prototype.isMatrix4 = true;
 +
 +
const _v1$5 = /*@__PURE__*/new Vector3();
 +
 +
const _m1$2 = /*@__PURE__*/new Matrix4();
 +
 +
const _zero = /*@__PURE__*/new Vector3(0, 0, 0);
 +
 +
const _one = /*@__PURE__*/new Vector3(1, 1, 1);
 +
 +
const _x = /*@__PURE__*/new Vector3();
 +
 +
const _y = /*@__PURE__*/new Vector3();
 +
 +
const _z = /*@__PURE__*/new Vector3();
 +
 +
const _matrix$1 = /*@__PURE__*/new Matrix4();
 +
 +
const _quaternion$3 = /*@__PURE__*/new Quaternion();
 +
 +
class Euler {
 +
constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) {
 +
this._x = x;
 +
this._y = y;
 +
this._z = z;
 +
this._order = order;
 +
}
 +
 +
get x() {
 +
return this._x;
 +
}
 +
 +
set x(value) {
 +
this._x = value;
 +
 +
this._onChangeCallback();
 +
}
 +
 +
get y() {
 +
return this._y;
 +
}
 +
 +
set y(value) {
 +
this._y = value;
 +
 +
this._onChangeCallback();
 +
}
 +
 +
get z() {
 +
return this._z;
 +
}
 +
 +
set z(value) {
 +
this._z = value;
 +
 +
this._onChangeCallback();
 +
}
 +
 +
get order() {
 +
return this._order;
 +
}
 +
 +
set order(value) {
 +
this._order = value;
 +
 +
this._onChangeCallback();
 +
}
 +
 +
set(x, y, z, order = this._order) {
 +
this._x = x;
 +
this._y = y;
 +
this._z = z;
 +
this._order = order;
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
clone() {
 +
return new this.constructor(this._x, this._y, this._z, this._order);
 +
}
 +
 +
copy(euler) {
 +
this._x = euler._x;
 +
this._y = euler._y;
 +
this._z = euler._z;
 +
this._order = euler._order;
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
setFromRotationMatrix(m, order = this._order, update = true) {
 +
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
 +
const te = m.elements;
 +
const m11 = te[0],
 +
m12 = te[4],
 +
m13 = te[8];
 +
const m21 = te[1],
 +
m22 = te[5],
 +
m23 = te[9];
 +
const m31 = te[2],
 +
m32 = te[6],
 +
m33 = te[10];
 +
 +
switch (order) {
 +
case 'XYZ':
 +
this._y = Math.asin(clamp(m13, -1, 1));
 +
 +
if (Math.abs(m13) < 0.9999999) {
 +
this._x = Math.atan2(-m23, m33);
 +
this._z = Math.atan2(-m12, m11);
 +
} else {
 +
this._x = Math.atan2(m32, m22);
 +
this._z = 0;
 +
}
 +
 +
break;
 +
 +
case 'YXZ':
 +
this._x = Math.asin(-clamp(m23, -1, 1));
 +
 +
if (Math.abs(m23) < 0.9999999) {
 +
this._y = Math.atan2(m13, m33);
 +
this._z = Math.atan2(m21, m22);
 +
} else {
 +
this._y = Math.atan2(-m31, m11);
 +
this._z = 0;
 +
}
 +
 +
break;
 +
 +
case 'ZXY':
 +
this._x = Math.asin(clamp(m32, -1, 1));
 +
 +
if (Math.abs(m32) < 0.9999999) {
 +
this._y = Math.atan2(-m31, m33);
 +
this._z = Math.atan2(-m12, m22);
 +
} else {
 +
this._y = 0;
 +
this._z = Math.atan2(m21, m11);
 +
}
 +
 +
break;
 +
 +
case 'ZYX':
 +
this._y = Math.asin(-clamp(m31, -1, 1));
 +
 +
if (Math.abs(m31) < 0.9999999) {
 +
this._x = Math.atan2(m32, m33);
 +
this._z = Math.atan2(m21, m11);
 +
} else {
 +
this._x = 0;
 +
this._z = Math.atan2(-m12, m22);
 +
}
 +
 +
break;
 +
 +
case 'YZX':
 +
this._z = Math.asin(clamp(m21, -1, 1));
 +
 +
if (Math.abs(m21) < 0.9999999) {
 +
this._x = Math.atan2(-m23, m22);
 +
this._y = Math.atan2(-m31, m11);
 +
} else {
 +
this._x = 0;
 +
this._y = Math.atan2(m13, m33);
 +
}
 +
 +
break;
 +
 +
case 'XZY':
 +
this._z = Math.asin(-clamp(m12, -1, 1));
 +
 +
if (Math.abs(m12) < 0.9999999) {
 +
this._x = Math.atan2(m32, m22);
 +
this._y = Math.atan2(m13, m11);
 +
} else {
 +
this._x = Math.atan2(-m23, m33);
 +
this._y = 0;
 +
}
 +
 +
break;
 +
 +
default:
 +
console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order);
 +
}
 +
 +
this._order = order;
 +
if (update === true) this._onChangeCallback();
 +
return this;
 +
}
 +
 +
setFromQuaternion(q, order, update) {
 +
_matrix$1.makeRotationFromQuaternion(q);
 +
 +
return this.setFromRotationMatrix(_matrix$1, order, update);
 +
}
 +
 +
setFromVector3(v, order = this._order) {
 +
return this.set(v.x, v.y, v.z, order);
 +
}
 +
 +
reorder(newOrder) {
 +
// WARNING: this discards revolution information -bhouston
 +
_quaternion$3.setFromEuler(this);
 +
 +
return this.setFromQuaternion(_quaternion$3, newOrder);
 +
}
 +
 +
equals(euler) {
 +
return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order;
 +
}
 +
 +
fromArray(array) {
 +
this._x = array[0];
 +
this._y = array[1];
 +
this._z = array[2];
 +
if (array[3] !== undefined) this._order = array[3];
 +
 +
this._onChangeCallback();
 +
 +
return this;
 +
}
 +
 +
toArray(array = [], offset = 0) {
 +
array[offset] = this._x;
 +
array[offset + 1] = this._y;
 +
array[offset + 2] = this._z;
 +
array[offset + 3] = this._order;
 +
return array;
 +
}
 +
 +
toVector3(optionalResult) {
 +
if (optionalResult) {
 +
return optionalResult.set(this._x, this._y, this._z);
 +
} else {
 +
return new Vector3(this._x, this._y, this._z);
 +
}
 +
}
 +
 +
_onChange(callback) {
 +
this._onChangeCallback = callback;
 +
return this;
 +
}
 +
 +
_onChangeCallback() {}
 +
 +
}
 +
 +
Euler.prototype.isEuler = true;
 +
Euler.DefaultOrder = 'XYZ';
 +
Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX'];
 +
 +
class Layers {
 +
constructor() {
 +
this.mask = 1 | 0;
 +
}
 +
 +
set(channel) {
 +
this.mask = 1 << channel | 0;
 +
}
 +
 +
enable(channel) {
 +
this.mask |= 1 << channel | 0;
 +
}
 +
 +
enableAll() {
 +
this.mask = 0xffffffff | 0;
 +
}
 +
 +
toggle(channel) {
 +
this.mask ^= 1 << channel | 0;
 +
}
 +
 +
disable(channel) {
 +
this.mask &= ~(1 << channel | 0);
 +
}
 +
 +
disableAll() {
 +
this.mask = 0;
 +
}
 +
 +
test(layers) {
 +
return (this.mask & layers.mask) !== 0;
 +
}
 +
 +
}
 +
 +
let _object3DId = 0;
 +
 +
const _v1$4 = /*@__PURE__*/new Vector3();
 +
 +
const _q1 = /*@__PURE__*/new Quaternion();
 +
 +
const _m1$1 = /*@__PURE__*/new Matrix4();
 +
 +
const _target = /*@__PURE__*/new Vector3();
 +
 +
const _position$3 = /*@__PURE__*/new Vector3();
 +
 +
const _scale$2 = /*@__PURE__*/new Vector3();
 +
 +
const _quaternion$2 = /*@__PURE__*/new Quaternion();
 +
 +
const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0);
 +
 +
const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0);
 +
 +
const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1);
 +
 +
const _addedEvent = {
 +
type: 'added'
 +
};
 +
const _removedEvent = {
 +
type: 'removed'
 +
};
 +
 +
class Object3D extends EventDispatcher {
 +
constructor() {
 +
super();
 +
Object.defineProperty(this, 'id', {
 +
value: _object3DId++
 +
});
 +
this.uuid = generateUUID();
 +
this.name = '';
 +
this.type = 'Object3D';
 +
this.parent = null;
 +
this.children = [];
 +
this.up = Object3D.DefaultUp.clone();
 +
const position = new Vector3();
 +
const rotation = new Euler();
 +
const quaternion = new Quaternion();
 +
const scale = new Vector3(1, 1, 1);
 +
 +
function onRotationChange() {
 +
quaternion.setFromEuler(rotation, false);
 +
}
 +
 +
function onQuaternionChange() {
 +
rotation.setFromQuaternion(quaternion, undefined, false);
 +
}
 +
 +
rotation._onChange(onRotationChange);
 +
 +
quaternion._onChange(onQuaternionChange);
 +
 +
Object.defineProperties(this, {
 +
position: {
 +
configurable: true,
 +
enumerable: true,
 +
value: position
 +
},
 +
rotation: {
 +
configurable: true,
 +
enumerable: true,
 +
value: rotation
 +
},
 +
quaternion: {
 +
configurable: true,
 +
enumerable: true,
 +
value: quaternion
 +
},
 +
scale: {
 +
configurable: true,
 +
enumerable: true,
 +
value: scale
 +
},
 +
modelViewMatrix: {
 +
value: new Matrix4()
 +
},
 +
normalMatrix: {
 +
value: new Matrix3()
 +
}
 +
});
 +
this.matrix = new Matrix4();
 +
this.matrixWorld = new Matrix4();
 +
this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
 +
this.matrixWorldNeedsUpdate = false;
 +
this.layers = new Layers();
 +
this.visible = true;
 +
this.castShadow = false;
 +
this.receiveShadow = false;
 +
this.frustumCulled = true;
 +
this.renderOrder = 0;
 +
this.animations = [];
 +
this.userData = {};
 +
}
 +
 +
onBeforeRender() {}
 +
 +
onAfterRender() {}
 +
 +
applyMatrix4(matrix) {
 +
if (this.matrixAutoUpdate) this.updateMatrix();
 +
this.matrix.premultiply(matrix);
 +
this.matrix.decompose(this.position, this.quaternion, this.scale);
 +
}
 +
 +
applyQuaternion(q) {
 +
this.quaternion.premultiply(q);
 +
return this;
 +
}
 +
 +
setRotationFromAxisAngle(axis, angle) {
 +
// assumes axis is normalized
 +
this.quaternion.setFromAxisAngle(axis, angle);
 +
}
 +
 +
setRotationFromEuler(euler) {
 +
this.quaternion.setFromEuler(euler, true);
 +
}
 +
 +
setRotationFromMatrix(m) {
 +
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
 +
this.quaternion.setFromRotationMatrix(m);
 +
}
 +
 +
setRotationFromQuaternion(q) {
 +
// assumes q is normalized
 +
this.quaternion.copy(q);
 +
}
 +
 +
rotateOnAxis(axis, angle) {
 +
// rotate object on axis in object space
 +
// axis is assumed to be normalized
 +
_q1.setFromAxisAngle(axis, angle);
 +
 +
this.quaternion.multiply(_q1);
 +
return this;
 +
}
 +
 +
rotateOnWorldAxis(axis, angle) {
 +
// rotate object on axis in world space
 +
// axis is assumed to be normalized
 +
// method assumes no rotated parent
 +
_q1.setFromAxisAngle(axis, angle);
 +
 +
this.quaternion.premultiply(_q1);
 +
return this;
 +
}
 +
 +
rotateX(angle) {
 +
return this.rotateOnAxis(_xAxis, angle);
 +
}
 +
 +
rotateY(angle) {
 +
return this.rotateOnAxis(_yAxis, angle);
 +
}
 +
 +
rotateZ(angle) {
 +
return this.rotateOnAxis(_zAxis, angle);
 +
}
 +
 +
translateOnAxis(axis, distance) {
 +
// translate object by distance along axis in object space
 +
// axis is assumed to be normalized
 +
_v1$4.copy(axis).applyQuaternion(this.quaternion);
 +
 +
this.position.add(_v1$4.multiplyScalar(distance));
 +
return this;
 +
}
 +
 +
translateX(distance) {
 +
return this.translateOnAxis(_xAxis, distance);
 +
}
 +
 +
translateY(distance) {
 +
return this.translateOnAxis(_yAxis, distance);
 +
}
 +
 +
translateZ(distance) {
 +
return this.translateOnAxis(_zAxis, distance);
 +
}
 +
 +
localToWorld(vector) {
 +
return vector.applyMatrix4(this.matrixWorld);
 +
}
 +
 +
worldToLocal(vector) {
 +
return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert());
 +
}
 +
 +
lookAt(x, y, z) {
 +
// This method does not support objects having non-uniformly-scaled parent(s)
 +
if (x.isVector3) {
 +
_target.copy(x);
 +
} else {
 +
_target.set(x, y, z);
 +
}
 +
 +
const parent = this.parent;
 +
this.updateWorldMatrix(true, false);
 +
 +
_position$3.setFromMatrixPosition(this.matrixWorld);
 +
 +
if (this.isCamera || this.isLight) {
 +
_m1$1.lookAt(_position$3, _target, this.up);
 +
} else {
 +
_m1$1.lookAt(_target, _position$3, this.up);
 +
}
 +
 +
this.quaternion.setFromRotationMatrix(_m1$1);
 +
 +
if (parent) {
 +
_m1$1.extractRotation(parent.matrixWorld);
 +
 +
_q1.setFromRotationMatrix(_m1$1);
 +
 +
this.quaternion.premultiply(_q1.invert());
 +
}
 +
}
 +
 +
add(object) {
 +
if (arguments.length > 1) {
 +
for (let i = 0; i < arguments.length; i++) {
 +
this.add(arguments[i]);
 +
}
 +
 +
return this;
 +
}
 +
 +
if (object === this) {
 +
console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object);
 +
return this;
 +
}
 +
 +
if (object && object.isObject3D) {
 +
if (object.parent !== null) {
 +
object.parent.remove(object);
 +
}
 +
 +
object.parent = this;
 +
this.children.push(object);
 +
object.dispatchEvent(_addedEvent);
 +
} else {
 +
console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object);
 +
}
 +
 +
return this;
 +
}
 +
 +
remove(object) {
 +
if (arguments.length > 1) {
 +
for (let i = 0; i < arguments.length; i++) {
 +
this.remove(arguments[i]);
 +
}
 +
 +
return this;
 +
}
 +
 +
const index = this.children.indexOf(object);
 +
 +
if (index !== -1) {
 +
object.parent = null;
 +
this.children.splice(index, 1);
 +
object.dispatchEvent(_removedEvent);
 +
}
 +
 +
return this;
 +
}
 +
 +
removeFromParent() {
 +
const parent = this.parent;
 +
 +
if (parent !== null) {
 +
parent.remove(this);
 +
}
 +
 +
return this;
 +
}
 +
 +
clear() {
 +
for (let i = 0; i < this.children.length; i++) {
 +
const object = this.children[i];
 +
object.parent = null;
 +
object.dispatchEvent(_removedEvent);
 +
}
 +
 +
this.children.length = 0;
 +
return this;
 +
}
 +
 +
attach(object) {
 +
// adds object as a child of this, while maintaining the object's world transform
 +
this.updateWorldMatrix(true, false);
 +
 +
_m1$1.copy(this.matrixWorld).invert();
 +
 +
if (object.parent !== null) {
 +
object.parent.updateWorldMatrix(true, false);
 +
 +
_m1$1.multiply(object.parent.matrixWorld);
 +
}
 +
 +
object.applyMatrix4(_m1$1);
 +
this.add(object);
 +
object.updateWorldMatrix(false, true);
 +
return this;
 +
}
 +
 +
getObjectById(id) {
 +
return this.getObjectByProperty('id', id);
 +
}
 +
 +
getObjectByName(name) {
 +
return this.getObjectByProperty('name', name);
 +
}
 +
 +
getObjectByProperty(name, value) {
 +
if (this[name] === value) return this;
 +
 +
for (let i = 0, l = this.children.length; i < l; i++) {
 +
const child = this.children[i];
 +
const object = child.getObjectByProperty(name, value);
 +
 +
if (object !== undefined) {
 +
return object;
 +
}
 +
}
 +
 +
return undefined;
 +
}
 +
 +
getWorldPosition(target) {
 +
this.updateWorldMatrix(true, false);
 +
return target.setFromMatrixPosition(this.matrixWorld);
 +
}
 +
 +
getWorldQuaternion(target) {
 +
this.updateWorldMatrix(true, false);
 +
this.matrixWorld.decompose(_position$3, target, _scale$2);
 +
return target;
 +
}
 +
 +
getWorldScale(target) {
 +
this.updateWorldMatrix(true, false);
 +
this.matrixWorld.decompose(_position$3, _quaternion$2, target);
 +
return target;
 +
}
 +
 +
getWorldDirection(target) {
 +
this.updateWorldMatrix(true, false);
 +
const e = this.matrixWorld.elements;
 +
return target.set(e[8], e[9], e[10]).normalize();
 +
}
 +
 +
raycast() {}
 +
 +
traverse(callback) {
 +
callback(this);
 +
const children = this.children;
 +
 +
for (let i = 0, l = children.length; i < l; i++) {
 +
children[i].traverse(callback);
 +
}
 +
}
 +
 +
traverseVisible(callback) {
 +
if (this.visible === false) return;
 +
callback(this);
 +
const children = this.children;
 +
 +
for (let i = 0, l = children.length; i < l; i++) {
 +
children[i].traverseVisible(callback);
 +
}
 +
}
 +
 +
traverseAncestors(callback) {
 +
const parent = this.parent;
 +
 +
if (parent !== null) {
 +
callback(parent);
 +
parent.traverseAncestors(callback);
 +
}
 +
}
 +
 +
updateMatrix() {
 +
this.matrix.compose(this.position, this.quaternion, this.scale);
 +
this.matrixWorldNeedsUpdate = true;
 +
}
 +
 +
updateMatrixWorld(force) {
 +
if (this.matrixAutoUpdate) this.updateMatrix();
 +
 +
if (this.matrixWorldNeedsUpdate || force) {
 +
if (this.parent === null) {
 +
this.matrixWorld.copy(this.matrix);
 +
} else {
 +
this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
 +
}
 +
 +
this.matrixWorldNeedsUpdate = false;
 +
force = true;
 +
} // update children
 +
 +
 +
const children = this.children;
 +
 +
for (let i = 0, l = children.length; i < l; i++) {
 +
children[i].updateMatrixWorld(force);
 +
}
 +
}
 +
 +
updateWorldMatrix(updateParents, updateChildren) {
 +
const parent = this.parent;
 +
 +
if (updateParents === true && parent !== null) {
 +
parent.updateWorldMatrix(true, false);
 +
}
 +
 +
if (this.matrixAutoUpdate) this.updateMatrix();
 +
 +
if (this.parent === null) {
 +
this.matrixWorld.copy(this.matrix);
 +
} else {
 +
this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
 +
} // update children
 +
 +
 +
if (updateChildren === true) {
 +
const children = this.children;
 +
 +
for (let i = 0, l = children.length; i < l; i++) {
 +
children[i].updateWorldMatrix(false, true);
 +
}
 +
}
 +
}
 +
 +
toJSON(meta) {
 +
// meta is a string when called from JSON.stringify
 +
const isRootObject = meta === undefined || typeof meta === 'string';
 +
const output = {}; // meta is a hash used to collect geometries, materials.
 +
// not providing it implies that this is the root object
 +
// being serialized.
 +
 +
if (isRootObject) {
 +
// initialize meta obj
 +
meta = {
 +
geometries: {},
 +
materials: {},
 +
textures: {},
 +
images: {},
 +
shapes: {},
 +
skeletons: {},
 +
animations: {}
 +
};
 +
output.metadata = {
 +
version: 4.5,
 +
type: 'Object',
 +
generator: 'Object3D.toJSON'
 +
};
 +
} // standard Object3D serialization
 +
 +
 +
const object = {};
 +
object.uuid = this.uuid;
 +
object.type = this.type;
 +
if (this.name !== '') object.name = this.name;
 +
if (this.castShadow === true) object.castShadow = true;
 +
if (this.receiveShadow === true) object.receiveShadow = true;
 +
if (this.visible === false) object.visible = false;
 +
if (this.frustumCulled === false) object.frustumCulled = false;
 +
if (this.renderOrder !== 0) object.renderOrder = this.renderOrder;
 +
if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData;
 +
object.layers = this.layers.mask;
 +
object.matrix = this.matrix.toArray();
 +
if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties
 +
 +
if (this.isInstancedMesh) {
 +
object.type = 'InstancedMesh';
 +
object.count = this.count;
 +
object.instanceMatrix = this.instanceMatrix.toJSON();
 +
if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON();
 +
} //
 +
 +
 +
function serialize(library, element) {
 +
if (library[element.uuid] === undefined) {
 +
library[element.uuid] = element.toJSON(meta);
 +
}
 +
 +
return element.uuid;
 +
}
 +
 +
if (this.isScene) {
 +
if (this.background) {
 +
if (this.background.isColor) {
 +
object.background = this.background.toJSON();
 +
} else if (this.background.isTexture) {
 +
object.background = this.background.toJSON(meta).uuid;
 +
}
 +
}
 +
 +
if (this.environment && this.environment.isTexture) {
 +
object.environment = this.environment.toJSON(meta).uuid;
 +
}
 +
} else if (this.isMesh || this.isLine || this.isPoints) {
 +
object.geometry = serialize(meta.geometries, this.geometry);
 +
const parameters = this.geometry.parameters;
 +
 +
if (parameters !== undefined && parameters.shapes !== undefined) {
 +
const shapes = parameters.shapes;
 +
 +
if (Array.isArray(shapes)) {
 +
for (let i = 0, l = shapes.length; i < l; i++) {
 +
const shape = shapes[i];
 +
serialize(meta.shapes, shape);
 +
}
 +
} else {
 +
serialize(meta.shapes, shapes);
 +
}
 +
}
 +
}
 +
 +
if (this.isSkinnedMesh) {
 +
object.bindMode = this.bindMode;
 +
object.bindMatrix = this.bindMatrix.toArray();
 +
 +
if (this.skeleton !== undefined) {
 +
serialize(meta.skeletons, this.skeleton);
 +
object.skeleton = this.skeleton.uuid;
 +
}
 +
}
 +
 +
if (this.material !== undefined) {
 +
if (Array.isArray(this.material)) {
 +
const uuids = [];
 +
 +
for (let i = 0, l = this.material.length; i < l; i++) {
 +
uuids.push(serialize(meta.materials, this.material[i]));
 +
}
 +
 +
object.material = uuids;
 +
} else {
 +
object.material = serialize(meta.materials, this.material);
 +
}
 +
} //
 +
 +
 +
if (this.children.length > 0) {
 +
object.children = [];
 +
 +
for (let i = 0; i < this.children.length; i++) {
 +
object.children.push(this.children[i].toJSON(meta).object);
 +
}
 +
} //
 +
 +
 +
if (this.animations.length > 0) {
 +
object.animations = [];
 +
 +
for (let i = 0; i < this.animations.length; i++) {
 +
const animation = this.animations[i];
 +
object.animations.push(serialize(meta.animations, animation));
 +
}
 +
}
 +
 +
if (isRootObject) {
 +
const geometries = extractFromCache(meta.geometries);
 +
const materials = extractFromCache(meta.materials);
 +
const textures = extractFromCache(meta.textures);
 +
const images = extractFromCache(meta.images);
 +
const shapes = extractFromCache(meta.shapes);
 +
const skeletons = extractFromCache(meta.skeletons);
 +
const animations = extractFromCache(meta.animations);
 +
if (geometries.length > 0) output.geometries = geometries;
 +
if (materials.length > 0) output.materials = materials;
 +
if (textures.length > 0) output.textures = textures;
 +
if (images.length > 0) output.images = images;
 +
if (shapes.length > 0) output.shapes = shapes;
 +
if (skeletons.length > 0) output.skeletons = skeletons;
 +
if (animations.length > 0) output.animations = animations;
 +
}
 +
 +
output.object = object;
 +
return output; // extract data from the cache hash
 +
// remove metadata on each item
 +
// and return as array
 +
 +
function extractFromCache(cache) {
 +
const values = [];
 +
 +
for (const key in cache) {
 +
const data = cache[key];
 +
delete data.metadata;
 +
values.push(data);
 +
}
 +
 +
return values;
 +
}
 +
}
 +
 +
clone(recursive) {
 +
return new this.constructor().copy(this, recursive);
 +
}
 +
 +
copy(source, recursive = true) {
 +
this.name = source.name;
 +
this.up.copy(source.up);
 +
this.position.copy(source.position);
 +
this.rotation.order = source.rotation.order;
 +
this.quaternion.copy(source.quaternion);
 +
this.scale.copy(source.scale);
 +
this.matrix.copy(source.matrix);
 +
this.matrixWorld.copy(source.matrixWorld);
 +
this.matrixAutoUpdate = source.matrixAutoUpdate;
 +
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
 +
this.layers.mask = source.layers.mask;
 +
this.visible = source.visible;
 +
this.castShadow = source.castShadow;
 +
this.receiveShadow = source.receiveShadow;
 +
this.frustumCulled = source.frustumCulled;
 +
this.renderOrder = source.renderOrder;
 +
this.userData = JSON.parse(JSON.stringify(source.userData));
 +
 +
if (recursive === true) {
 +
for (let i = 0; i < source.children.length; i++) {
 +
const child = source.children[i];
 +
this.add(child.clone());
 +
}
 +
}
 +
 +
return this;
 +
}
 +
 +
}
 +
 +
Object3D.DefaultUp = new Vector3(0, 1, 0);
 +
Object3D.DefaultMatrixAutoUpdate = true;
 +
Object3D.prototype.isObject3D = true;
 +
 +
const _v0$1 = /*@__PURE__*/new Vector3();
 +
 +
const _v1$3 = /*@__PURE__*/new Vector3();
 +
 +
const _v2$2 = /*@__PURE__*/new Vector3();
 +
 +
const _v3$1 = /*@__PURE__*/new Vector3();
 +
 +
const _vab = /*@__PURE__*/new Vector3();
 +
 +
const _vac = /*@__PURE__*/new Vector3();
 +
 +
const _vbc = /*@__PURE__*/new Vector3();
 +
 +
const _vap = /*@__PURE__*/new Vector3();
 +
 +
const _vbp = /*@__PURE__*/new Vector3();
 +
 +
const _vcp = /*@__PURE__*/new Vector3();
 +
 +
class Triangle {
 +
constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) {
 +
this.a = a;
 +
this.b = b;
 +
this.c = c;
 +
}
 +
 +
static getNormal(a, b, c, target) {
 +
target.subVectors(c, b);
 +
 +
_v0$1.subVectors(a, b);
 +
 +
target.cross(_v0$1);
 +
const targetLengthSq = target.lengthSq();
 +
 +
if (targetLengthSq > 0) {
 +
return target.multiplyScalar(1 / Math.sqrt(targetLengthSq));
 +
}
 +
 +
return target.set(0, 0, 0);
 +
} // static/instance method to calculate barycentric coordinates
 +
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
 +
 +
 +
static getBarycoord(point, a, b, c, target) {
 +
_v0$1.subVectors(c, a);
 +
 +
_v1$3.subVectors(b, a);
 +
 +
_v2$2.subVectors(point, a);
 +
 +
const dot00 = _v0$1.dot(_v0$1);
 +
 +
const dot01 = _v0$1.dot(_v1$3);
 +
 +
const dot02 = _v0$1.dot(_v2$2);
 +
 +
const dot11 = _v1$3.dot(_v1$3);
 +
 +
const dot12 = _v1$3.dot(_v2$2);
 +
 +
const denom = dot00 * dot11 - dot01 * dot01; // collinear or singular triangle
 +
 +
if (denom === 0) {
 +
// arbitrary location outside of triangle?
 +
// not sure if this is the best idea, maybe should be returning undefined
 +
return target.set(-2, -1, -1);
 +
}
 +
 +
const invDenom = 1 / denom;
 +
const u = (dot11 * dot02 - dot01 * dot12) * invDenom;
 +
const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1
 +
 +
return target.set(1 - u - v, v, u);
 +
}
 +
 +
static containsPoint(point, a, b, c) {
 +
this.getBarycoord(point, a, b, c, _v3$1);
 +
return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1;
 +
}
 +
 +
static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) {
 +
this.getBarycoord(point, p1, p2, p3, _v3$1);
 +
target.set(0, 0);
 +
target.addScaledVector(uv1, _v3$1.x);
 +
target.addScaledVector(uv2, _v3$1.y);
 +
target.addScaledVector(uv3, _v3$1.z);
 +
return target;
 +
}
 +
 +
static isFrontFacing(a, b, c, direction) {
 +
_v0$1.subVectors(c, b);
 +
 +
_v1$3.subVectors(a, b); // strictly front facing
 +
 +
 +
return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false;
 +
}
 +
 +
set(a, b, c) {
 +
this.a.copy(a);
 +
this.b.copy(b);
 +
this.c.copy(c);
 +
return this;
 +
}
 +
 +
setFromPointsAndIndices(points, i0, i1, i2) {
 +
this.a.copy(points[i0]);
 +
this.b.copy(points[i1]);
 +
this.c.copy(points[i2]);
 +
return this;
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
copy(triangle) {
 +
this.a.copy(triangle.a);
 +
this.b.copy(triangle.b);
 +
this.c.copy(triangle.c);
 +
return this;
 +
}
 +
 +
getArea() {
 +
_v0$1.subVectors(this.c, this.b);
 +
 +
_v1$3.subVectors(this.a, this.b);
 +
 +
return _v0$1.cross(_v1$3).length() * 0.5;
 +
}
 +
 +
getMidpoint(target) {
 +
return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3);
 +
}
 +
 +
getNormal(target) {
 +
return Triangle.getNormal(this.a, this.b, this.c, target);
 +
}
 +
 +
getPlane(target) {
 +
return target.setFromCoplanarPoints(this.a, this.b, this.c);
 +
}
 +
 +
getBarycoord(point, target) {
 +
return Triangle.getBarycoord(point, this.a, this.b, this.c, target);
 +
}
 +
 +
getUV(point, uv1, uv2, uv3, target) {
 +
return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target);
 +
}
 +
 +
containsPoint(point) {
 +
return Triangle.containsPoint(point, this.a, this.b, this.c);
 +
}
 +
 +
isFrontFacing(direction) {
 +
return Triangle.isFrontFacing(this.a, this.b, this.c, direction);
 +
}
 +
 +
intersectsBox(box) {
 +
return box.intersectsTriangle(this);
 +
}
 +
 +
closestPointToPoint(p, target) {
 +
const a = this.a,
 +
b = this.b,
 +
c = this.c;
 +
let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson,
 +
// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
 +
// under the accompanying license; see chapter 5.1.5 for detailed explanation.
 +
// basically, we're distinguishing which of the voronoi regions of the triangle
 +
// the point lies in with the minimum amount of redundant computation.
 +
 +
_vab.subVectors(b, a);
 +
 +
_vac.subVectors(c, a);
 +
 +
_vap.subVectors(p, a);
 +
 +
const d1 = _vab.dot(_vap);
 +
 +
const d2 = _vac.dot(_vap);
 +
 +
if (d1 <= 0 && d2 <= 0) {
 +
// vertex region of A; barycentric coords (1, 0, 0)
 +
return target.copy(a);
 +
}
 +
 +
_vbp.subVectors(p, b);
 +
 +
const d3 = _vab.dot(_vbp);
 +
 +
const d4 = _vac.dot(_vbp);
 +
 +
if (d3 >= 0 && d4 <= d3) {
 +
// vertex region of B; barycentric coords (0, 1, 0)
 +
return target.copy(b);
 +
}
 +
 +
const vc = d1 * d4 - d3 * d2;
 +
 +
if (vc <= 0 && d1 >= 0 && d3 <= 0) {
 +
v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0)
 +
 +
return target.copy(a).addScaledVector(_vab, v);
 +
}
 +
 +
_vcp.subVectors(p, c);
 +
 +
const d5 = _vab.dot(_vcp);
 +
 +
const d6 = _vac.dot(_vcp);
 +
 +
if (d6 >= 0 && d5 <= d6) {
 +
// vertex region of C; barycentric coords (0, 0, 1)
 +
return target.copy(c);
 +
}
 +
 +
const vb = d5 * d2 - d1 * d6;
 +
 +
if (vb <= 0 && d2 >= 0 && d6 <= 0) {
 +
w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w)
 +
 +
return target.copy(a).addScaledVector(_vac, w);
 +
}
 +
 +
const va = d3 * d6 - d5 * d4;
 +
 +
if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) {
 +
_vbc.subVectors(c, b);
 +
 +
w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w)
 +
 +
return target.copy(b).addScaledVector(_vbc, w); // edge region of BC
 +
} // face region
 +
 +
 +
const denom = 1 / (va + vb + vc); // u = va * denom
 +
 +
v = vb * denom;
 +
w = vc * denom;
 +
return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w);
 +
}
 +
 +
equals(triangle) {
 +
return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c);
 +
}
 +
 +
}
 +
 +
let materialId = 0;
 +
 +
class Material extends EventDispatcher {
 +
constructor() {
 +
super();
 +
Object.defineProperty(this, 'id', {
 +
value: materialId++
 +
});
 +
this.uuid = generateUUID();
 +
this.name = '';
 +
this.type = 'Material';
 +
this.fog = true;
 +
this.blending = NormalBlending;
 +
this.side = FrontSide;
 +
this.vertexColors = false;
 +
this.opacity = 1;
 +
this.transparent = false;
 +
this.blendSrc = SrcAlphaFactor;
 +
this.blendDst = OneMinusSrcAlphaFactor;
 +
this.blendEquation = AddEquation;
 +
this.blendSrcAlpha = null;
 +
this.blendDstAlpha = null;
 +
this.blendEquationAlpha = null;
 +
this.depthFunc = LessEqualDepth;
 +
this.depthTest = true;
 +
this.depthWrite = true;
 +
this.stencilWriteMask = 0xff;
 +
this.stencilFunc = AlwaysStencilFunc;
 +
this.stencilRef = 0;
 +
this.stencilFuncMask = 0xff;
 +
this.stencilFail = KeepStencilOp;
 +
this.stencilZFail = KeepStencilOp;
 +
this.stencilZPass = KeepStencilOp;
 +
this.stencilWrite = false;
 +
this.clippingPlanes = null;
 +
this.clipIntersection = false;
 +
this.clipShadows = false;
 +
this.shadowSide = null;
 +
this.colorWrite = true;
 +
this.precision = null; // override the renderer's default precision for this material
 +
 +
this.polygonOffset = false;
 +
this.polygonOffsetFactor = 0;
 +
this.polygonOffsetUnits = 0;
 +
this.dithering = false;
 +
this.alphaTest = 0;
 +
this.alphaToCoverage = false;
 +
this.premultipliedAlpha = false;
 +
this.visible = true;
 +
this.toneMapped = true;
 +
this.userData = {};
 +
this.version = 0;
 +
}
 +
 +
onBuild()
 +
/* shaderobject, renderer */
 +
{}
 +
 +
onBeforeCompile()
 +
/* shaderobject, renderer */
 +
{}
 +
 +
customProgramCacheKey() {
 +
return this.onBeforeCompile.toString();
 +
}
 +
 +
setValues(values) {
 +
if (values === undefined) return;
 +
 +
for (const key in values) {
 +
const newValue = values[key];
 +
 +
if (newValue === undefined) {
 +
console.warn('THREE.Material: \'' + key + '\' parameter is undefined.');
 +
continue;
 +
} // for backward compatability if shading is set in the constructor
 +
 +
 +
if (key === 'shading') {
 +
console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
 +
this.flatShading = newValue === FlatShading ? true : false;
 +
continue;
 +
}
 +
 +
const currentValue = this[key];
 +
 +
if (currentValue === undefined) {
 +
console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.');
 +
continue;
 +
}
 +
 +
if (currentValue && currentValue.isColor) {
 +
currentValue.set(newValue);
 +
} else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) {
 +
currentValue.copy(newValue);
 +
} else {
 +
this[key] = newValue;
 +
}
 +
}
 +
}
 +
 +
toJSON(meta) {
 +
const isRoot = meta === undefined || typeof meta === 'string';
 +
 +
if (isRoot) {
 +
meta = {
 +
textures: {},
 +
images: {}
 +
};
 +
}
 +
 +
const data = {
 +
metadata: {
 +
version: 4.5,
 +
type: 'Material',
 +
generator: 'Material.toJSON'
 +
}
 +
}; // standard Material serialization
 +
 +
data.uuid = this.uuid;
 +
data.type = this.type;
 +
if (this.name !== '') data.name = this.name;
 +
if (this.color && this.color.isColor) data.color = this.color.getHex();
 +
if (this.roughness !== undefined) data.roughness = this.roughness;
 +
if (this.metalness !== undefined) data.metalness = this.metalness;
 +
if (this.sheen && this.sheen.isColor) data.sheen = this.sheen.getHex();
 +
if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex();
 +
if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity;
 +
if (this.specular && this.specular.isColor) data.specular = this.specular.getHex();
 +
if (this.shininess !== undefined) data.shininess = this.shininess;
 +
if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat;
 +
if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness;
 +
 +
if (this.clearcoatMap && this.clearcoatMap.isTexture) {
 +
data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid;
 +
}
 +
 +
if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) {
 +
data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid;
 +
}
 +
 +
if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) {
 +
data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid;
 +
data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
 +
}
 +
 +
if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid;
 +
if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid;
 +
if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid;
 +
 +
if (this.lightMap && this.lightMap.isTexture) {
 +
data.lightMap = this.lightMap.toJSON(meta).uuid;
 +
data.lightMapIntensity = this.lightMapIntensity;
 +
}
 +
 +
if (this.aoMap && this.aoMap.isTexture) {
 +
data.aoMap = this.aoMap.toJSON(meta).uuid;
 +
data.aoMapIntensity = this.aoMapIntensity;
 +
}
 +
 +
if (this.bumpMap && this.bumpMap.isTexture) {
 +
data.bumpMap = this.bumpMap.toJSON(meta).uuid;
 +
data.bumpScale = this.bumpScale;
 +
}
 +
 +
if (this.normalMap && this.normalMap.isTexture) {
 +
data.normalMap = this.normalMap.toJSON(meta).uuid;
 +
data.normalMapType = this.normalMapType;
 +
data.normalScale = this.normalScale.toArray();
 +
}
 +
 +
if (this.displacementMap && this.displacementMap.isTexture) {
 +
data.displacementMap = this.displacementMap.toJSON(meta).uuid;
 +
data.displacementScale = this.displacementScale;
 +
data.displacementBias = this.displacementBias;
 +
}
 +
 +
if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid;
 +
if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid;
 +
if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid;
 +
if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid;
 +
 +
if (this.envMap && this.envMap.isTexture) {
 +
data.envMap = this.envMap.toJSON(meta).uuid;
 +
if (this.combine !== undefined) data.combine = this.combine;
 +
}
 +
 +
if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity;
 +
if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity;
 +
if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio;
 +
 +
if (this.gradientMap && this.gradientMap.isTexture) {
 +
data.gradientMap = this.gradientMap.toJSON(meta).uuid;
 +
}
 +
 +
if (this.transmission !== undefined) data.transmission = this.transmission;
 +
if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid;
 +
if (this.thickness !== undefined) data.thickness = this.thickness;
 +
if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid;
 +
if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance;
 +
if (this.attenuationColor !== undefined) data.attenuationColor = this.attenuationColor.getHex();
 +
if (this.size !== undefined) data.size = this.size;
 +
if (this.shadowSide !== null) data.shadowSide = this.shadowSide;
 +
if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation;
 +
if (this.blending !== NormalBlending) data.blending = this.blending;
 +
if (this.side !== FrontSide) data.side = this.side;
 +
if (this.vertexColors) data.vertexColors = true;
 +
if (this.opacity < 1) data.opacity = this.opacity;
 +
if (this.transparent === true) data.transparent = this.transparent;
 +
data.depthFunc = this.depthFunc;
 +
data.depthTest = this.depthTest;
 +
data.depthWrite = this.depthWrite;
 +
data.colorWrite = this.colorWrite;
 +
data.stencilWrite = this.stencilWrite;
 +
data.stencilWriteMask = this.stencilWriteMask;
 +
data.stencilFunc = this.stencilFunc;
 +
data.stencilRef = this.stencilRef;
 +
data.stencilFuncMask = this.stencilFuncMask;
 +
data.stencilFail = this.stencilFail;
 +
data.stencilZFail = this.stencilZFail;
 +
data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial)
 +
 +
if (this.rotation && this.rotation !== 0) data.rotation = this.rotation;
 +
if (this.polygonOffset === true) data.polygonOffset = true;
 +
if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor;
 +
if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits;
 +
if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth;
 +
if (this.dashSize !== undefined) data.dashSize = this.dashSize;
 +
if (this.gapSize !== undefined) data.gapSize = this.gapSize;
 +
if (this.scale !== undefined) data.scale = this.scale;
 +
if (this.dithering === true) data.dithering = true;
 +
if (this.alphaTest > 0) data.alphaTest = this.alphaTest;
 +
if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage;
 +
if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha;
 +
if (this.wireframe === true) data.wireframe = this.wireframe;
 +
if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth;
 +
if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap;
 +
if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin;
 +
if (this.morphTargets === true) data.morphTargets = true;
 +
if (this.morphNormals === true) data.morphNormals = true;
 +
if (this.flatShading === true) data.flatShading = this.flatShading;
 +
if (this.visible === false) data.visible = false;
 +
if (this.toneMapped === false) data.toneMapped = false;
 +
if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON
 +
 +
function extractFromCache(cache) {
 +
const values = [];
 +
 +
for (const key in cache) {
 +
const data = cache[key];
 +
delete data.metadata;
 +
values.push(data);
 +
}
 +
 +
return values;
 +
}
 +
 +
if (isRoot) {
 +
const textures = extractFromCache(meta.textures);
 +
const images = extractFromCache(meta.images);
 +
if (textures.length > 0) data.textures = textures;
 +
if (images.length > 0) data.images = images;
 +
}
 +
 +
return data;
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
copy(source) {
 +
this.name = source.name;
 +
this.fog = source.fog;
 +
this.blending = source.blending;
 +
this.side = source.side;
 +
this.vertexColors = source.vertexColors;
 +
this.opacity = source.opacity;
 +
this.transparent = source.transparent;
 +
this.blendSrc = source.blendSrc;
 +
this.blendDst = source.blendDst;
 +
this.blendEquation = source.blendEquation;
 +
this.blendSrcAlpha = source.blendSrcAlpha;
 +
this.blendDstAlpha = source.blendDstAlpha;
 +
this.blendEquationAlpha = source.blendEquationAlpha;
 +
this.depthFunc = source.depthFunc;
 +
this.depthTest = source.depthTest;
 +
this.depthWrite = source.depthWrite;
 +
this.stencilWriteMask = source.stencilWriteMask;
 +
this.stencilFunc = source.stencilFunc;
 +
this.stencilRef = source.stencilRef;
 +
this.stencilFuncMask = source.stencilFuncMask;
 +
this.stencilFail = source.stencilFail;
 +
this.stencilZFail = source.stencilZFail;
 +
this.stencilZPass = source.stencilZPass;
 +
this.stencilWrite = source.stencilWrite;
 +
const srcPlanes = source.clippingPlanes;
 +
let dstPlanes = null;
 +
 +
if (srcPlanes !== null) {
 +
const n = srcPlanes.length;
 +
dstPlanes = new Array(n);
 +
 +
for (let i = 0; i !== n; ++i) {
 +
dstPlanes[i] = srcPlanes[i].clone();
 +
}
 +
}
 +
 +
this.clippingPlanes = dstPlanes;
 +
this.clipIntersection = source.clipIntersection;
 +
this.clipShadows = source.clipShadows;
 +
this.shadowSide = source.shadowSide;
 +
this.colorWrite = source.colorWrite;
 +
this.precision = source.precision;
 +
this.polygonOffset = source.polygonOffset;
 +
this.polygonOffsetFactor = source.polygonOffsetFactor;
 +
this.polygonOffsetUnits = source.polygonOffsetUnits;
 +
this.dithering = source.dithering;
 +
this.alphaTest = source.alphaTest;
 +
this.alphaToCoverage = source.alphaToCoverage;
 +
this.premultipliedAlpha = source.premultipliedAlpha;
 +
this.visible = source.visible;
 +
this.toneMapped = source.toneMapped;
 +
this.userData = JSON.parse(JSON.stringify(source.userData));
 +
return this;
 +
}
 +
 +
dispose() {
 +
this.dispatchEvent({
 +
type: 'dispose'
 +
});
 +
}
 +
 +
set needsUpdate(value) {
 +
if (value === true) this.version++;
 +
}
 +
 +
}
 +
 +
Material.prototype.isMaterial = true;
 +
 +
const _colorKeywords = {
 +
'aliceblue': 0xF0F8FF,
 +
'antiquewhite': 0xFAEBD7,
 +
'aqua': 0x00FFFF,
 +
'aquamarine': 0x7FFFD4,
 +
'azure': 0xF0FFFF,
 +
'beige': 0xF5F5DC,
 +
'bisque': 0xFFE4C4,
 +
'black': 0x000000,
 +
'blanchedalmond': 0xFFEBCD,
 +
'blue': 0x0000FF,
 +
'blueviolet': 0x8A2BE2,
 +
'brown': 0xA52A2A,
 +
'burlywood': 0xDEB887,
 +
'cadetblue': 0x5F9EA0,
 +
'chartreuse': 0x7FFF00,
 +
'chocolate': 0xD2691E,
 +
'coral': 0xFF7F50,
 +
'cornflowerblue': 0x6495ED,
 +
'cornsilk': 0xFFF8DC,
 +
'crimson': 0xDC143C,
 +
'cyan': 0x00FFFF,
 +
'darkblue': 0x00008B,
 +
'darkcyan': 0x008B8B,
 +
'darkgoldenrod': 0xB8860B,
 +
'darkgray': 0xA9A9A9,
 +
'darkgreen': 0x006400,
 +
'darkgrey': 0xA9A9A9,
 +
'darkkhaki': 0xBDB76B,
 +
'darkmagenta': 0x8B008B,
 +
'darkolivegreen': 0x556B2F,
 +
'darkorange': 0xFF8C00,
 +
'darkorchid': 0x9932CC,
 +
'darkred': 0x8B0000,
 +
'darksalmon': 0xE9967A,
 +
'darkseagreen': 0x8FBC8F,
 +
'darkslateblue': 0x483D8B,
 +
'darkslategray': 0x2F4F4F,
 +
'darkslategrey': 0x2F4F4F,
 +
'darkturquoise': 0x00CED1,
 +
'darkviolet': 0x9400D3,
 +
'deeppink': 0xFF1493,
 +
'deepskyblue': 0x00BFFF,
 +
'dimgray': 0x696969,
 +
'dimgrey': 0x696969,
 +
'dodgerblue': 0x1E90FF,
 +
'firebrick': 0xB22222,
 +
'floralwhite': 0xFFFAF0,
 +
'forestgreen': 0x228B22,
 +
'fuchsia': 0xFF00FF,
 +
'gainsboro': 0xDCDCDC,
 +
'ghostwhite': 0xF8F8FF,
 +
'gold': 0xFFD700,
 +
'goldenrod': 0xDAA520,
 +
'gray': 0x808080,
 +
'green': 0x008000,
 +
'greenyellow': 0xADFF2F,
 +
'grey': 0x808080,
 +
'honeydew': 0xF0FFF0,
 +
'hotpink': 0xFF69B4,
 +
'indianred': 0xCD5C5C,
 +
'indigo': 0x4B0082,
 +
'ivory': 0xFFFFF0,
 +
'khaki': 0xF0E68C,
 +
'lavender': 0xE6E6FA,
 +
'lavenderblush': 0xFFF0F5,
 +
'lawngreen': 0x7CFC00,
 +
'lemonchiffon': 0xFFFACD,
 +
'lightblue': 0xADD8E6,
 +
'lightcoral': 0xF08080,
 +
'lightcyan': 0xE0FFFF,
 +
'lightgoldenrodyellow': 0xFAFAD2,
 +
'lightgray': 0xD3D3D3,
 +
'lightgreen': 0x90EE90,
 +
'lightgrey': 0xD3D3D3,
 +
'lightpink': 0xFFB6C1,
 +
'lightsalmon': 0xFFA07A,
 +
'lightseagreen': 0x20B2AA,
 +
'lightskyblue': 0x87CEFA,
 +
'lightslategray': 0x778899,
 +
'lightslategrey': 0x778899,
 +
'lightsteelblue': 0xB0C4DE,
 +
'lightyellow': 0xFFFFE0,
 +
'lime': 0x00FF00,
 +
'limegreen': 0x32CD32,
 +
'linen': 0xFAF0E6,
 +
'magenta': 0xFF00FF,
 +
'maroon': 0x800000,
 +
'mediumaquamarine': 0x66CDAA,
 +
'mediumblue': 0x0000CD,
 +
'mediumorchid': 0xBA55D3,
 +
'mediumpurple': 0x9370DB,
 +
'mediumseagreen': 0x3CB371,
 +
'mediumslateblue': 0x7B68EE,
 +
'mediumspringgreen': 0x00FA9A,
 +
'mediumturquoise': 0x48D1CC,
 +
'mediumvioletred': 0xC71585,
 +
'midnightblue': 0x191970,
 +
'mintcream': 0xF5FFFA,
 +
'mistyrose': 0xFFE4E1,
 +
'moccasin': 0xFFE4B5,
 +
'navajowhite': 0xFFDEAD,
 +
'navy': 0x000080,
 +
'oldlace': 0xFDF5E6,
 +
'olive': 0x808000,
 +
'olivedrab': 0x6B8E23,
 +
'orange': 0xFFA500,
 +
'orangered': 0xFF4500,
 +
'orchid': 0xDA70D6,
 +
'palegoldenrod': 0xEEE8AA,
 +
'palegreen': 0x98FB98,
 +
'paleturquoise': 0xAFEEEE,
 +
'palevioletred': 0xDB7093,
 +
'papayawhip': 0xFFEFD5,
 +
'peachpuff': 0xFFDAB9,
 +
'peru': 0xCD853F,
 +
'pink': 0xFFC0CB,
 +
'plum': 0xDDA0DD,
 +
'powderblue': 0xB0E0E6,
 +
'purple': 0x800080,
 +
'rebeccapurple': 0x663399,
 +
'red': 0xFF0000,
 +
'rosybrown': 0xBC8F8F,
 +
'royalblue': 0x4169E1,
 +
'saddlebrown': 0x8B4513,
 +
'salmon': 0xFA8072,
 +
'sandybrown': 0xF4A460,
 +
'seagreen': 0x2E8B57,
 +
'seashell': 0xFFF5EE,
 +
'sienna': 0xA0522D,
 +
'silver': 0xC0C0C0,
 +
'skyblue': 0x87CEEB,
 +
'slateblue': 0x6A5ACD,
 +
'slategray': 0x708090,
 +
'slategrey': 0x708090,
 +
'snow': 0xFFFAFA,
 +
'springgreen': 0x00FF7F,
 +
'steelblue': 0x4682B4,
 +
'tan': 0xD2B48C,
 +
'teal': 0x008080,
 +
'thistle': 0xD8BFD8,
 +
'tomato': 0xFF6347,
 +
'turquoise': 0x40E0D0,
 +
'violet': 0xEE82EE,
 +
'wheat': 0xF5DEB3,
 +
'white': 0xFFFFFF,
 +
'whitesmoke': 0xF5F5F5,
 +
'yellow': 0xFFFF00,
 +
'yellowgreen': 0x9ACD32
 +
};
 +
const _hslA = {
 +
h: 0,
 +
s: 0,
 +
l: 0
 +
};
 +
const _hslB = {
 +
h: 0,
 +
s: 0,
 +
l: 0
 +
};
 +
 +
function hue2rgb(p, q, t) {
 +
if (t < 0) t += 1;
 +
if (t > 1) t -= 1;
 +
if (t < 1 / 6) return p + (q - p) * 6 * t;
 +
if (t < 1 / 2) return q;
 +
if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t);
 +
return p;
 +
}
 +
 +
function SRGBToLinear(c) {
 +
return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4);
 +
}
 +
 +
function LinearToSRGB(c) {
 +
return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055;
 +
}
 +
 +
class Color {
 +
constructor(r, g, b) {
 +
if (g === undefined && b === undefined) {
 +
// r is THREE.Color, hex or string
 +
return this.set(r);
 +
}
 +
 +
return this.setRGB(r, g, b);
 +
}
 +
 +
set(value) {
 +
if (value && value.isColor) {
 +
this.copy(value);
 +
} else if (typeof value === 'number') {
 +
this.setHex(value);
 +
} else if (typeof value === 'string') {
 +
this.setStyle(value);
 +
}
 +
 +
return this;
 +
}
 +
 +
setScalar(scalar) {
 +
this.r = scalar;
 +
this.g = scalar;
 +
this.b = scalar;
 +
return this;
 +
}
 +
 +
setHex(hex) {
 +
hex = Math.floor(hex);
 +
this.r = (hex >> 16 & 255) / 255;
 +
this.g = (hex >> 8 & 255) / 255;
 +
this.b = (hex & 255) / 255;
 +
return this;
 +
}
 +
 +
setRGB(r, g, b) {
 +
this.r = r;
 +
this.g = g;
 +
this.b = b;
 +
return this;
 +
}
 +
 +
setHSL(h, s, l) {
 +
// h,s,l ranges are in 0.0 - 1.0
 +
h = euclideanModulo(h, 1);
 +
s = clamp(s, 0, 1);
 +
l = clamp(l, 0, 1);
 +
 +
if (s === 0) {
 +
this.r = this.g = this.b = l;
 +
} else {
 +
const p = l <= 0.5 ? l * (1 + s) : l + s - l * s;
 +
const q = 2 * l - p;
 +
this.r = hue2rgb(q, p, h + 1 / 3);
 +
this.g = hue2rgb(q, p, h);
 +
this.b = hue2rgb(q, p, h - 1 / 3);
 +
}
 +
 +
return this;
 +
}
 +
 +
setStyle(style) {
 +
function handleAlpha(string) {
 +
if (string === undefined) return;
 +
 +
if (parseFloat(string) < 1) {
 +
console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.');
 +
}
 +
}
 +
 +
let m;
 +
 +
if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) {
 +
// rgb / hsl
 +
let color;
 +
const name = m[1];
 +
const components = m[2];
 +
 +
switch (name) {
 +
case 'rgb':
 +
case 'rgba':
 +
if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
 +
// rgb(255,0,0) rgba(255,0,0,0.5)
 +
this.r = Math.min(255, parseInt(color[1], 10)) / 255;
 +
this.g = Math.min(255, parseInt(color[2], 10)) / 255;
 +
this.b = Math.min(255, parseInt(color[3], 10)) / 255;
 +
handleAlpha(color[4]);
 +
return this;
 +
}
 +
 +
if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
 +
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
 +
this.r = Math.min(100, parseInt(color[1], 10)) / 100;
 +
this.g = Math.min(100, parseInt(color[2], 10)) / 100;
 +
this.b = Math.min(100, parseInt(color[3], 10)) / 100;
 +
handleAlpha(color[4]);
 +
return this;
 +
}
 +
 +
break;
 +
 +
case 'hsl':
 +
case 'hsla':
 +
if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
 +
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
 +
const h = parseFloat(color[1]) / 360;
 +
const s = parseInt(color[2], 10) / 100;
 +
const l = parseInt(color[3], 10) / 100;
 +
handleAlpha(color[4]);
 +
return this.setHSL(h, s, l);
 +
}
 +
 +
break;
 +
}
 +
} else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) {
 +
// hex color
 +
const hex = m[1];
 +
const size = hex.length;
 +
 +
if (size === 3) {
 +
// #ff0
 +
this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255;
 +
this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255;
 +
this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255;
 +
return this;
 +
} else if (size === 6) {
 +
// #ff0000
 +
this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255;
 +
this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255;
 +
this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255;
 +
return this;
 +
}
 +
}
 +
 +
if (style && style.length > 0) {
 +
return this.setColorName(style);
 +
}
 +
 +
return this;
 +
}
 +
 +
setColorName(style) {
 +
// color keywords
 +
const hex = _colorKeywords[style.toLowerCase()];
 +
 +
if (hex !== undefined) {
 +
// red
 +
this.setHex(hex);
 +
} else {
 +
// unknown color
 +
console.warn('THREE.Color: Unknown color ' + style);
 +
}
 +
 +
return this;
 +
}
 +
 +
clone() {
 +
return new this.constructor(this.r, this.g, this.b);
 +
}
 +
 +
copy(color) {
 +
this.r = color.r;
 +
this.g = color.g;
 +
this.b = color.b;
 +
return this;
 +
}
 +
 +
copyGammaToLinear(color, gammaFactor = 2.0) {
 +
this.r = Math.pow(color.r, gammaFactor);
 +
this.g = Math.pow(color.g, gammaFactor);
 +
this.b = Math.pow(color.b, gammaFactor);
 +
return this;
 +
}
 +
 +
copyLinearToGamma(color, gammaFactor = 2.0) {
 +
const safeInverse = gammaFactor > 0 ? 1.0 / gammaFactor : 1.0;
 +
this.r = Math.pow(color.r, safeInverse);
 +
this.g = Math.pow(color.g, safeInverse);
 +
this.b = Math.pow(color.b, safeInverse);
 +
return this;
 +
}
 +
 +
convertGammaToLinear(gammaFactor) {
 +
this.copyGammaToLinear(this, gammaFactor);
 +
return this;
 +
}
 +
 +
convertLinearToGamma(gammaFactor) {
 +
this.copyLinearToGamma(this, gammaFactor);
 +
return this;
 +
}
 +
 +
copySRGBToLinear(color) {
 +
this.r = SRGBToLinear(color.r);
 +
this.g = SRGBToLinear(color.g);
 +
this.b = SRGBToLinear(color.b);
 +
return this;
 +
}
 +
 +
copyLinearToSRGB(color) {
 +
this.r = LinearToSRGB(color.r);
 +
this.g = LinearToSRGB(color.g);
 +
this.b = LinearToSRGB(color.b);
 +
return this;
 +
}
 +
 +
convertSRGBToLinear() {
 +
this.copySRGBToLinear(this);
 +
return this;
 +
}
 +
 +
convertLinearToSRGB() {
 +
this.copyLinearToSRGB(this);
 +
return this;
 +
}
 +
 +
getHex() {
 +
return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0;
 +
}
 +
 +
getHexString() {
 +
return ('000000' + this.getHex().toString(16)).slice(-6);
 +
}
 +
 +
getHSL(target) {
 +
// h,s,l ranges are in 0.0 - 1.0
 +
const r = this.r,
 +
g = this.g,
 +
b = this.b;
 +
const max = Math.max(r, g, b);
 +
const min = Math.min(r, g, b);
 +
let hue, saturation;
 +
const lightness = (min + max) / 2.0;
 +
 +
if (min === max) {
 +
hue = 0;
 +
saturation = 0;
 +
} else {
 +
const delta = max - min;
 +
saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min);
 +
 +
switch (max) {
 +
case r:
 +
hue = (g - b) / delta + (g < b ? 6 : 0);
 +
break;
 +
 +
case g:
 +
hue = (b - r) / delta + 2;
 +
break;
 +
 +
case b:
 +
hue = (r - g) / delta + 4;
 +
break;
 +
}
 +
 +
hue /= 6;
 +
}
 +
 +
target.h = hue;
 +
target.s = saturation;
 +
target.l = lightness;
 +
return target;
 +
}
 +
 +
getStyle() {
 +
return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')';
 +
}
 +
 +
offsetHSL(h, s, l) {
 +
this.getHSL(_hslA);
 +
_hslA.h += h;
 +
_hslA.s += s;
 +
_hslA.l += l;
 +
this.setHSL(_hslA.h, _hslA.s, _hslA.l);
 +
return this;
 +
}
 +
 +
add(color) {
 +
this.r += color.r;
 +
this.g += color.g;
 +
this.b += color.b;
 +
return this;
 +
}
 +
 +
addColors(color1, color2) {
 +
this.r = color1.r + color2.r;
 +
this.g = color1.g + color2.g;
 +
this.b = color1.b + color2.b;
 +
return this;
 +
}
 +
 +
addScalar(s) {
 +
this.r += s;
 +
this.g += s;
 +
this.b += s;
 +
return this;
 +
}
 +
 +
sub(color) {
 +
this.r = Math.max(0, this.r - color.r);
 +
this.g = Math.max(0, this.g - color.g);
 +
this.b = Math.max(0, this.b - color.b);
 +
return this;
 +
}
 +
 +
multiply(color) {
 +
this.r *= color.r;
 +
this.g *= color.g;
 +
this.b *= color.b;
 +
return this;
 +
}
 +
 +
multiplyScalar(s) {
 +
this.r *= s;
 +
this.g *= s;
 +
this.b *= s;
 +
return this;
 +
}
 +
 +
lerp(color, alpha) {
 +
this.r += (color.r - this.r) * alpha;
 +
this.g += (color.g - this.g) * alpha;
 +
this.b += (color.b - this.b) * alpha;
 +
return this;
 +
}
 +
 +
lerpColors(color1, color2, alpha) {
 +
this.r = color1.r + (color2.r - color1.r) * alpha;
 +
this.g = color1.g + (color2.g - color1.g) * alpha;
 +
this.b = color1.b + (color2.b - color1.b) * alpha;
 +
return this;
 +
}
 +
 +
lerpHSL(color, alpha) {
 +
this.getHSL(_hslA);
 +
color.getHSL(_hslB);
 +
const h = lerp(_hslA.h, _hslB.h, alpha);
 +
const s = lerp(_hslA.s, _hslB.s, alpha);
 +
const l = lerp(_hslA.l, _hslB.l, alpha);
 +
this.setHSL(h, s, l);
 +
return this;
 +
}
 +
 +
equals(c) {
 +
return c.r === this.r && c.g === this.g && c.b === this.b;
 +
}
 +
 +
fromArray(array, offset = 0) {
 +
this.r = array[offset];
 +
this.g = array[offset + 1];
 +
this.b = array[offset + 2];
 +
return this;
 +
}
 +
 +
toArray(array = [], offset = 0) {
 +
array[offset] = this.r;
 +
array[offset + 1] = this.g;
 +
array[offset + 2] = this.b;
 +
return array;
 +
}
 +
 +
fromBufferAttribute(attribute, index) {
 +
this.r = attribute.getX(index);
 +
this.g = attribute.getY(index);
 +
this.b = attribute.getZ(index);
 +
 +
if (attribute.normalized === true) {
 +
// assuming Uint8Array
 +
this.r /= 255;
 +
this.g /= 255;
 +
this.b /= 255;
 +
}
 +
 +
return this;
 +
}
 +
 +
toJSON() {
 +
return this.getHex();
 +
}
 +
 +
}
 +
 +
Color.NAMES = _colorKeywords;
 +
Color.prototype.isColor = true;
 +
Color.prototype.r = 1;
 +
Color.prototype.g = 1;
 +
Color.prototype.b = 1;
 +
 +
/**
 +
* parameters = {
 +
* color: <hex>,
 +
* opacity: <float>,
 +
* map: new THREE.Texture( <Image> ),
 +
*
 +
* lightMap: new THREE.Texture( <Image> ),
 +
* lightMapIntensity: <float>
 +
*
 +
* aoMap: new THREE.Texture( <Image> ),
 +
* aoMapIntensity: <float>
 +
*
 +
* specularMap: new THREE.Texture( <Image> ),
 +
*
 +
* alphaMap: new THREE.Texture( <Image> ),
 +
*
 +
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
 +
* combine: THREE.Multiply,
 +
* reflectivity: <float>,
 +
* refractionRatio: <float>,
 +
*
 +
* depthTest: <bool>,
 +
* depthWrite: <bool>,
 +
*
 +
* wireframe: <boolean>,
 +
* wireframeLinewidth: <float>,
 +
*
 +
* morphTargets: <bool>
 +
* }
 +
*/
 +
 +
class MeshBasicMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'MeshBasicMaterial';
 +
this.color = new Color(0xffffff); // emissive
 +
 +
this.map = null;
 +
this.lightMap = null;
 +
this.lightMapIntensity = 1.0;
 +
this.aoMap = null;
 +
this.aoMapIntensity = 1.0;
 +
this.specularMap = null;
 +
this.alphaMap = null;
 +
this.envMap = null;
 +
this.combine = MultiplyOperation;
 +
this.reflectivity = 1;
 +
this.refractionRatio = 0.98;
 +
this.wireframe = false;
 +
this.wireframeLinewidth = 1;
 +
this.wireframeLinecap = 'round';
 +
this.wireframeLinejoin = 'round';
 +
this.morphTargets = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.color.copy(source.color);
 +
this.map = source.map;
 +
this.lightMap = source.lightMap;
 +
this.lightMapIntensity = source.lightMapIntensity;
 +
this.aoMap = source.aoMap;
 +
this.aoMapIntensity = source.aoMapIntensity;
 +
this.specularMap = source.specularMap;
 +
this.alphaMap = source.alphaMap;
 +
this.envMap = source.envMap;
 +
this.combine = source.combine;
 +
this.reflectivity = source.reflectivity;
 +
this.refractionRatio = source.refractionRatio;
 +
this.wireframe = source.wireframe;
 +
this.wireframeLinewidth = source.wireframeLinewidth;
 +
this.wireframeLinecap = source.wireframeLinecap;
 +
this.wireframeLinejoin = source.wireframeLinejoin;
 +
this.morphTargets = source.morphTargets;
 +
return this;
 +
}
 +
 +
}
 +
 +
MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
 +
 +
const _vector$9 = /*@__PURE__*/new Vector3();
 +
 +
const _vector2$1 = /*@__PURE__*/new Vector2();
 +
 +
class BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
if (Array.isArray(array)) {
 +
throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.');
 +
}
 +
 +
this.name = '';
 +
this.array = array;
 +
this.itemSize = itemSize;
 +
this.count = array !== undefined ? array.length / itemSize : 0;
 +
this.normalized = normalized === true;
 +
this.usage = StaticDrawUsage;
 +
this.updateRange = {
 +
offset: 0,
 +
count: -1
 +
};
 +
this.version = 0;
 +
}
 +
 +
onUploadCallback() {}
 +
 +
set needsUpdate(value) {
 +
if (value === true) this.version++;
 +
}
 +
 +
setUsage(value) {
 +
this.usage = value;
 +
return this;
 +
}
 +
 +
copy(source) {
 +
this.name = source.name;
 +
this.array = new source.array.constructor(source.array);
 +
this.itemSize = source.itemSize;
 +
this.count = source.count;
 +
this.normalized = source.normalized;
 +
this.usage = source.usage;
 +
return this;
 +
}
 +
 +
copyAt(index1, attribute, index2) {
 +
index1 *= this.itemSize;
 +
index2 *= attribute.itemSize;
 +
 +
for (let i = 0, l = this.itemSize; i < l; i++) {
 +
this.array[index1 + i] = attribute.array[index2 + i];
 +
}
 +
 +
return this;
 +
}
 +
 +
copyArray(array) {
 +
this.array.set(array);
 +
return this;
 +
}
 +
 +
copyColorsArray(colors) {
 +
const array = this.array;
 +
let offset = 0;
 +
 +
for (let i = 0, l = colors.length; i < l; i++) {
 +
let color = colors[i];
 +
 +
if (color === undefined) {
 +
console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i);
 +
color = new Color();
 +
}
 +
 +
array[offset++] = color.r;
 +
array[offset++] = color.g;
 +
array[offset++] = color.b;
 +
}
 +
 +
return this;
 +
}
 +
 +
copyVector2sArray(vectors) {
 +
const array = this.array;
 +
let offset = 0;
 +
 +
for (let i = 0, l = vectors.length; i < l; i++) {
 +
let vector = vectors[i];
 +
 +
if (vector === undefined) {
 +
console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i);
 +
vector = new Vector2();
 +
}
 +
 +
array[offset++] = vector.x;
 +
array[offset++] = vector.y;
 +
}
 +
 +
return this;
 +
}
 +
 +
copyVector3sArray(vectors) {
 +
const array = this.array;
 +
let offset = 0;
 +
 +
for (let i = 0, l = vectors.length; i < l; i++) {
 +
let vector = vectors[i];
 +
 +
if (vector === undefined) {
 +
console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i);
 +
vector = new Vector3();
 +
}
 +
 +
array[offset++] = vector.x;
 +
array[offset++] = vector.y;
 +
array[offset++] = vector.z;
 +
}
 +
 +
return this;
 +
}
 +
 +
copyVector4sArray(vectors) {
 +
const array = this.array;
 +
let offset = 0;
 +
 +
for (let i = 0, l = vectors.length; i < l; i++) {
 +
let vector = vectors[i];
 +
 +
if (vector === undefined) {
 +
console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i);
 +
vector = new Vector4();
 +
}
 +
 +
array[offset++] = vector.x;
 +
array[offset++] = vector.y;
 +
array[offset++] = vector.z;
 +
array[offset++] = vector.w;
 +
}
 +
 +
return this;
 +
}
 +
 +
applyMatrix3(m) {
 +
if (this.itemSize === 2) {
 +
for (let i = 0, l = this.count; i < l; i++) {
 +
_vector2$1.fromBufferAttribute(this, i);
 +
 +
_vector2$1.applyMatrix3(m);
 +
 +
this.setXY(i, _vector2$1.x, _vector2$1.y);
 +
}
 +
} else if (this.itemSize === 3) {
 +
for (let i = 0, l = this.count; i < l; i++) {
 +
_vector$9.fromBufferAttribute(this, i);
 +
 +
_vector$9.applyMatrix3(m);
 +
 +
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
 +
}
 +
}
 +
 +
return this;
 +
}
 +
 +
applyMatrix4(m) {
 +
for (let i = 0, l = this.count; i < l; i++) {
 +
_vector$9.x = this.getX(i);
 +
_vector$9.y = this.getY(i);
 +
_vector$9.z = this.getZ(i);
 +
 +
_vector$9.applyMatrix4(m);
 +
 +
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
 +
}
 +
 +
return this;
 +
}
 +
 +
applyNormalMatrix(m) {
 +
for (let i = 0, l = this.count; i < l; i++) {
 +
_vector$9.x = this.getX(i);
 +
_vector$9.y = this.getY(i);
 +
_vector$9.z = this.getZ(i);
 +
 +
_vector$9.applyNormalMatrix(m);
 +
 +
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
 +
}
 +
 +
return this;
 +
}
 +
 +
transformDirection(m) {
 +
for (let i = 0, l = this.count; i < l; i++) {
 +
_vector$9.x = this.getX(i);
 +
_vector$9.y = this.getY(i);
 +
_vector$9.z = this.getZ(i);
 +
 +
_vector$9.transformDirection(m);
 +
 +
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
 +
}
 +
 +
return this;
 +
}
 +
 +
set(value, offset = 0) {
 +
this.array.set(value, offset);
 +
return this;
 +
}
 +
 +
getX(index) {
 +
return this.array[index * this.itemSize];
 +
}
 +
 +
setX(index, x) {
 +
this.array[index * this.itemSize] = x;
 +
return this;
 +
}
 +
 +
getY(index) {
 +
return this.array[index * this.itemSize + 1];
 +
}
 +
 +
setY(index, y) {
 +
this.array[index * this.itemSize + 1] = y;
 +
return this;
 +
}
 +
 +
getZ(index) {
 +
return this.array[index * this.itemSize + 2];
 +
}
 +
 +
setZ(index, z) {
 +
this.array[index * this.itemSize + 2] = z;
 +
return this;
 +
}
 +
 +
getW(index) {
 +
return this.array[index * this.itemSize + 3];
 +
}
 +
 +
setW(index, w) {
 +
this.array[index * this.itemSize + 3] = w;
 +
return this;
 +
}
 +
 +
setXY(index, x, y) {
 +
index *= this.itemSize;
 +
this.array[index + 0] = x;
 +
this.array[index + 1] = y;
 +
return this;
 +
}
 +
 +
setXYZ(index, x, y, z) {
 +
index *= this.itemSize;
 +
this.array[index + 0] = x;
 +
this.array[index + 1] = y;
 +
this.array[index + 2] = z;
 +
return this;
 +
}
 +
 +
setXYZW(index, x, y, z, w) {
 +
index *= this.itemSize;
 +
this.array[index + 0] = x;
 +
this.array[index + 1] = y;
 +
this.array[index + 2] = z;
 +
this.array[index + 3] = w;
 +
return this;
 +
}
 +
 +
onUpload(callback) {
 +
this.onUploadCallback = callback;
 +
return this;
 +
}
 +
 +
clone() {
 +
return new this.constructor(this.array, this.itemSize).copy(this);
 +
}
 +
 +
toJSON() {
 +
const data = {
 +
itemSize: this.itemSize,
 +
type: this.array.constructor.name,
 +
array: Array.prototype.slice.call(this.array),
 +
normalized: this.normalized
 +
};
 +
if (this.name !== '') data.name = this.name;
 +
if (this.usage !== StaticDrawUsage) data.usage = this.usage;
 +
if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange;
 +
return data;
 +
}
 +
 +
}
 +
 +
BufferAttribute.prototype.isBufferAttribute = true; //
 +
 +
class Int8BufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
super(new Int8Array(array), itemSize, normalized);
 +
}
 +
 +
}
 +
 +
class Uint8BufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
super(new Uint8Array(array), itemSize, normalized);
 +
}
 +
 +
}
 +
 +
class Uint8ClampedBufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
super(new Uint8ClampedArray(array), itemSize, normalized);
 +
}
 +
 +
}
 +
 +
class Int16BufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
super(new Int16Array(array), itemSize, normalized);
 +
}
 +
 +
}
 +
 +
class Uint16BufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
super(new Uint16Array(array), itemSize, normalized);
 +
}
 +
 +
}
 +
 +
class Int32BufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
super(new Int32Array(array), itemSize, normalized);
 +
}
 +
 +
}
 +
 +
class Uint32BufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
super(new Uint32Array(array), itemSize, normalized);
 +
}
 +
 +
}
 +
 +
class Float16BufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
super(new Uint16Array(array), itemSize, normalized);
 +
}
 +
 +
}
 +
 +
Float16BufferAttribute.prototype.isFloat16BufferAttribute = true;
 +
 +
class Float32BufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
super(new Float32Array(array), itemSize, normalized);
 +
}
 +
 +
}
 +
 +
class Float64BufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized) {
 +
super(new Float64Array(array), itemSize, normalized);
 +
}
 +
 +
} //
 +
 +
function arrayMax(array) {
 +
if (array.length === 0) return -Infinity;
 +
let max = array[0];
 +
 +
for (let i = 1, l = array.length; i < l; ++i) {
 +
if (array[i] > max) max = array[i];
 +
}
 +
 +
return max;
 +
}
 +
 +
const TYPED_ARRAYS = {
 +
Int8Array: Int8Array,
 +
Uint8Array: Uint8Array,
 +
Uint8ClampedArray: Uint8ClampedArray,
 +
Int16Array: Int16Array,
 +
Uint16Array: Uint16Array,
 +
Int32Array: Int32Array,
 +
Uint32Array: Uint32Array,
 +
Float32Array: Float32Array,
 +
Float64Array: Float64Array
 +
};
 +
 +
function getTypedArray(type, buffer) {
 +
return new TYPED_ARRAYS[type](buffer);
 +
}
 +
 +
let _id = 0;
 +
 +
const _m1 = /*@__PURE__*/new Matrix4();
 +
 +
const _obj = /*@__PURE__*/new Object3D();
 +
 +
const _offset = /*@__PURE__*/new Vector3();
 +
 +
const _box$1 = /*@__PURE__*/new Box3();
 +
 +
const _boxMorphTargets = /*@__PURE__*/new Box3();
 +
 +
const _vector$8 = /*@__PURE__*/new Vector3();
 +
 +
class BufferGeometry extends EventDispatcher {
 +
constructor() {
 +
super();
 +
Object.defineProperty(this, 'id', {
 +
value: _id++
 +
});
 +
this.uuid = generateUUID();
 +
this.name = '';
 +
this.type = 'BufferGeometry';
 +
this.index = null;
 +
this.attributes = {};
 +
this.morphAttributes = {};
 +
this.morphTargetsRelative = false;
 +
this.groups = [];
 +
this.boundingBox = null;
 +
this.boundingSphere = null;
 +
this.drawRange = {
 +
start: 0,
 +
count: Infinity
 +
};
 +
this.userData = {};
 +
}
 +
 +
getIndex() {
 +
return this.index;
 +
}
 +
 +
setIndex(index) {
 +
if (Array.isArray(index)) {
 +
this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1);
 +
} else {
 +
this.index = index;
 +
}
 +
 +
return this;
 +
}
 +
 +
getAttribute(name) {
 +
return this.attributes[name];
 +
}
 +
 +
setAttribute(name, attribute) {
 +
this.attributes[name] = attribute;
 +
return this;
 +
}
 +
 +
deleteAttribute(name) {
 +
delete this.attributes[name];
 +
return this;
 +
}
 +
 +
hasAttribute(name) {
 +
return this.attributes[name] !== undefined;
 +
}
 +
 +
addGroup(start, count, materialIndex = 0) {
 +
this.groups.push({
 +
start: start,
 +
count: count,
 +
materialIndex: materialIndex
 +
});
 +
}
 +
 +
clearGroups() {
 +
this.groups = [];
 +
}
 +
 +
setDrawRange(start, count) {
 +
this.drawRange.start = start;
 +
this.drawRange.count = count;
 +
}
 +
 +
applyMatrix4(matrix) {
 +
const position = this.attributes.position;
 +
 +
if (position !== undefined) {
 +
position.applyMatrix4(matrix);
 +
position.needsUpdate = true;
 +
}
 +
 +
const normal = this.attributes.normal;
 +
 +
if (normal !== undefined) {
 +
const normalMatrix = new Matrix3().getNormalMatrix(matrix);
 +
normal.applyNormalMatrix(normalMatrix);
 +
normal.needsUpdate = true;
 +
}
 +
 +
const tangent = this.attributes.tangent;
 +
 +
if (tangent !== undefined) {
 +
tangent.transformDirection(matrix);
 +
tangent.needsUpdate = true;
 +
}
 +
 +
if (this.boundingBox !== null) {
 +
this.computeBoundingBox();
 +
}
 +
 +
if (this.boundingSphere !== null) {
 +
this.computeBoundingSphere();
 +
}
 +
 +
return this;
 +
}
 +
 +
applyQuaternion(q) {
 +
_m1.makeRotationFromQuaternion(q);
 +
 +
this.applyMatrix4(_m1);
 +
return this;
 +
}
 +
 +
rotateX(angle) {
 +
// rotate geometry around world x-axis
 +
_m1.makeRotationX(angle);
 +
 +
this.applyMatrix4(_m1);
 +
return this;
 +
}
 +
 +
rotateY(angle) {
 +
// rotate geometry around world y-axis
 +
_m1.makeRotationY(angle);
 +
 +
this.applyMatrix4(_m1);
 +
return this;
 +
}
 +
 +
rotateZ(angle) {
 +
// rotate geometry around world z-axis
 +
_m1.makeRotationZ(angle);
 +
 +
this.applyMatrix4(_m1);
 +
return this;
 +
}
 +
 +
translate(x, y, z) {
 +
// translate geometry
 +
_m1.makeTranslation(x, y, z);
 +
 +
this.applyMatrix4(_m1);
 +
return this;
 +
}
 +
 +
scale(x, y, z) {
 +
// scale geometry
 +
_m1.makeScale(x, y, z);
 +
 +
this.applyMatrix4(_m1);
 +
return this;
 +
}
 +
 +
lookAt(vector) {
 +
_obj.lookAt(vector);
 +
 +
_obj.updateMatrix();
 +
 +
this.applyMatrix4(_obj.matrix);
 +
return this;
 +
}
 +
 +
center() {
 +
this.computeBoundingBox();
 +
this.boundingBox.getCenter(_offset).negate();
 +
this.translate(_offset.x, _offset.y, _offset.z);
 +
return this;
 +
}
 +
 +
setFromPoints(points) {
 +
const position = [];
 +
 +
for (let i = 0, l = points.length; i < l; i++) {
 +
const point = points[i];
 +
position.push(point.x, point.y, point.z || 0);
 +
}
 +
 +
this.setAttribute('position', new Float32BufferAttribute(position, 3));
 +
return this;
 +
}
 +
 +
computeBoundingBox() {
 +
if (this.boundingBox === null) {
 +
this.boundingBox = new Box3();
 +
}
 +
 +
const position = this.attributes.position;
 +
const morphAttributesPosition = this.morphAttributes.position;
 +
 +
if (position && position.isGLBufferAttribute) {
 +
console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this);
 +
this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity));
 +
return;
 +
}
 +
 +
if (position !== undefined) {
 +
this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present
 +
 +
if (morphAttributesPosition) {
 +
for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
 +
const morphAttribute = morphAttributesPosition[i];
 +
 +
_box$1.setFromBufferAttribute(morphAttribute);
 +
 +
if (this.morphTargetsRelative) {
 +
_vector$8.addVectors(this.boundingBox.min, _box$1.min);
 +
 +
this.boundingBox.expandByPoint(_vector$8);
 +
 +
_vector$8.addVectors(this.boundingBox.max, _box$1.max);
 +
 +
this.boundingBox.expandByPoint(_vector$8);
 +
} else {
 +
this.boundingBox.expandByPoint(_box$1.min);
 +
this.boundingBox.expandByPoint(_box$1.max);
 +
}
 +
}
 +
}
 +
} else {
 +
this.boundingBox.makeEmpty();
 +
}
 +
 +
if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) {
 +
console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this);
 +
}
 +
}
 +
 +
computeBoundingSphere() {
 +
if (this.boundingSphere === null) {
 +
this.boundingSphere = new Sphere();
 +
}
 +
 +
const position = this.attributes.position;
 +
const morphAttributesPosition = this.morphAttributes.position;
 +
 +
if (position && position.isGLBufferAttribute) {
 +
console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this);
 +
this.boundingSphere.set(new Vector3(), Infinity);
 +
return;
 +
}
 +
 +
if (position) {
 +
// first, find the center of the bounding sphere
 +
const center = this.boundingSphere.center;
 +
 +
_box$1.setFromBufferAttribute(position); // process morph attributes if present
 +
 +
 +
if (morphAttributesPosition) {
 +
for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
 +
const morphAttribute = morphAttributesPosition[i];
 +
 +
_boxMorphTargets.setFromBufferAttribute(morphAttribute);
 +
 +
if (this.morphTargetsRelative) {
 +
_vector$8.addVectors(_box$1.min, _boxMorphTargets.min);
 +
 +
_box$1.expandByPoint(_vector$8);
 +
 +
_vector$8.addVectors(_box$1.max, _boxMorphTargets.max);
 +
 +
_box$1.expandByPoint(_vector$8);
 +
} else {
 +
_box$1.expandByPoint(_boxMorphTargets.min);
 +
 +
_box$1.expandByPoint(_boxMorphTargets.max);
 +
}
 +
}
 +
}
 +
 +
_box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the
 +
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
 +
 +
 +
let maxRadiusSq = 0;
 +
 +
for (let i = 0, il = position.count; i < il; i++) {
 +
_vector$8.fromBufferAttribute(position, i);
 +
 +
maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
 +
} // process morph attributes if present
 +
 +
 +
if (morphAttributesPosition) {
 +
for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
 +
const morphAttribute = morphAttributesPosition[i];
 +
const morphTargetsRelative = this.morphTargetsRelative;
 +
 +
for (let j = 0, jl = morphAttribute.count; j < jl; j++) {
 +
_vector$8.fromBufferAttribute(morphAttribute, j);
 +
 +
if (morphTargetsRelative) {
 +
_offset.fromBufferAttribute(position, j);
 +
 +
_vector$8.add(_offset);
 +
}
 +
 +
maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
 +
}
 +
}
 +
}
 +
 +
this.boundingSphere.radius = Math.sqrt(maxRadiusSq);
 +
 +
if (isNaN(this.boundingSphere.radius)) {
 +
console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this);
 +
}
 +
}
 +
}
 +
 +
computeFaceNormals() {// backwards compatibility
 +
}
 +
 +
computeTangents() {
 +
const index = this.index;
 +
const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html
 +
// (per vertex tangents)
 +
 +
if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) {
 +
console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)');
 +
return;
 +
}
 +
 +
const indices = index.array;
 +
const positions = attributes.position.array;
 +
const normals = attributes.normal.array;
 +
const uvs = attributes.uv.array;
 +
const nVertices = positions.length / 3;
 +
 +
if (attributes.tangent === undefined) {
 +
this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4));
 +
}
 +
 +
const tangents = attributes.tangent.array;
 +
const tan1 = [],
 +
tan2 = [];
 +
 +
for (let i = 0; i < nVertices; i++) {
 +
tan1[i] = new Vector3();
 +
tan2[i] = new Vector3();
 +
}
 +
 +
const vA = new Vector3(),
 +
vB = new Vector3(),
 +
vC = new Vector3(),
 +
uvA = new Vector2(),
 +
uvB = new Vector2(),
 +
uvC = new Vector2(),
 +
sdir = new Vector3(),
 +
tdir = new Vector3();
 +
 +
function handleTriangle(a, b, c) {
 +
vA.fromArray(positions, a * 3);
 +
vB.fromArray(positions, b * 3);
 +
vC.fromArray(positions, c * 3);
 +
uvA.fromArray(uvs, a * 2);
 +
uvB.fromArray(uvs, b * 2);
 +
uvC.fromArray(uvs, c * 2);
 +
vB.sub(vA);
 +
vC.sub(vA);
 +
uvB.sub(uvA);
 +
uvC.sub(uvA);
 +
const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices
 +
 +
if (!isFinite(r)) return;
 +
sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r);
 +
tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r);
 +
tan1[a].add(sdir);
 +
tan1[b].add(sdir);
 +
tan1[c].add(sdir);
 +
tan2[a].add(tdir);
 +
tan2[b].add(tdir);
 +
tan2[c].add(tdir);
 +
}
 +
 +
let groups = this.groups;
 +
 +
if (groups.length === 0) {
 +
groups = [{
 +
start: 0,
 +
count: indices.length
 +
}];
 +
}
 +
 +
for (let i = 0, il = groups.length; i < il; ++i) {
 +
const group = groups[i];
 +
const start = group.start;
 +
const count = group.count;
 +
 +
for (let j = start, jl = start + count; j < jl; j += 3) {
 +
handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]);
 +
}
 +
}
 +
 +
const tmp = new Vector3(),
 +
tmp2 = new Vector3();
 +
const n = new Vector3(),
 +
n2 = new Vector3();
 +
 +
function handleVertex(v) {
 +
n.fromArray(normals, v * 3);
 +
n2.copy(n);
 +
const t = tan1[v]; // Gram-Schmidt orthogonalize
 +
 +
tmp.copy(t);
 +
tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness
 +
 +
tmp2.crossVectors(n2, t);
 +
const test = tmp2.dot(tan2[v]);
 +
const w = test < 0.0 ? -1.0 : 1.0;
 +
tangents[v * 4] = tmp.x;
 +
tangents[v * 4 + 1] = tmp.y;
 +
tangents[v * 4 + 2] = tmp.z;
 +
tangents[v * 4 + 3] = w;
 +
}
 +
 +
for (let i = 0, il = groups.length; i < il; ++i) {
 +
const group = groups[i];
 +
const start = group.start;
 +
const count = group.count;
 +
 +
for (let j = start, jl = start + count; j < jl; j += 3) {
 +
handleVertex(indices[j + 0]);
 +
handleVertex(indices[j + 1]);
 +
handleVertex(indices[j + 2]);
 +
}
 +
}
 +
}
 +
 +
computeVertexNormals() {
 +
const index = this.index;
 +
const positionAttribute = this.getAttribute('position');
 +
 +
if (positionAttribute !== undefined) {
 +
let normalAttribute = this.getAttribute('normal');
 +
 +
if (normalAttribute === undefined) {
 +
normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3);
 +
this.setAttribute('normal', normalAttribute);
 +
} else {
 +
// reset existing normals to zero
 +
for (let i = 0, il = normalAttribute.count; i < il; i++) {
 +
normalAttribute.setXYZ(i, 0, 0, 0);
 +
}
 +
}
 +
 +
const pA = new Vector3(),
 +
pB = new Vector3(),
 +
pC = new Vector3();
 +
const nA = new Vector3(),
 +
nB = new Vector3(),
 +
nC = new Vector3();
 +
const cb = new Vector3(),
 +
ab = new Vector3(); // indexed elements
 +
 +
if (index) {
 +
for (let i = 0, il = index.count; i < il; i += 3) {
 +
const vA = index.getX(i + 0);
 +
const vB = index.getX(i + 1);
 +
const vC = index.getX(i + 2);
 +
pA.fromBufferAttribute(positionAttribute, vA);
 +
pB.fromBufferAttribute(positionAttribute, vB);
 +
pC.fromBufferAttribute(positionAttribute, vC);
 +
cb.subVectors(pC, pB);
 +
ab.subVectors(pA, pB);
 +
cb.cross(ab);
 +
nA.fromBufferAttribute(normalAttribute, vA);
 +
nB.fromBufferAttribute(normalAttribute, vB);
 +
nC.fromBufferAttribute(normalAttribute, vC);
 +
nA.add(cb);
 +
nB.add(cb);
 +
nC.add(cb);
 +
normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z);
 +
normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z);
 +
normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z);
 +
}
 +
} else {
 +
// non-indexed elements (unconnected triangle soup)
 +
for (let i = 0, il = positionAttribute.count; i < il; i += 3) {
 +
pA.fromBufferAttribute(positionAttribute, i + 0);
 +
pB.fromBufferAttribute(positionAttribute, i + 1);
 +
pC.fromBufferAttribute(positionAttribute, i + 2);
 +
cb.subVectors(pC, pB);
 +
ab.subVectors(pA, pB);
 +
cb.cross(ab);
 +
normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z);
 +
normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z);
 +
normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z);
 +
}
 +
}
 +
 +
this.normalizeNormals();
 +
normalAttribute.needsUpdate = true;
 +
}
 +
}
 +
 +
merge(geometry, offset) {
 +
if (!(geometry && geometry.isBufferGeometry)) {
 +
console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry);
 +
return;
 +
}
 +
 +
if (offset === undefined) {
 +
offset = 0;
 +
console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.');
 +
}
 +
 +
const attributes = this.attributes;
 +
 +
for (const key in attributes) {
 +
if (geometry.attributes[key] === undefined) continue;
 +
const attribute1 = attributes[key];
 +
const attributeArray1 = attribute1.array;
 +
const attribute2 = geometry.attributes[key];
 +
const attributeArray2 = attribute2.array;
 +
const attributeOffset = attribute2.itemSize * offset;
 +
const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset);
 +
 +
for (let i = 0, j = attributeOffset; i < length; i++, j++) {
 +
attributeArray1[j] = attributeArray2[i];
 +
}
 +
}
 +
 +
return this;
 +
}
 +
 +
normalizeNormals() {
 +
const normals = this.attributes.normal;
 +
 +
for (let i = 0, il = normals.count; i < il; i++) {
 +
_vector$8.fromBufferAttribute(normals, i);
 +
 +
_vector$8.normalize();
 +
 +
normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z);
 +
}
 +
}
 +
 +
toNonIndexed() {
 +
function convertBufferAttribute(attribute, indices) {
 +
const array = attribute.array;
 +
const itemSize = attribute.itemSize;
 +
const normalized = attribute.normalized;
 +
const array2 = new array.constructor(indices.length * itemSize);
 +
let index = 0,
 +
index2 = 0;
 +
 +
for (let i = 0, l = indices.length; i < l; i++) {
 +
if (attribute.isInterleavedBufferAttribute) {
 +
index = indices[i] * attribute.data.stride + attribute.offset;
 +
} else {
 +
index = indices[i] * itemSize;
 +
}
 +
 +
for (let j = 0; j < itemSize; j++) {
 +
array2[index2++] = array[index++];
 +
}
 +
}
 +
 +
return new BufferAttribute(array2, itemSize, normalized);
 +
} //
 +
 +
 +
if (this.index === null) {
 +
console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.');
 +
return this;
 +
}
 +
 +
const geometry2 = new BufferGeometry();
 +
const indices = this.index.array;
 +
const attributes = this.attributes; // attributes
 +
 +
for (const name in attributes) {
 +
const attribute = attributes[name];
 +
const newAttribute = convertBufferAttribute(attribute, indices);
 +
geometry2.setAttribute(name, newAttribute);
 +
} // morph attributes
 +
 +
 +
const morphAttributes = this.morphAttributes;
 +
 +
for (const name in morphAttributes) {
 +
const morphArray = [];
 +
const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
 +
 +
for (let i = 0, il = morphAttribute.length; i < il; i++) {
 +
const attribute = morphAttribute[i];
 +
const newAttribute = convertBufferAttribute(attribute, indices);
 +
morphArray.push(newAttribute);
 +
}
 +
 +
geometry2.morphAttributes[name] = morphArray;
 +
}
 +
 +
geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups
 +
 +
const groups = this.groups;
 +
 +
for (let i = 0, l = groups.length; i < l; i++) {
 +
const group = groups[i];
 +
geometry2.addGroup(group.start, group.count, group.materialIndex);
 +
}
 +
 +
return geometry2;
 +
}
 +
 +
toJSON() {
 +
const data = {
 +
metadata: {
 +
version: 4.5,
 +
type: 'BufferGeometry',
 +
generator: 'BufferGeometry.toJSON'
 +
}
 +
}; // standard BufferGeometry serialization
 +
 +
data.uuid = this.uuid;
 +
data.type = this.type;
 +
if (this.name !== '') data.name = this.name;
 +
if (Object.keys(this.userData).length > 0) data.userData = this.userData;
 +
 +
if (this.parameters !== undefined) {
 +
const parameters = this.parameters;
 +
 +
for (const key in parameters) {
 +
if (parameters[key] !== undefined) data[key] = parameters[key];
 +
}
 +
 +
return data;
 +
} // for simplicity the code assumes attributes are not shared across geometries, see #15811
 +
 +
 +
data.data = {
 +
attributes: {}
 +
};
 +
const index = this.index;
 +
 +
if (index !== null) {
 +
data.data.index = {
 +
type: index.array.constructor.name,
 +
array: Array.prototype.slice.call(index.array)
 +
};
 +
}
 +
 +
const attributes = this.attributes;
 +
 +
for (const key in attributes) {
 +
const attribute = attributes[key];
 +
data.data.attributes[key] = attribute.toJSON(data.data);
 +
}
 +
 +
const morphAttributes = {};
 +
let hasMorphAttributes = false;
 +
 +
for (const key in this.morphAttributes) {
 +
const attributeArray = this.morphAttributes[key];
 +
const array = [];
 +
 +
for (let i = 0, il = attributeArray.length; i < il; i++) {
 +
const attribute = attributeArray[i];
 +
array.push(attribute.toJSON(data.data));
 +
}
 +
 +
if (array.length > 0) {
 +
morphAttributes[key] = array;
 +
hasMorphAttributes = true;
 +
}
 +
}
 +
 +
if (hasMorphAttributes) {
 +
data.data.morphAttributes = morphAttributes;
 +
data.data.morphTargetsRelative = this.morphTargetsRelative;
 +
}
 +
 +
const groups = this.groups;
 +
 +
if (groups.length > 0) {
 +
data.data.groups = JSON.parse(JSON.stringify(groups));
 +
}
 +
 +
const boundingSphere = this.boundingSphere;
 +
 +
if (boundingSphere !== null) {
 +
data.data.boundingSphere = {
 +
center: boundingSphere.center.toArray(),
 +
radius: boundingSphere.radius
 +
};
 +
}
 +
 +
return data;
 +
}
 +
 +
clone() {
 +
/*
 +
// Handle primitives
 +
const parameters = this.parameters;
 +
if ( parameters !== undefined ) {
 +
const values = [];
 +
for ( const key in parameters ) {
 +
values.push( parameters[ key ] );
 +
}
 +
const geometry = Object.create( this.constructor.prototype );
 +
this.constructor.apply( geometry, values );
 +
return geometry;
 +
}
 +
return new this.constructor().copy( this );
 +
*/
 +
return new BufferGeometry().copy(this);
 +
}
 +
 +
copy(source) {
 +
// reset
 +
this.index = null;
 +
this.attributes = {};
 +
this.morphAttributes = {};
 +
this.groups = [];
 +
this.boundingBox = null;
 +
this.boundingSphere = null; // used for storing cloned, shared data
 +
 +
const data = {}; // name
 +
 +
this.name = source.name; // index
 +
 +
const index = source.index;
 +
 +
if (index !== null) {
 +
this.setIndex(index.clone(data));
 +
} // attributes
 +
 +
 +
const attributes = source.attributes;
 +
 +
for (const name in attributes) {
 +
const attribute = attributes[name];
 +
this.setAttribute(name, attribute.clone(data));
 +
} // morph attributes
 +
 +
 +
const morphAttributes = source.morphAttributes;
 +
 +
for (const name in morphAttributes) {
 +
const array = [];
 +
const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
 +
 +
for (let i = 0, l = morphAttribute.length; i < l; i++) {
 +
array.push(morphAttribute[i].clone(data));
 +
}
 +
 +
this.morphAttributes[name] = array;
 +
}
 +
 +
this.morphTargetsRelative = source.morphTargetsRelative; // groups
 +
 +
const groups = source.groups;
 +
 +
for (let i = 0, l = groups.length; i < l; i++) {
 +
const group = groups[i];
 +
this.addGroup(group.start, group.count, group.materialIndex);
 +
} // bounding box
 +
 +
 +
const boundingBox = source.boundingBox;
 +
 +
if (boundingBox !== null) {
 +
this.boundingBox = boundingBox.clone();
 +
} // bounding sphere
 +
 +
 +
const boundingSphere = source.boundingSphere;
 +
 +
if (boundingSphere !== null) {
 +
this.boundingSphere = boundingSphere.clone();
 +
} // draw range
 +
 +
 +
this.drawRange.start = source.drawRange.start;
 +
this.drawRange.count = source.drawRange.count; // user data
 +
 +
this.userData = source.userData;
 +
return this;
 +
}
 +
 +
dispose() {
 +
this.dispatchEvent({
 +
type: 'dispose'
 +
});
 +
}
 +
 +
}
 +
 +
BufferGeometry.prototype.isBufferGeometry = true;
 +
 +
const _inverseMatrix$2 = /*@__PURE__*/new Matrix4();
 +
 +
const _ray$2 = /*@__PURE__*/new Ray();
 +
 +
const _sphere$3 = /*@__PURE__*/new Sphere();
 +
 +
const _vA$1 = /*@__PURE__*/new Vector3();
 +
 +
const _vB$1 = /*@__PURE__*/new Vector3();
 +
 +
const _vC$1 = /*@__PURE__*/new Vector3();
 +
 +
const _tempA = /*@__PURE__*/new Vector3();
 +
 +
const _tempB = /*@__PURE__*/new Vector3();
 +
 +
const _tempC = /*@__PURE__*/new Vector3();
 +
 +
const _morphA = /*@__PURE__*/new Vector3();
 +
 +
const _morphB = /*@__PURE__*/new Vector3();
 +
 +
const _morphC = /*@__PURE__*/new Vector3();
 +
 +
const _uvA$1 = /*@__PURE__*/new Vector2();
 +
 +
const _uvB$1 = /*@__PURE__*/new Vector2();
 +
 +
const _uvC$1 = /*@__PURE__*/new Vector2();
 +
 +
const _intersectionPoint = /*@__PURE__*/new Vector3();
 +
 +
const _intersectionPointWorld = /*@__PURE__*/new Vector3();
 +
 +
class Mesh extends Object3D {
 +
constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) {
 +
super();
 +
this.type = 'Mesh';
 +
this.geometry = geometry;
 +
this.material = material;
 +
this.updateMorphTargets();
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
 +
if (source.morphTargetInfluences !== undefined) {
 +
this.morphTargetInfluences = source.morphTargetInfluences.slice();
 +
}
 +
 +
if (source.morphTargetDictionary !== undefined) {
 +
this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary);
 +
}
 +
 +
this.material = source.material;
 +
this.geometry = source.geometry;
 +
return this;
 +
}
 +
 +
updateMorphTargets() {
 +
const geometry = this.geometry;
 +
 +
if (geometry.isBufferGeometry) {
 +
const morphAttributes = geometry.morphAttributes;
 +
const keys = Object.keys(morphAttributes);
 +
 +
if (keys.length > 0) {
 +
const morphAttribute = morphAttributes[keys[0]];
 +
 +
if (morphAttribute !== undefined) {
 +
this.morphTargetInfluences = [];
 +
this.morphTargetDictionary = {};
 +
 +
for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
 +
const name = morphAttribute[m].name || String(m);
 +
this.morphTargetInfluences.push(0);
 +
this.morphTargetDictionary[name] = m;
 +
}
 +
}
 +
}
 +
} else {
 +
const morphTargets = geometry.morphTargets;
 +
 +
if (morphTargets !== undefined && morphTargets.length > 0) {
 +
console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
 +
}
 +
}
 +
}
 +
 +
raycast(raycaster, intersects) {
 +
const geometry = this.geometry;
 +
const material = this.material;
 +
const matrixWorld = this.matrixWorld;
 +
if (material === undefined) return; // Checking boundingSphere distance to ray
 +
 +
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
 +
 +
_sphere$3.copy(geometry.boundingSphere);
 +
 +
_sphere$3.applyMatrix4(matrixWorld);
 +
 +
if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; //
 +
 +
_inverseMatrix$2.copy(matrixWorld).invert();
 +
 +
_ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing
 +
 +
 +
if (geometry.boundingBox !== null) {
 +
if (_ray$2.intersectsBox(geometry.boundingBox) === false) return;
 +
}
 +
 +
let intersection;
 +
 +
if (geometry.isBufferGeometry) {
 +
const index = geometry.index;
 +
const position = geometry.attributes.position;
 +
const morphPosition = geometry.morphAttributes.position;
 +
const morphTargetsRelative = geometry.morphTargetsRelative;
 +
const uv = geometry.attributes.uv;
 +
const uv2 = geometry.attributes.uv2;
 +
const groups = geometry.groups;
 +
const drawRange = geometry.drawRange;
 +
 +
if (index !== null) {
 +
// indexed buffer geometry
 +
if (Array.isArray(material)) {
 +
for (let i = 0, il = groups.length; i < il; i++) {
 +
const group = groups[i];
 +
const groupMaterial = material[group.materialIndex];
 +
const start = Math.max(group.start, drawRange.start);
 +
const end = Math.min(group.start + group.count, drawRange.start + drawRange.count);
 +
 +
for (let j = start, jl = end; j < jl; j += 3) {
 +
const a = index.getX(j);
 +
const b = index.getX(j + 1);
 +
const c = index.getX(j + 2);
 +
intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
 +
 +
if (intersection) {
 +
intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics
 +
 +
intersection.face.materialIndex = group.materialIndex;
 +
intersects.push(intersection);
 +
}
 +
}
 +
}
 +
} else {
 +
const start = Math.max(0, drawRange.start);
 +
const end = Math.min(index.count, drawRange.start + drawRange.count);
 +
 +
for (let i = start, il = end; i < il; i += 3) {
 +
const a = index.getX(i);
 +
const b = index.getX(i + 1);
 +
const c = index.getX(i + 2);
 +
intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
 +
 +
if (intersection) {
 +
intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics
 +
 +
intersects.push(intersection);
 +
}
 +
}
 +
}
 +
} else if (position !== undefined) {
 +
// non-indexed buffer geometry
 +
if (Array.isArray(material)) {
 +
for (let i = 0, il = groups.length; i < il; i++) {
 +
const group = groups[i];
 +
const groupMaterial = material[group.materialIndex];
 +
const start = Math.max(group.start, drawRange.start);
 +
const end = Math.min(group.start + group.count, drawRange.start + drawRange.count);
 +
 +
for (let j = start, jl = end; j < jl; j += 3) {
 +
const a = j;
 +
const b = j + 1;
 +
const c = j + 2;
 +
intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
 +
 +
if (intersection) {
 +
intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics
 +
 +
intersection.face.materialIndex = group.materialIndex;
 +
intersects.push(intersection);
 +
}
 +
}
 +
}
 +
} else {
 +
const start = Math.max(0, drawRange.start);
 +
const end = Math.min(position.count, drawRange.start + drawRange.count);
 +
 +
for (let i = start, il = end; i < il; i += 3) {
 +
const a = i;
 +
const b = i + 1;
 +
const c = i + 2;
 +
intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
 +
 +
if (intersection) {
 +
intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics
 +
 +
intersects.push(intersection);
 +
}
 +
}
 +
}
 +
}
 +
} else if (geometry.isGeometry) {
 +
console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
 +
}
 +
}
 +
 +
}
 +
 +
Mesh.prototype.isMesh = true;
 +
 +
function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) {
 +
let intersect;
 +
 +
if (material.side === BackSide) {
 +
intersect = ray.intersectTriangle(pC, pB, pA, true, point);
 +
} else {
 +
intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point);
 +
}
 +
 +
if (intersect === null) return null;
 +
 +
_intersectionPointWorld.copy(point);
 +
 +
_intersectionPointWorld.applyMatrix4(object.matrixWorld);
 +
 +
const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld);
 +
if (distance < raycaster.near || distance > raycaster.far) return null;
 +
return {
 +
distance: distance,
 +
point: _intersectionPointWorld.clone(),
 +
object: object
 +
};
 +
}
 +
 +
function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) {
 +
_vA$1.fromBufferAttribute(position, a);
 +
 +
_vB$1.fromBufferAttribute(position, b);
 +
 +
_vC$1.fromBufferAttribute(position, c);
 +
 +
const morphInfluences = object.morphTargetInfluences;
 +
 +
if (material.morphTargets && morphPosition && morphInfluences) {
 +
_morphA.set(0, 0, 0);
 +
 +
_morphB.set(0, 0, 0);
 +
 +
_morphC.set(0, 0, 0);
 +
 +
for (let i = 0, il = morphPosition.length; i < il; i++) {
 +
const influence = morphInfluences[i];
 +
const morphAttribute = morphPosition[i];
 +
if (influence === 0) continue;
 +
 +
_tempA.fromBufferAttribute(morphAttribute, a);
 +
 +
_tempB.fromBufferAttribute(morphAttribute, b);
 +
 +
_tempC.fromBufferAttribute(morphAttribute, c);
 +
 +
if (morphTargetsRelative) {
 +
_morphA.addScaledVector(_tempA, influence);
 +
 +
_morphB.addScaledVector(_tempB, influence);
 +
 +
_morphC.addScaledVector(_tempC, influence);
 +
} else {
 +
_morphA.addScaledVector(_tempA.sub(_vA$1), influence);
 +
 +
_morphB.addScaledVector(_tempB.sub(_vB$1), influence);
 +
 +
_morphC.addScaledVector(_tempC.sub(_vC$1), influence);
 +
}
 +
}
 +
 +
_vA$1.add(_morphA);
 +
 +
_vB$1.add(_morphB);
 +
 +
_vC$1.add(_morphC);
 +
}
 +
 +
if (object.isSkinnedMesh) {
 +
object.boneTransform(a, _vA$1);
 +
object.boneTransform(b, _vB$1);
 +
object.boneTransform(c, _vC$1);
 +
}
 +
 +
const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint);
 +
 +
if (intersection) {
 +
if (uv) {
 +
_uvA$1.fromBufferAttribute(uv, a);
 +
 +
_uvB$1.fromBufferAttribute(uv, b);
 +
 +
_uvC$1.fromBufferAttribute(uv, c);
 +
 +
intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
 +
}
 +
 +
if (uv2) {
 +
_uvA$1.fromBufferAttribute(uv2, a);
 +
 +
_uvB$1.fromBufferAttribute(uv2, b);
 +
 +
_uvC$1.fromBufferAttribute(uv2, c);
 +
 +
intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
 +
}
 +
 +
const face = {
 +
a: a,
 +
b: b,
 +
c: c,
 +
normal: new Vector3(),
 +
materialIndex: 0
 +
};
 +
Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal);
 +
intersection.face = face;
 +
}
 +
 +
return intersection;
 +
}
 +
 +
class BoxGeometry extends BufferGeometry {
 +
constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) {
 +
super();
 +
this.type = 'BoxGeometry';
 +
this.parameters = {
 +
width: width,
 +
height: height,
 +
depth: depth,
 +
widthSegments: widthSegments,
 +
heightSegments: heightSegments,
 +
depthSegments: depthSegments
 +
};
 +
const scope = this; // segments
 +
 +
widthSegments = Math.floor(widthSegments);
 +
heightSegments = Math.floor(heightSegments);
 +
depthSegments = Math.floor(depthSegments); // buffers
 +
 +
const indices = [];
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = []; // helper variables
 +
 +
let numberOfVertices = 0;
 +
let groupStart = 0; // build each side of the box geometry
 +
 +
buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px
 +
 +
buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx
 +
 +
buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py
 +
 +
buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny
 +
 +
buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz
 +
 +
buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz
 +
// build geometry
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
 +
 +
function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) {
 +
const segmentWidth = width / gridX;
 +
const segmentHeight = height / gridY;
 +
const widthHalf = width / 2;
 +
const heightHalf = height / 2;
 +
const depthHalf = depth / 2;
 +
const gridX1 = gridX + 1;
 +
const gridY1 = gridY + 1;
 +
let vertexCounter = 0;
 +
let groupCount = 0;
 +
const vector = new Vector3(); // generate vertices, normals and uvs
 +
 +
for (let iy = 0; iy < gridY1; iy++) {
 +
const y = iy * segmentHeight - heightHalf;
 +
 +
for (let ix = 0; ix < gridX1; ix++) {
 +
const x = ix * segmentWidth - widthHalf; // set values to correct vector component
 +
 +
vector[u] = x * udir;
 +
vector[v] = y * vdir;
 +
vector[w] = depthHalf; // now apply vector to vertex buffer
 +
 +
vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component
 +
 +
vector[u] = 0;
 +
vector[v] = 0;
 +
vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer
 +
 +
normals.push(vector.x, vector.y, vector.z); // uvs
 +
 +
uvs.push(ix / gridX);
 +
uvs.push(1 - iy / gridY); // counters
 +
 +
vertexCounter += 1;
 +
}
 +
} // indices
 +
// 1. you need three indices to draw a single face
 +
// 2. a single segment consists of two faces
 +
// 3. so we need to generate six (2*3) indices per segment
 +
 +
 +
for (let iy = 0; iy < gridY; iy++) {
 +
for (let ix = 0; ix < gridX; ix++) {
 +
const a = numberOfVertices + ix + gridX1 * iy;
 +
const b = numberOfVertices + ix + gridX1 * (iy + 1);
 +
const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1);
 +
const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces
 +
 +
indices.push(a, b, d);
 +
indices.push(b, c, d); // increase counter
 +
 +
groupCount += 6;
 +
}
 +
} // add a group to the geometry. this will ensure multi material support
 +
 +
 +
scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups
 +
 +
groupStart += groupCount; // update total number of vertices
 +
 +
numberOfVertices += vertexCounter;
 +
}
 +
}
 +
 +
static fromJSON(data) {
 +
return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments);
 +
}
 +
 +
}
 +
 +
/**
 +
* Uniform Utilities
 +
*/
 +
function cloneUniforms(src) {
 +
const dst = {};
 +
 +
for (const u in src) {
 +
dst[u] = {};
 +
 +
for (const p in src[u]) {
 +
const property = src[u][p];
 +
 +
if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) {
 +
dst[u][p] = property.clone();
 +
} else if (Array.isArray(property)) {
 +
dst[u][p] = property.slice();
 +
} else {
 +
dst[u][p] = property;
 +
}
 +
}
 +
}
 +
 +
return dst;
 +
}
 +
function mergeUniforms(uniforms) {
 +
const merged = {};
 +
 +
for (let u = 0; u < uniforms.length; u++) {
 +
const tmp = cloneUniforms(uniforms[u]);
 +
 +
for (const p in tmp) {
 +
merged[p] = tmp[p];
 +
}
 +
}
 +
 +
return merged;
 +
} // Legacy
 +
 +
const UniformsUtils = {
 +
clone: cloneUniforms,
 +
merge: mergeUniforms
 +
};
 +
 +
var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";
 +
 +
var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";
 +
 +
/**
 +
* parameters = {
 +
* defines: { "label" : "value" },
 +
* uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
 +
*
 +
* fragmentShader: <string>,
 +
* vertexShader: <string>,
 +
*
 +
* wireframe: <boolean>,
 +
* wireframeLinewidth: <float>,
 +
*
 +
* lights: <bool>,
 +
*
 +
* morphTargets: <bool>,
 +
* morphNormals: <bool>
 +
* }
 +
*/
 +
 +
class ShaderMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'ShaderMaterial';
 +
this.defines = {};
 +
this.uniforms = {};
 +
this.vertexShader = default_vertex;
 +
this.fragmentShader = default_fragment;
 +
this.linewidth = 1;
 +
this.wireframe = false;
 +
this.wireframeLinewidth = 1;
 +
this.fog = false; // set to use scene fog
 +
 +
this.lights = false; // set to use scene lights
 +
 +
this.clipping = false; // set to use user-defined clipping planes
 +
 +
this.morphTargets = false; // set to use morph targets
 +
 +
this.morphNormals = false; // set to use morph normals
 +
 +
this.extensions = {
 +
derivatives: false,
 +
// set to use derivatives
 +
fragDepth: false,
 +
// set to use fragment depth values
 +
drawBuffers: false,
 +
// set to use draw buffers
 +
shaderTextureLOD: false // set to use shader texture LOD
 +
 +
}; // When rendered geometry doesn't include these attributes but the material does,
 +
// use these default values in WebGL. This avoids errors when buffer data is missing.
 +
 +
this.defaultAttributeValues = {
 +
'color': [1, 1, 1],
 +
'uv': [0, 0],
 +
'uv2': [0, 0]
 +
};
 +
this.index0AttributeName = undefined;
 +
this.uniformsNeedUpdate = false;
 +
this.glslVersion = null;
 +
 +
if (parameters !== undefined) {
 +
if (parameters.attributes !== undefined) {
 +
console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.');
 +
}
 +
 +
this.setValues(parameters);
 +
}
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.fragmentShader = source.fragmentShader;
 +
this.vertexShader = source.vertexShader;
 +
this.uniforms = cloneUniforms(source.uniforms);
 +
this.defines = Object.assign({}, source.defines);
 +
this.wireframe = source.wireframe;
 +
this.wireframeLinewidth = source.wireframeLinewidth;
 +
this.lights = source.lights;
 +
this.clipping = source.clipping;
 +
this.morphTargets = source.morphTargets;
 +
this.morphNormals = source.morphNormals;
 +
this.extensions = Object.assign({}, source.extensions);
 +
this.glslVersion = source.glslVersion;
 +
return this;
 +
}
 +
 +
toJSON(meta) {
 +
const data = super.toJSON(meta);
 +
data.glslVersion = this.glslVersion;
 +
data.uniforms = {};
 +
 +
for (const name in this.uniforms) {
 +
const uniform = this.uniforms[name];
 +
const value = uniform.value;
 +
 +
if (value && value.isTexture) {
 +
data.uniforms[name] = {
 +
type: 't',
 +
value: value.toJSON(meta).uuid
 +
};
 +
} else if (value && value.isColor) {
 +
data.uniforms[name] = {
 +
type: 'c',
 +
value: value.getHex()
 +
};
 +
} else if (value && value.isVector2) {
 +
data.uniforms[name] = {
 +
type: 'v2',
 +
value: value.toArray()
 +
};
 +
} else if (value && value.isVector3) {
 +
data.uniforms[name] = {
 +
type: 'v3',
 +
value: value.toArray()
 +
};
 +
} else if (value && value.isVector4) {
 +
data.uniforms[name] = {
 +
type: 'v4',
 +
value: value.toArray()
 +
};
 +
} else if (value && value.isMatrix3) {
 +
data.uniforms[name] = {
 +
type: 'm3',
 +
value: value.toArray()
 +
};
 +
} else if (value && value.isMatrix4) {
 +
data.uniforms[name] = {
 +
type: 'm4',
 +
value: value.toArray()
 +
};
 +
} else {
 +
data.uniforms[name] = {
 +
value: value
 +
}; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
 +
}
 +
}
 +
 +
if (Object.keys(this.defines).length > 0) data.defines = this.defines;
 +
data.vertexShader = this.vertexShader;
 +
data.fragmentShader = this.fragmentShader;
 +
const extensions = {};
 +
 +
for (const key in this.extensions) {
 +
if (this.extensions[key] === true) extensions[key] = true;
 +
}
 +
 +
if (Object.keys(extensions).length > 0) data.extensions = extensions;
 +
return data;
 +
}
 +
 +
}
 +
 +
ShaderMaterial.prototype.isShaderMaterial = true;
 +
 +
class Camera extends Object3D {
 +
constructor() {
 +
super();
 +
this.type = 'Camera';
 +
this.matrixWorldInverse = new Matrix4();
 +
this.projectionMatrix = new Matrix4();
 +
this.projectionMatrixInverse = new Matrix4();
 +
}
 +
 +
copy(source, recursive) {
 +
super.copy(source, recursive);
 +
this.matrixWorldInverse.copy(source.matrixWorldInverse);
 +
this.projectionMatrix.copy(source.projectionMatrix);
 +
this.projectionMatrixInverse.copy(source.projectionMatrixInverse);
 +
return this;
 +
}
 +
 +
getWorldDirection(target) {
 +
this.updateWorldMatrix(true, false);
 +
const e = this.matrixWorld.elements;
 +
return target.set(-e[8], -e[9], -e[10]).normalize();
 +
}
 +
 +
updateMatrixWorld(force) {
 +
super.updateMatrixWorld(force);
 +
this.matrixWorldInverse.copy(this.matrixWorld).invert();
 +
}
 +
 +
updateWorldMatrix(updateParents, updateChildren) {
 +
super.updateWorldMatrix(updateParents, updateChildren);
 +
this.matrixWorldInverse.copy(this.matrixWorld).invert();
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
}
 +
 +
Camera.prototype.isCamera = true;
 +
 +
class PerspectiveCamera extends Camera {
 +
constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) {
 +
super();
 +
this.type = 'PerspectiveCamera';
 +
this.fov = fov;
 +
this.zoom = 1;
 +
this.near = near;
 +
this.far = far;
 +
this.focus = 10;
 +
this.aspect = aspect;
 +
this.view = null;
 +
this.filmGauge = 35; // width of the film (default in millimeters)
 +
 +
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
 +
 +
this.updateProjectionMatrix();
 +
}
 +
 +
copy(source, recursive) {
 +
super.copy(source, recursive);
 +
this.fov = source.fov;
 +
this.zoom = source.zoom;
 +
this.near = source.near;
 +
this.far = source.far;
 +
this.focus = source.focus;
 +
this.aspect = source.aspect;
 +
this.view = source.view === null ? null : Object.assign({}, source.view);
 +
this.filmGauge = source.filmGauge;
 +
this.filmOffset = source.filmOffset;
 +
return this;
 +
}
 +
/**
 +
* Sets the FOV by focal length in respect to the current .filmGauge.
 +
*
 +
* The default film gauge is 35, so that the focal length can be specified for
 +
* a 35mm (full frame) camera.
 +
*
 +
* Values for focal length and film gauge must have the same unit.
 +
*/
 +
 +
 +
setFocalLength(focalLength) {
 +
/** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */
 +
const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
 +
this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope);
 +
this.updateProjectionMatrix();
 +
}
 +
/**
 +
* Calculates the focal length from the current .fov and .filmGauge.
 +
*/
 +
 +
 +
getFocalLength() {
 +
const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov);
 +
return 0.5 * this.getFilmHeight() / vExtentSlope;
 +
}
 +
 +
getEffectiveFOV() {
 +
return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom);
 +
}
 +
 +
getFilmWidth() {
 +
// film not completely covered in portrait format (aspect < 1)
 +
return this.filmGauge * Math.min(this.aspect, 1);
 +
}
 +
 +
getFilmHeight() {
 +
// film not completely covered in landscape format (aspect > 1)
 +
return this.filmGauge / Math.max(this.aspect, 1);
 +
}
 +
/**
 +
* Sets an offset in a larger frustum. This is useful for multi-window or
 +
* multi-monitor/multi-machine setups.
 +
*
 +
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
 +
* the monitors are in grid like this
 +
*
 +
* +---+---+---+
 +
* | A | B | C |
 +
* +---+---+---+
 +
* | D | E | F |
 +
* +---+---+---+
 +
*
 +
* then for each monitor you would call it like this
 +
*
 +
* const w = 1920;
 +
* const h = 1080;
 +
* const fullWidth = w * 3;
 +
* const fullHeight = h * 2;
 +
*
 +
* --A--
 +
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
 +
* --B--
 +
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
 +
* --C--
 +
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
 +
* --D--
 +
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
 +
* --E--
 +
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
 +
* --F--
 +
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
 +
*
 +
* Note there is no reason monitors have to be the same size or in a grid.
 +
*/
 +
 +
 +
setViewOffset(fullWidth, fullHeight, x, y, width, height) {
 +
this.aspect = fullWidth / fullHeight;
 +
 +
if (this.view === null) {
 +
this.view = {
 +
enabled: true,
 +
fullWidth: 1,
 +
fullHeight: 1,
 +
offsetX: 0,
 +
offsetY: 0,
 +
width: 1,
 +
height: 1
 +
};
 +
}
 +
 +
this.view.enabled = true;
 +
this.view.fullWidth = fullWidth;
 +
this.view.fullHeight = fullHeight;
 +
this.view.offsetX = x;
 +
this.view.offsetY = y;
 +
this.view.width = width;
 +
this.view.height = height;
 +
this.updateProjectionMatrix();
 +
}
 +
 +
clearViewOffset() {
 +
if (this.view !== null) {
 +
this.view.enabled = false;
 +
}
 +
 +
this.updateProjectionMatrix();
 +
}
 +
 +
updateProjectionMatrix() {
 +
const near = this.near;
 +
let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom;
 +
let height = 2 * top;
 +
let width = this.aspect * height;
 +
let left = -0.5 * width;
 +
const view = this.view;
 +
 +
if (this.view !== null && this.view.enabled) {
 +
const fullWidth = view.fullWidth,
 +
fullHeight = view.fullHeight;
 +
left += view.offsetX * width / fullWidth;
 +
top -= view.offsetY * height / fullHeight;
 +
width *= view.width / fullWidth;
 +
height *= view.height / fullHeight;
 +
}
 +
 +
const skew = this.filmOffset;
 +
if (skew !== 0) left += near * skew / this.getFilmWidth();
 +
this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far);
 +
this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
 +
}
 +
 +
toJSON(meta) {
 +
const data = super.toJSON(meta);
 +
data.object.fov = this.fov;
 +
data.object.zoom = this.zoom;
 +
data.object.near = this.near;
 +
data.object.far = this.far;
 +
data.object.focus = this.focus;
 +
data.object.aspect = this.aspect;
 +
if (this.view !== null) data.object.view = Object.assign({}, this.view);
 +
data.object.filmGauge = this.filmGauge;
 +
data.object.filmOffset = this.filmOffset;
 +
return data;
 +
}
 +
 +
}
 +
 +
PerspectiveCamera.prototype.isPerspectiveCamera = true;
 +
 +
const fov = 90,
 +
aspect = 1;
 +
 +
class CubeCamera extends Object3D {
 +
constructor(near, far, renderTarget) {
 +
super();
 +
this.type = 'CubeCamera';
 +
 +
if (renderTarget.isWebGLCubeRenderTarget !== true) {
 +
console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.');
 +
return;
 +
}
 +
 +
this.renderTarget = renderTarget;
 +
const cameraPX = new PerspectiveCamera(fov, aspect, near, far);
 +
cameraPX.layers = this.layers;
 +
cameraPX.up.set(0, -1, 0);
 +
cameraPX.lookAt(new Vector3(1, 0, 0));
 +
this.add(cameraPX);
 +
const cameraNX = new PerspectiveCamera(fov, aspect, near, far);
 +
cameraNX.layers = this.layers;
 +
cameraNX.up.set(0, -1, 0);
 +
cameraNX.lookAt(new Vector3(-1, 0, 0));
 +
this.add(cameraNX);
 +
const cameraPY = new PerspectiveCamera(fov, aspect, near, far);
 +
cameraPY.layers = this.layers;
 +
cameraPY.up.set(0, 0, 1);
 +
cameraPY.lookAt(new Vector3(0, 1, 0));
 +
this.add(cameraPY);
 +
const cameraNY = new PerspectiveCamera(fov, aspect, near, far);
 +
cameraNY.layers = this.layers;
 +
cameraNY.up.set(0, 0, -1);
 +
cameraNY.lookAt(new Vector3(0, -1, 0));
 +
this.add(cameraNY);
 +
const cameraPZ = new PerspectiveCamera(fov, aspect, near, far);
 +
cameraPZ.layers = this.layers;
 +
cameraPZ.up.set(0, -1, 0);
 +
cameraPZ.lookAt(new Vector3(0, 0, 1));
 +
this.add(cameraPZ);
 +
const cameraNZ = new PerspectiveCamera(fov, aspect, near, far);
 +
cameraNZ.layers = this.layers;
 +
cameraNZ.up.set(0, -1, 0);
 +
cameraNZ.lookAt(new Vector3(0, 0, -1));
 +
this.add(cameraNZ);
 +
}
 +
 +
update(renderer, scene) {
 +
if (this.parent === null) this.updateMatrixWorld();
 +
const renderTarget = this.renderTarget;
 +
const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children;
 +
const currentXrEnabled = renderer.xr.enabled;
 +
const currentRenderTarget = renderer.getRenderTarget();
 +
renderer.xr.enabled = false;
 +
const generateMipmaps = renderTarget.texture.generateMipmaps;
 +
renderTarget.texture.generateMipmaps = false;
 +
renderer.setRenderTarget(renderTarget, 0);
 +
renderer.render(scene, cameraPX);
 +
renderer.setRenderTarget(renderTarget, 1);
 +
renderer.render(scene, cameraNX);
 +
renderer.setRenderTarget(renderTarget, 2);
 +
renderer.render(scene, cameraPY);
 +
renderer.setRenderTarget(renderTarget, 3);
 +
renderer.render(scene, cameraNY);
 +
renderer.setRenderTarget(renderTarget, 4);
 +
renderer.render(scene, cameraPZ);
 +
renderTarget.texture.generateMipmaps = generateMipmaps;
 +
renderer.setRenderTarget(renderTarget, 5);
 +
renderer.render(scene, cameraNZ);
 +
renderer.setRenderTarget(currentRenderTarget);
 +
renderer.xr.enabled = currentXrEnabled;
 +
}
 +
 +
}
 +
 +
class CubeTexture extends Texture {
 +
constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) {
 +
images = images !== undefined ? images : [];
 +
mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
 +
format = format !== undefined ? format : RGBFormat;
 +
super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); // Why CubeTexture._needsFlipEnvMap is necessary:
 +
//
 +
// By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)
 +
// in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
 +
// in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
 +
// three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
 +
// and the flag _needsFlipEnvMap controls this conversion. The flip is not required (and thus _needsFlipEnvMap is set to false)
 +
// when using WebGLCubeRenderTarget.texture as a cube texture.
 +
 +
this._needsFlipEnvMap = true;
 +
this.flipY = false;
 +
}
 +
 +
get images() {
 +
return this.image;
 +
}
 +
 +
set images(value) {
 +
this.image = value;
 +
}
 +
 +
}
 +
 +
CubeTexture.prototype.isCubeTexture = true;
 +
 +
class WebGLCubeRenderTarget extends WebGLRenderTarget {
 +
constructor(size, options, dummy) {
 +
if (Number.isInteger(options)) {
 +
console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )');
 +
options = dummy;
 +
}
 +
 +
super(size, size, options);
 +
options = options || {};
 +
this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
 +
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
 +
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
 +
this.texture._needsFlipEnvMap = false;
 +
}
 +
 +
fromEquirectangularTexture(renderer, texture) {
 +
this.texture.type = texture.type;
 +
this.texture.format = RGBAFormat; // see #18859
 +
 +
this.texture.encoding = texture.encoding;
 +
this.texture.generateMipmaps = texture.generateMipmaps;
 +
this.texture.minFilter = texture.minFilter;
 +
this.texture.magFilter = texture.magFilter;
 +
const shader = {
 +
uniforms: {
 +
tEquirect: {
 +
value: null
 +
}
 +
},
 +
vertexShader:
 +
/* glsl */
 +
`
 +
 +
varying vec3 vWorldDirection;
 +
 +
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
 +
 +
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
 +
 +
}
 +
 +
void main() {
 +
 +
vWorldDirection = transformDirection( position, modelMatrix );
 +
 +
#include <begin_vertex>
 +
#include <project_vertex>
 +
 +
}
 +
`,
 +
fragmentShader:
 +
/* glsl */
 +
`
 +
 +
uniform sampler2D tEquirect;
 +
 +
varying vec3 vWorldDirection;
 +
 +
#include <common>
 +
 +
void main() {
 +
 +
vec3 direction = normalize( vWorldDirection );
 +
 +
vec2 sampleUV = equirectUv( direction );
 +
 +
gl_FragColor = texture2D( tEquirect, sampleUV );
 +
 +
}
 +
`
 +
};
 +
const geometry = new BoxGeometry(5, 5, 5);
 +
const material = new ShaderMaterial({
 +
name: 'CubemapFromEquirect',
 +
uniforms: cloneUniforms(shader.uniforms),
 +
vertexShader: shader.vertexShader,
 +
fragmentShader: shader.fragmentShader,
 +
side: BackSide,
 +
blending: NoBlending
 +
});
 +
material.uniforms.tEquirect.value = texture;
 +
const mesh = new Mesh(geometry, material);
 +
const currentMinFilter = texture.minFilter; // Avoid blurred poles
 +
 +
if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter;
 +
const camera = new CubeCamera(1, 10, this);
 +
camera.update(renderer, mesh);
 +
texture.minFilter = currentMinFilter;
 +
mesh.geometry.dispose();
 +
mesh.material.dispose();
 +
return this;
 +
}
 +
 +
clear(renderer, color, depth, stencil) {
 +
const currentRenderTarget = renderer.getRenderTarget();
 +
 +
for (let i = 0; i < 6; i++) {
 +
renderer.setRenderTarget(this, i);
 +
renderer.clear(color, depth, stencil);
 +
}
 +
 +
renderer.setRenderTarget(currentRenderTarget);
 +
}
 +
 +
}
 +
 +
WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;
 +
 +
const _vector1 = /*@__PURE__*/new Vector3();
 +
 +
const _vector2 = /*@__PURE__*/new Vector3();
 +
 +
const _normalMatrix = /*@__PURE__*/new Matrix3();
 +
 +
class Plane {
 +
constructor(normal = new Vector3(1, 0, 0), constant = 0) {
 +
// normal is assumed to be normalized
 +
this.normal = normal;
 +
this.constant = constant;
 +
}
 +
 +
set(normal, constant) {
 +
this.normal.copy(normal);
 +
this.constant = constant;
 +
return this;
 +
}
 +
 +
setComponents(x, y, z, w) {
 +
this.normal.set(x, y, z);
 +
this.constant = w;
 +
return this;
 +
}
 +
 +
setFromNormalAndCoplanarPoint(normal, point) {
 +
this.normal.copy(normal);
 +
this.constant = -point.dot(this.normal);
 +
return this;
 +
}
 +
 +
setFromCoplanarPoints(a, b, c) {
 +
const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
 +
 +
 +
this.setFromNormalAndCoplanarPoint(normal, a);
 +
return this;
 +
}
 +
 +
copy(plane) {
 +
this.normal.copy(plane.normal);
 +
this.constant = plane.constant;
 +
return this;
 +
}
 +
 +
normalize() {
 +
// Note: will lead to a divide by zero if the plane is invalid.
 +
const inverseNormalLength = 1.0 / this.normal.length();
 +
this.normal.multiplyScalar(inverseNormalLength);
 +
this.constant *= inverseNormalLength;
 +
return this;
 +
}
 +
 +
negate() {
 +
this.constant *= -1;
 +
this.normal.negate();
 +
return this;
 +
}
 +
 +
distanceToPoint(point) {
 +
return this.normal.dot(point) + this.constant;
 +
}
 +
 +
distanceToSphere(sphere) {
 +
return this.distanceToPoint(sphere.center) - sphere.radius;
 +
}
 +
 +
projectPoint(point, target) {
 +
return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point);
 +
}
 +
 +
intersectLine(line, target) {
 +
const direction = line.delta(_vector1);
 +
const denominator = this.normal.dot(direction);
 +
 +
if (denominator === 0) {
 +
// line is coplanar, return origin
 +
if (this.distanceToPoint(line.start) === 0) {
 +
return target.copy(line.start);
 +
} // Unsure if this is the correct method to handle this case.
 +
 +
 +
return null;
 +
}
 +
 +
const t = -(line.start.dot(this.normal) + this.constant) / denominator;
 +
 +
if (t < 0 || t > 1) {
 +
return null;
 +
}
 +
 +
return target.copy(direction).multiplyScalar(t).add(line.start);
 +
}
 +
 +
intersectsLine(line) {
 +
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
 +
const startSign = this.distanceToPoint(line.start);
 +
const endSign = this.distanceToPoint(line.end);
 +
return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0;
 +
}
 +
 +
intersectsBox(box) {
 +
return box.intersectsPlane(this);
 +
}
 +
 +
intersectsSphere(sphere) {
 +
return sphere.intersectsPlane(this);
 +
}
 +
 +
coplanarPoint(target) {
 +
return target.copy(this.normal).multiplyScalar(-this.constant);
 +
}
 +
 +
applyMatrix4(matrix, optionalNormalMatrix) {
 +
const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix);
 +
 +
const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix);
 +
const normal = this.normal.applyMatrix3(normalMatrix).normalize();
 +
this.constant = -referencePoint.dot(normal);
 +
return this;
 +
}
 +
 +
translate(offset) {
 +
this.constant -= offset.dot(this.normal);
 +
return this;
 +
}
 +
 +
equals(plane) {
 +
return plane.normal.equals(this.normal) && plane.constant === this.constant;
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
}
 +
 +
Plane.prototype.isPlane = true;
 +
 +
const _sphere$2 = /*@__PURE__*/new Sphere();
 +
 +
const _vector$7 = /*@__PURE__*/new Vector3();
 +
 +
class Frustum {
 +
constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) {
 +
this.planes = [p0, p1, p2, p3, p4, p5];
 +
}
 +
 +
set(p0, p1, p2, p3, p4, p5) {
 +
const planes = this.planes;
 +
planes[0].copy(p0);
 +
planes[1].copy(p1);
 +
planes[2].copy(p2);
 +
planes[3].copy(p3);
 +
planes[4].copy(p4);
 +
planes[5].copy(p5);
 +
return this;
 +
}
 +
 +
copy(frustum) {
 +
const planes = this.planes;
 +
 +
for (let i = 0; i < 6; i++) {
 +
planes[i].copy(frustum.planes[i]);
 +
}
 +
 +
return this;
 +
}
 +
 +
setFromProjectionMatrix(m) {
 +
const planes = this.planes;
 +
const me = m.elements;
 +
const me0 = me[0],
 +
me1 = me[1],
 +
me2 = me[2],
 +
me3 = me[3];
 +
const me4 = me[4],
 +
me5 = me[5],
 +
me6 = me[6],
 +
me7 = me[7];
 +
const me8 = me[8],
 +
me9 = me[9],
 +
me10 = me[10],
 +
me11 = me[11];
 +
const me12 = me[12],
 +
me13 = me[13],
 +
me14 = me[14],
 +
me15 = me[15];
 +
planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize();
 +
planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize();
 +
planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize();
 +
planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize();
 +
planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize();
 +
planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize();
 +
return this;
 +
}
 +
 +
intersectsObject(object) {
 +
const geometry = object.geometry;
 +
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
 +
 +
_sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld);
 +
 +
return this.intersectsSphere(_sphere$2);
 +
}
 +
 +
intersectsSprite(sprite) {
 +
_sphere$2.center.set(0, 0, 0);
 +
 +
_sphere$2.radius = 0.7071067811865476;
 +
 +
_sphere$2.applyMatrix4(sprite.matrixWorld);
 +
 +
return this.intersectsSphere(_sphere$2);
 +
}
 +
 +
intersectsSphere(sphere) {
 +
const planes = this.planes;
 +
const center = sphere.center;
 +
const negRadius = -sphere.radius;
 +
 +
for (let i = 0; i < 6; i++) {
 +
const distance = planes[i].distanceToPoint(center);
 +
 +
if (distance < negRadius) {
 +
return false;
 +
}
 +
}
 +
 +
return true;
 +
}
 +
 +
intersectsBox(box) {
 +
const planes = this.planes;
 +
 +
for (let i = 0; i < 6; i++) {
 +
const plane = planes[i]; // corner at max distance
 +
 +
_vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x;
 +
_vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y;
 +
_vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z;
 +
 +
if (plane.distanceToPoint(_vector$7) < 0) {
 +
return false;
 +
}
 +
}
 +
 +
return true;
 +
}
 +
 +
containsPoint(point) {
 +
const planes = this.planes;
 +
 +
for (let i = 0; i < 6; i++) {
 +
if (planes[i].distanceToPoint(point) < 0) {
 +
return false;
 +
}
 +
}
 +
 +
return true;
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
}
 +
 +
function WebGLAnimation() {
 +
let context = null;
 +
let isAnimating = false;
 +
let animationLoop = null;
 +
let requestId = null;
 +
 +
function onAnimationFrame(time, frame) {
 +
animationLoop(time, frame);
 +
requestId = context.requestAnimationFrame(onAnimationFrame);
 +
}
 +
 +
return {
 +
start: function () {
 +
if (isAnimating === true) return;
 +
if (animationLoop === null) return;
 +
requestId = context.requestAnimationFrame(onAnimationFrame);
 +
isAnimating = true;
 +
},
 +
stop: function () {
 +
context.cancelAnimationFrame(requestId);
 +
isAnimating = false;
 +
},
 +
setAnimationLoop: function (callback) {
 +
animationLoop = callback;
 +
},
 +
setContext: function (value) {
 +
context = value;
 +
}
 +
};
 +
}
 +
 +
function WebGLAttributes(gl, capabilities) {
 +
const isWebGL2 = capabilities.isWebGL2;
 +
const buffers = new WeakMap();
 +
 +
function createBuffer(attribute, bufferType) {
 +
const array = attribute.array;
 +
const usage = attribute.usage;
 +
const buffer = gl.createBuffer();
 +
gl.bindBuffer(bufferType, buffer);
 +
gl.bufferData(bufferType, array, usage);
 +
attribute.onUploadCallback();
 +
let type = gl.FLOAT;
 +
 +
if (array instanceof Float32Array) {
 +
type = gl.FLOAT;
 +
} else if (array instanceof Float64Array) {
 +
console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.');
 +
} else if (array instanceof Uint16Array) {
 +
if (attribute.isFloat16BufferAttribute) {
 +
if (isWebGL2) {
 +
type = gl.HALF_FLOAT;
 +
} else {
 +
console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.');
 +
}
 +
} else {
 +
type = gl.UNSIGNED_SHORT;
 +
}
 +
} else if (array instanceof Int16Array) {
 +
type = gl.SHORT;
 +
} else if (array instanceof Uint32Array) {
 +
type = gl.UNSIGNED_INT;
 +
} else if (array instanceof Int32Array) {
 +
type = gl.INT;
 +
} else if (array instanceof Int8Array) {
 +
type = gl.BYTE;
 +
} else if (array instanceof Uint8Array) {
 +
type = gl.UNSIGNED_BYTE;
 +
} else if (array instanceof Uint8ClampedArray) {
 +
type = gl.UNSIGNED_BYTE;
 +
}
 +
 +
return {
 +
buffer: buffer,
 +
type: type,
 +
bytesPerElement: array.BYTES_PER_ELEMENT,
 +
version: attribute.version
 +
};
 +
}
 +
 +
function updateBuffer(buffer, attribute, bufferType) {
 +
const array = attribute.array;
 +
const updateRange = attribute.updateRange;
 +
gl.bindBuffer(bufferType, buffer);
 +
 +
if (updateRange.count === -1) {
 +
// Not using update ranges
 +
gl.bufferSubData(bufferType, 0, array);
 +
} else {
 +
if (isWebGL2) {
 +
gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count);
 +
} else {
 +
gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count));
 +
}
 +
 +
updateRange.count = -1; // reset range
 +
}
 +
} //
 +
 +
 +
function get(attribute) {
 +
if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
 +
return buffers.get(attribute);
 +
}
 +
 +
function remove(attribute) {
 +
if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
 +
const data = buffers.get(attribute);
 +
 +
if (data) {
 +
gl.deleteBuffer(data.buffer);
 +
buffers.delete(attribute);
 +
}
 +
}
 +
 +
function update(attribute, bufferType) {
 +
if (attribute.isGLBufferAttribute) {
 +
const cached = buffers.get(attribute);
 +
 +
if (!cached || cached.version < attribute.version) {
 +
buffers.set(attribute, {
 +
buffer: attribute.buffer,
 +
type: attribute.type,
 +
bytesPerElement: attribute.elementSize,
 +
version: attribute.version
 +
});
 +
}
 +
 +
return;
 +
}
 +
 +
if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
 +
const data = buffers.get(attribute);
 +
 +
if (data === undefined) {
 +
buffers.set(attribute, createBuffer(attribute, bufferType));
 +
} else if (data.version < attribute.version) {
 +
updateBuffer(data.buffer, attribute, bufferType);
 +
data.version = attribute.version;
 +
}
 +
}
 +
 +
return {
 +
get: get,
 +
remove: remove,
 +
update: update
 +
};
 +
}
 +
 +
class PlaneGeometry extends BufferGeometry {
 +
constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) {
 +
super();
 +
this.type = 'PlaneGeometry';
 +
this.parameters = {
 +
width: width,
 +
height: height,
 +
widthSegments: widthSegments,
 +
heightSegments: heightSegments
 +
};
 +
const width_half = width / 2;
 +
const height_half = height / 2;
 +
const gridX = Math.floor(widthSegments);
 +
const gridY = Math.floor(heightSegments);
 +
const gridX1 = gridX + 1;
 +
const gridY1 = gridY + 1;
 +
const segment_width = width / gridX;
 +
const segment_height = height / gridY; //
 +
 +
const indices = [];
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = [];
 +
 +
for (let iy = 0; iy < gridY1; iy++) {
 +
const y = iy * segment_height - height_half;
 +
 +
for (let ix = 0; ix < gridX1; ix++) {
 +
const x = ix * segment_width - width_half;
 +
vertices.push(x, -y, 0);
 +
normals.push(0, 0, 1);
 +
uvs.push(ix / gridX);
 +
uvs.push(1 - iy / gridY);
 +
}
 +
}
 +
 +
for (let iy = 0; iy < gridY; iy++) {
 +
for (let ix = 0; ix < gridX; ix++) {
 +
const a = ix + gridX1 * iy;
 +
const b = ix + gridX1 * (iy + 1);
 +
const c = ix + 1 + gridX1 * (iy + 1);
 +
const d = ix + 1 + gridX1 * iy;
 +
indices.push(a, b, d);
 +
indices.push(b, c, d);
 +
}
 +
}
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
 +
}
 +
 +
static fromJSON(data) {
 +
return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments);
 +
}
 +
 +
}
 +
 +
var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";
 +
 +
var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
 +
 +
var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif";
 +
 +
var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif";
 +
 +
var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
 +
 +
var begin_vertex = "vec3 transformed = vec3( position );";
 +
 +
var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";
 +
 +
var bsdfs = "vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotVH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n\treturn Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\treturn specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\tvec3 FssEss = F * brdf.x + brdf.y;\n\tfloat Ess = brdf.x + brdf.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max(1.0 - cos2h, 0.0078125);\treturn (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n\treturn saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif";
 +
 +
var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";
 +
 +
var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";
 +
 +
var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";
 +
 +
var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";
 +
 +
var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";
 +
 +
var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif";
 +
 +
var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif";
 +
 +
var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif";
 +
 +
var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif";
 +
 +
var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";
 +
 +
var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif";
 +
 +
var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";
 +
 +
var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";
 +
 +
var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";
 +
 +
var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";
 +
 +
var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";
 +
 +
var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
 +
 +
var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";
 +
 +
var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifndef ENVMAP_TYPE_CUBE_UV\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";
 +
 +
var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";
 +
 +
var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";
 +
 +
var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";
 +
 +
var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";
 +
 +
var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = - mvPosition.z;\n#endif";
 +
 +
var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif";
 +
 +
var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";
 +
 +
var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";
 +
 +
var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";
 +
 +
var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\treflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif";
 +
 +
var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
 +
 +
var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";
 +
 +
var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif";
 +
 +
var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat sigma = PI * roughness * roughness / ( 1.0 + roughness );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( -viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif";
 +
 +
var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";
 +
 +
var lights_toon_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";
 +
 +
var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
 +
 +
var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";
 +
 +
var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheen;\n#endif";
 +
 +
var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat specularRoughness;\n\tvec3 specularColor;\n#ifdef CLEARCOAT\n\tfloat clearcoat;\n\tfloat clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tvec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = ccDotNL * directLight.color;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tccIrradiance *= PI;\n\t\t#endif\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t\treflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n\t\t\tmaterial.specularRoughness,\n\t\t\tdirectLight.direction,\n\t\t\tgeometry,\n\t\t\tmaterial.sheenColor\n\t\t);\n\t#else\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n\t#endif\n\treflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t\tfloat ccDotNL = ccDotNV;\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\tfloat clearcoatInv = 1.0 - clearcoatDHR;\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";
 +
 +
var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";
 +
 +
var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n\t#ifdef CLEARCOAT\n\t\tclearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n\t#endif\n#endif";
 +
 +
var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";
 +
 +
var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";
 +
 +
var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";
 +
 +
var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";
 +
 +
var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";
 +
 +
var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";
 +
 +
var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";
 +
 +
var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";
 +
 +
var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
 +
 +
var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";
 +
 +
var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
 +
 +
var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif";
 +
 +
var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\t\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\t\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";
 +
 +
var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif";
 +
 +
var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";
 +
 +
var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif";
 +
 +
var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif";
 +
 +
var clearcoat_normal_fragment_begin = "#ifdef CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";
 +
 +
var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif";
 +
 +
var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";
 +
 +
var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";
 +
 +
var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";
 +
 +
var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";
 +
 +
var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";
 +
 +
var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";
 +
 +
var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";
 +
 +
var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
 +
 +
var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";
 +
 +
var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";
 +
 +
var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";
 +
 +
var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";
 +
 +
var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
 +
 +
var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";
 +
 +
var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";
 +
 +
var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";
 +
 +
var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";
 +
 +
var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
 +
 +
var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";
 +
 +
var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";
 +
 +
var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSNMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition.xyz / vWorldPosition.w;\n\tvec3 v = normalize( cameraPosition - pos );\n\tfloat ior = ( 1.0 + 0.4 * reflectivity ) / ( 1.0 - 0.4 * reflectivity );\n\tvec3 transmission = transmissionFactor * getIBLVolumeRefraction(\n\t\tnormal, v, roughnessFactor, material.diffuseColor, totalSpecular,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationColor, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission, transmissionFactor );\n#endif";
 +
 +
var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec4 vWorldPosition;\n\tvec3 getVolumeTransmissionRay(vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix) {\n\t\tvec3 refractionVector = refract(-v, normalize(n), 1.0 / ior);\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length(vec3(modelMatrix[0].xyz));\n\t\tmodelScale.y = length(vec3(modelMatrix[1].xyz));\n\t\tmodelScale.z = length(vec3(modelMatrix[2].xyz));\n\t\treturn normalize(refractionVector) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness(float roughness, float ior) {\n\t\treturn roughness * clamp(ior * 2.0 - 2.0, 0.0, 1.0);\n\t}\n\tvec3 getTransmissionSample(vec2 fragCoord, float roughness, float ior) {\n\t\tfloat framebufferLod = log2(transmissionSamplerSize.x) * applyIorToRoughness(roughness, ior);\n\t\treturn texture2DLodEXT(transmissionSamplerMap, fragCoord.xy, framebufferLod).rgb;\n\t}\n\tvec3 applyVolumeAttenuation(vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance) {\n\t\tif (attenuationDistance == 0.0) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log(attenuationColor) / attenuationDistance;\n\t\t\tvec3 transmittance = exp(-attenuationCoefficient * transmissionDistance);\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec3 getIBLVolumeRefraction(vec3 n, vec3 v, float perceptualRoughness, vec3 baseColor, vec3 specularColor,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay(n, v, thickness, ior, modelMatrix);\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4(refractedRayExit, 1.0);\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec3 transmittedLight = getTransmissionSample(refractionCoords, perceptualRoughness, ior);\n\t\tvec3 attenuatedColor = applyVolumeAttenuation(transmittedLight, length(transmissionRay), attenuationColor, attenuationDistance);\n\t\treturn (1.0 - specularColor) * attenuatedColor * baseColor;\n\t}\n#endif";
 +
 +
var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";
 +
 +
var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";
 +
 +
var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";
 +
 +
var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
 +
 +
var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";
 +
 +
var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";
 +
 +
var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";
 +
 +
var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
 +
 +
var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";
 +
 +
var cube_frag = "#include <envmap_common_pars_fragment>\nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include <cube_uv_reflection_fragment>\nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include <envmap_fragment>\n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
 +
 +
var cube_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}";
 +
 +
var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";
 +
 +
var depth_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}";
 +
 +
var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";
 +
 +
var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}";
 +
 +
var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
 +
 +
var equirect_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}";
 +
 +
var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
 +
 +
var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
 +
 +
var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
 +
 +
var meshbasic_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_ENVMAP\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}";
 +
 +
var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
 +
 +
var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
 +
 +
var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
 +
 +
var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <color_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#ifndef FLAT_SHADED\n\t\tvNormal = normalize( transformedNormal );\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}";
 +
 +
var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_toon_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_toon_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
 +
 +
var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
 +
 +
var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
 +
 +
var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
 +
 +
var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define REFLECTIVITY\n\t#define CLEARCOAT\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform vec3 attenuationColor;\n\tuniform float attenuationDistance;\n#endif\n#ifdef REFLECTIVITY\n\tuniform float reflectivity;\n#endif\n#ifdef CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheen;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <transmission_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <lights_physical_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
 +
 +
var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#ifdef USE_TRANSMISSION\n\tvarying vec4 vWorldPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition;\n#endif\n}";
 +
 +
var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";
 +
 +
var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";
 +
 +
var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
 +
 +
var points_vert = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}";
 +
 +
var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
 +
 +
var shadow_vert = "#include <common>\n#include <fog_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
 +
 +
var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
 +
 +
var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
 +
 +
const ShaderChunk = {
 +
alphamap_fragment: alphamap_fragment,
 +
alphamap_pars_fragment: alphamap_pars_fragment,
 +
alphatest_fragment: alphatest_fragment,
 +
aomap_fragment: aomap_fragment,
 +
aomap_pars_fragment: aomap_pars_fragment,
 +
begin_vertex: begin_vertex,
 +
beginnormal_vertex: beginnormal_vertex,
 +
bsdfs: bsdfs,
 +
bumpmap_pars_fragment: bumpmap_pars_fragment,
 +
clipping_planes_fragment: clipping_planes_fragment,
 +
clipping_planes_pars_fragment: clipping_planes_pars_fragment,
 +
clipping_planes_pars_vertex: clipping_planes_pars_vertex,
 +
clipping_planes_vertex: clipping_planes_vertex,
 +
color_fragment: color_fragment,
 +
color_pars_fragment: color_pars_fragment,
 +
color_pars_vertex: color_pars_vertex,
 +
color_vertex: color_vertex,
 +
common: common,
 +
cube_uv_reflection_fragment: cube_uv_reflection_fragment,
 +
defaultnormal_vertex: defaultnormal_vertex,
 +
displacementmap_pars_vertex: displacementmap_pars_vertex,
 +
displacementmap_vertex: displacementmap_vertex,
 +
emissivemap_fragment: emissivemap_fragment,
 +
emissivemap_pars_fragment: emissivemap_pars_fragment,
 +
encodings_fragment: encodings_fragment,
 +
encodings_pars_fragment: encodings_pars_fragment,
 +
envmap_fragment: envmap_fragment,
 +
envmap_common_pars_fragment: envmap_common_pars_fragment,
 +
envmap_pars_fragment: envmap_pars_fragment,
 +
envmap_pars_vertex: envmap_pars_vertex,
 +
envmap_physical_pars_fragment: envmap_physical_pars_fragment,
 +
envmap_vertex: envmap_vertex,
 +
fog_vertex: fog_vertex,
 +
fog_pars_vertex: fog_pars_vertex,
 +
fog_fragment: fog_fragment,
 +
fog_pars_fragment: fog_pars_fragment,
 +
gradientmap_pars_fragment: gradientmap_pars_fragment,
 +
lightmap_fragment: lightmap_fragment,
 +
lightmap_pars_fragment: lightmap_pars_fragment,
 +
lights_lambert_vertex: lights_lambert_vertex,
 +
lights_pars_begin: lights_pars_begin,
 +
lights_toon_fragment: lights_toon_fragment,
 +
lights_toon_pars_fragment: lights_toon_pars_fragment,
 +
lights_phong_fragment: lights_phong_fragment,
 +
lights_phong_pars_fragment: lights_phong_pars_fragment,
 +
lights_physical_fragment: lights_physical_fragment,
 +
lights_physical_pars_fragment: lights_physical_pars_fragment,
 +
lights_fragment_begin: lights_fragment_begin,
 +
lights_fragment_maps: lights_fragment_maps,
 +
lights_fragment_end: lights_fragment_end,
 +
logdepthbuf_fragment: logdepthbuf_fragment,
 +
logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
 +
logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
 +
logdepthbuf_vertex: logdepthbuf_vertex,
 +
map_fragment: map_fragment,
 +
map_pars_fragment: map_pars_fragment,
 +
map_particle_fragment: map_particle_fragment,
 +
map_particle_pars_fragment: map_particle_pars_fragment,
 +
metalnessmap_fragment: metalnessmap_fragment,
 +
metalnessmap_pars_fragment: metalnessmap_pars_fragment,
 +
morphnormal_vertex: morphnormal_vertex,
 +
morphtarget_pars_vertex: morphtarget_pars_vertex,
 +
morphtarget_vertex: morphtarget_vertex,
 +
normal_fragment_begin: normal_fragment_begin,
 +
normal_fragment_maps: normal_fragment_maps,
 +
normalmap_pars_fragment: normalmap_pars_fragment,
 +
clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,
 +
clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,
 +
clearcoat_pars_fragment: clearcoat_pars_fragment,
 +
packing: packing,
 +
premultiplied_alpha_fragment: premultiplied_alpha_fragment,
 +
project_vertex: project_vertex,
 +
dithering_fragment: dithering_fragment,
 +
dithering_pars_fragment: dithering_pars_fragment,
 +
roughnessmap_fragment: roughnessmap_fragment,
 +
roughnessmap_pars_fragment: roughnessmap_pars_fragment,
 +
shadowmap_pars_fragment: shadowmap_pars_fragment,
 +
shadowmap_pars_vertex: shadowmap_pars_vertex,
 +
shadowmap_vertex: shadowmap_vertex,
 +
shadowmask_pars_fragment: shadowmask_pars_fragment,
 +
skinbase_vertex: skinbase_vertex,
 +
skinning_pars_vertex: skinning_pars_vertex,
 +
skinning_vertex: skinning_vertex,
 +
skinnormal_vertex: skinnormal_vertex,
 +
specularmap_fragment: specularmap_fragment,
 +
specularmap_pars_fragment: specularmap_pars_fragment,
 +
tonemapping_fragment: tonemapping_fragment,
 +
tonemapping_pars_fragment: tonemapping_pars_fragment,
 +
transmission_fragment: transmission_fragment,
 +
transmission_pars_fragment: transmission_pars_fragment,
 +
uv_pars_fragment: uv_pars_fragment,
 +
uv_pars_vertex: uv_pars_vertex,
 +
uv_vertex: uv_vertex,
 +
uv2_pars_fragment: uv2_pars_fragment,
 +
uv2_pars_vertex: uv2_pars_vertex,
 +
uv2_vertex: uv2_vertex,
 +
worldpos_vertex: worldpos_vertex,
 +
background_frag: background_frag,
 +
background_vert: background_vert,
 +
cube_frag: cube_frag,
 +
cube_vert: cube_vert,
 +
depth_frag: depth_frag,
 +
depth_vert: depth_vert,
 +
distanceRGBA_frag: distanceRGBA_frag,
 +
distanceRGBA_vert: distanceRGBA_vert,
 +
equirect_frag: equirect_frag,
 +
equirect_vert: equirect_vert,
 +
linedashed_frag: linedashed_frag,
 +
linedashed_vert: linedashed_vert,
 +
meshbasic_frag: meshbasic_frag,
 +
meshbasic_vert: meshbasic_vert,
 +
meshlambert_frag: meshlambert_frag,
 +
meshlambert_vert: meshlambert_vert,
 +
meshmatcap_frag: meshmatcap_frag,
 +
meshmatcap_vert: meshmatcap_vert,
 +
meshtoon_frag: meshtoon_frag,
 +
meshtoon_vert: meshtoon_vert,
 +
meshphong_frag: meshphong_frag,
 +
meshphong_vert: meshphong_vert,
 +
meshphysical_frag: meshphysical_frag,
 +
meshphysical_vert: meshphysical_vert,
 +
normal_frag: normal_frag,
 +
normal_vert: normal_vert,
 +
points_frag: points_frag,
 +
points_vert: points_vert,
 +
shadow_frag: shadow_frag,
 +
shadow_vert: shadow_vert,
 +
sprite_frag: sprite_frag,
 +
sprite_vert: sprite_vert
 +
};
 +
 +
/**
 +
* Uniforms library for shared webgl shaders
 +
*/
 +
 +
const UniformsLib = {
 +
common: {
 +
diffuse: {
 +
value: new Color(0xffffff)
 +
},
 +
opacity: {
 +
value: 1.0
 +
},
 +
map: {
 +
value: null
 +
},
 +
uvTransform: {
 +
value: new Matrix3()
 +
},
 +
uv2Transform: {
 +
value: new Matrix3()
 +
},
 +
alphaMap: {
 +
value: null
 +
}
 +
},
 +
specularmap: {
 +
specularMap: {
 +
value: null
 +
}
 +
},
 +
envmap: {
 +
envMap: {
 +
value: null
 +
},
 +
flipEnvMap: {
 +
value: -1
 +
},
 +
reflectivity: {
 +
value: 1.0
 +
},
 +
refractionRatio: {
 +
value: 0.98
 +
},
 +
maxMipLevel: {
 +
value: 0
 +
}
 +
},
 +
aomap: {
 +
aoMap: {
 +
value: null
 +
},
 +
aoMapIntensity: {
 +
value: 1
 +
}
 +
},
 +
lightmap: {
 +
lightMap: {
 +
value: null
 +
},
 +
lightMapIntensity: {
 +
value: 1
 +
}
 +
},
 +
emissivemap: {
 +
emissiveMap: {
 +
value: null
 +
}
 +
},
 +
bumpmap: {
 +
bumpMap: {
 +
value: null
 +
},
 +
bumpScale: {
 +
value: 1
 +
}
 +
},
 +
normalmap: {
 +
normalMap: {
 +
value: null
 +
},
 +
normalScale: {
 +
value: new Vector2(1, 1)
 +
}
 +
},
 +
displacementmap: {
 +
displacementMap: {
 +
value: null
 +
},
 +
displacementScale: {
 +
value: 1
 +
},
 +
displacementBias: {
 +
value: 0
 +
}
 +
},
 +
roughnessmap: {
 +
roughnessMap: {
 +
value: null
 +
}
 +
},
 +
metalnessmap: {
 +
metalnessMap: {
 +
value: null
 +
}
 +
},
 +
gradientmap: {
 +
gradientMap: {
 +
value: null
 +
}
 +
},
 +
fog: {
 +
fogDensity: {
 +
value: 0.00025
 +
},
 +
fogNear: {
 +
value: 1
 +
},
 +
fogFar: {
 +
value: 2000
 +
},
 +
fogColor: {
 +
value: new Color(0xffffff)
 +
}
 +
},
 +
lights: {
 +
ambientLightColor: {
 +
value: []
 +
},
 +
lightProbe: {
 +
value: []
 +
},
 +
directionalLights: {
 +
value: [],
 +
properties: {
 +
direction: {},
 +
color: {}
 +
}
 +
},
 +
directionalLightShadows: {
 +
value: [],
 +
properties: {
 +
shadowBias: {},
 +
shadowNormalBias: {},
 +
shadowRadius: {},
 +
shadowMapSize: {}
 +
}
 +
},
 +
directionalShadowMap: {
 +
value: []
 +
},
 +
directionalShadowMatrix: {
 +
value: []
 +
},
 +
spotLights: {
 +
value: [],
 +
properties: {
 +
color: {},
 +
position: {},
 +
direction: {},
 +
distance: {},
 +
coneCos: {},
 +
penumbraCos: {},
 +
decay: {}
 +
}
 +
},
 +
spotLightShadows: {
 +
value: [],
 +
properties: {
 +
shadowBias: {},
 +
shadowNormalBias: {},
 +
shadowRadius: {},
 +
shadowMapSize: {}
 +
}
 +
},
 +
spotShadowMap: {
 +
value: []
 +
},
 +
spotShadowMatrix: {
 +
value: []
 +
},
 +
pointLights: {
 +
value: [],
 +
properties: {
 +
color: {},
 +
position: {},
 +
decay: {},
 +
distance: {}
 +
}
 +
},
 +
pointLightShadows: {
 +
value: [],
 +
properties: {
 +
shadowBias: {},
 +
shadowNormalBias: {},
 +
shadowRadius: {},
 +
shadowMapSize: {},
 +
shadowCameraNear: {},
 +
shadowCameraFar: {}
 +
}
 +
},
 +
pointShadowMap: {
 +
value: []
 +
},
 +
pointShadowMatrix: {
 +
value: []
 +
},
 +
hemisphereLights: {
 +
value: [],
 +
properties: {
 +
direction: {},
 +
skyColor: {},
 +
groundColor: {}
 +
}
 +
},
 +
// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
 +
rectAreaLights: {
 +
value: [],
 +
properties: {
 +
color: {},
 +
position: {},
 +
width: {},
 +
height: {}
 +
}
 +
},
 +
ltc_1: {
 +
value: null
 +
},
 +
ltc_2: {
 +
value: null
 +
}
 +
},
 +
points: {
 +
diffuse: {
 +
value: new Color(0xffffff)
 +
},
 +
opacity: {
 +
value: 1.0
 +
},
 +
size: {
 +
value: 1.0
 +
},
 +
scale: {
 +
value: 1.0
 +
},
 +
map: {
 +
value: null
 +
},
 +
alphaMap: {
 +
value: null
 +
},
 +
uvTransform: {
 +
value: new Matrix3()
 +
}
 +
},
 +
sprite: {
 +
diffuse: {
 +
value: new Color(0xffffff)
 +
},
 +
opacity: {
 +
value: 1.0
 +
},
 +
center: {
 +
value: new Vector2(0.5, 0.5)
 +
},
 +
rotation: {
 +
value: 0.0
 +
},
 +
map: {
 +
value: null
 +
},
 +
alphaMap: {
 +
value: null
 +
},
 +
uvTransform: {
 +
value: new Matrix3()
 +
}
 +
}
 +
};
 +
 +
const ShaderLib = {
 +
basic: {
 +
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]),
 +
vertexShader: ShaderChunk.meshbasic_vert,
 +
fragmentShader: ShaderChunk.meshbasic_frag
 +
},
 +
lambert: {
 +
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, {
 +
emissive: {
 +
value: new Color(0x000000)
 +
}
 +
}]),
 +
vertexShader: ShaderChunk.meshlambert_vert,
 +
fragmentShader: ShaderChunk.meshlambert_frag
 +
},
 +
phong: {
 +
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, {
 +
emissive: {
 +
value: new Color(0x000000)
 +
},
 +
specular: {
 +
value: new Color(0x111111)
 +
},
 +
shininess: {
 +
value: 30
 +
}
 +
}]),
 +
vertexShader: ShaderChunk.meshphong_vert,
 +
fragmentShader: ShaderChunk.meshphong_frag
 +
},
 +
standard: {
 +
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, {
 +
emissive: {
 +
value: new Color(0x000000)
 +
},
 +
roughness: {
 +
value: 1.0
 +
},
 +
metalness: {
 +
value: 0.0
 +
},
 +
envMapIntensity: {
 +
value: 1
 +
} // temporary
 +
 +
}]),
 +
vertexShader: ShaderChunk.meshphysical_vert,
 +
fragmentShader: ShaderChunk.meshphysical_frag
 +
},
 +
toon: {
 +
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, {
 +
emissive: {
 +
value: new Color(0x000000)
 +
}
 +
}]),
 +
vertexShader: ShaderChunk.meshtoon_vert,
 +
fragmentShader: ShaderChunk.meshtoon_frag
 +
},
 +
matcap: {
 +
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, {
 +
matcap: {
 +
value: null
 +
}
 +
}]),
 +
vertexShader: ShaderChunk.meshmatcap_vert,
 +
fragmentShader: ShaderChunk.meshmatcap_frag
 +
},
 +
points: {
 +
uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]),
 +
vertexShader: ShaderChunk.points_vert,
 +
fragmentShader: ShaderChunk.points_frag
 +
},
 +
dashed: {
 +
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.fog, {
 +
scale: {
 +
value: 1
 +
},
 +
dashSize: {
 +
value: 1
 +
},
 +
totalSize: {
 +
value: 2
 +
}
 +
}]),
 +
vertexShader: ShaderChunk.linedashed_vert,
 +
fragmentShader: ShaderChunk.linedashed_frag
 +
},
 +
depth: {
 +
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]),
 +
vertexShader: ShaderChunk.depth_vert,
 +
fragmentShader: ShaderChunk.depth_frag
 +
},
 +
normal: {
 +
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, {
 +
opacity: {
 +
value: 1.0
 +
}
 +
}]),
 +
vertexShader: ShaderChunk.normal_vert,
 +
fragmentShader: ShaderChunk.normal_frag
 +
},
 +
sprite: {
 +
uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]),
 +
vertexShader: ShaderChunk.sprite_vert,
 +
fragmentShader: ShaderChunk.sprite_frag
 +
},
 +
background: {
 +
uniforms: {
 +
uvTransform: {
 +
value: new Matrix3()
 +
},
 +
t2D: {
 +
value: null
 +
}
 +
},
 +
vertexShader: ShaderChunk.background_vert,
 +
fragmentShader: ShaderChunk.background_frag
 +
},
 +
 +
/* -------------------------------------------------------------------------
 +
// Cube map shader
 +
------------------------------------------------------------------------- */
 +
cube: {
 +
uniforms: mergeUniforms([UniformsLib.envmap, {
 +
opacity: {
 +
value: 1.0
 +
}
 +
}]),
 +
vertexShader: ShaderChunk.cube_vert,
 +
fragmentShader: ShaderChunk.cube_frag
 +
},
 +
equirect: {
 +
uniforms: {
 +
tEquirect: {
 +
value: null
 +
}
 +
},
 +
vertexShader: ShaderChunk.equirect_vert,
 +
fragmentShader: ShaderChunk.equirect_frag
 +
},
 +
distanceRGBA: {
 +
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap, {
 +
referencePosition: {
 +
value: new Vector3()
 +
},
 +
nearDistance: {
 +
value: 1
 +
},
 +
farDistance: {
 +
value: 1000
 +
}
 +
}]),
 +
vertexShader: ShaderChunk.distanceRGBA_vert,
 +
fragmentShader: ShaderChunk.distanceRGBA_frag
 +
},
 +
shadow: {
 +
uniforms: mergeUniforms([UniformsLib.lights, UniformsLib.fog, {
 +
color: {
 +
value: new Color(0x00000)
 +
},
 +
opacity: {
 +
value: 1.0
 +
}
 +
}]),
 +
vertexShader: ShaderChunk.shadow_vert,
 +
fragmentShader: ShaderChunk.shadow_frag
 +
}
 +
};
 +
ShaderLib.physical = {
 +
uniforms: mergeUniforms([ShaderLib.standard.uniforms, {
 +
clearcoat: {
 +
value: 0
 +
},
 +
clearcoatMap: {
 +
value: null
 +
},
 +
clearcoatRoughness: {
 +
value: 0
 +
},
 +
clearcoatRoughnessMap: {
 +
value: null
 +
},
 +
clearcoatNormalScale: {
 +
value: new Vector2(1, 1)
 +
},
 +
clearcoatNormalMap: {
 +
value: null
 +
},
 +
sheen: {
 +
value: new Color(0x000000)
 +
},
 +
transmission: {
 +
value: 0
 +
},
 +
transmissionMap: {
 +
value: null
 +
},
 +
transmissionSamplerSize: {
 +
value: new Vector2()
 +
},
 +
transmissionSamplerMap: {
 +
value: null
 +
},
 +
thickness: {
 +
value: 0
 +
},
 +
thicknessMap: {
 +
value: null
 +
},
 +
attenuationDistance: {
 +
value: 0
 +
},
 +
attenuationColor: {
 +
value: new Color(0x000000)
 +
}
 +
}]),
 +
vertexShader: ShaderChunk.meshphysical_vert,
 +
fragmentShader: ShaderChunk.meshphysical_frag
 +
};
 +
 +
function WebGLBackground(renderer, cubemaps, state, objects, premultipliedAlpha) {
 +
const clearColor = new Color(0x000000);
 +
let clearAlpha = 0;
 +
let planeMesh;
 +
let boxMesh;
 +
let currentBackground = null;
 +
let currentBackgroundVersion = 0;
 +
let currentTonemapping = null;
 +
 +
function render(renderList, scene) {
 +
let forceClear = false;
 +
let background = scene.isScene === true ? scene.background : null;
 +
 +
if (background && background.isTexture) {
 +
background = cubemaps.get(background);
 +
} // Ignore background in AR
 +
// TODO: Reconsider this.
 +
 +
 +
const xr = renderer.xr;
 +
const session = xr.getSession && xr.getSession();
 +
 +
if (session && session.environmentBlendMode === 'additive') {
 +
background = null;
 +
}
 +
 +
if (background === null) {
 +
setClear(clearColor, clearAlpha);
 +
} else if (background && background.isColor) {
 +
setClear(background, 1);
 +
forceClear = true;
 +
}
 +
 +
if (renderer.autoClear || forceClear) {
 +
renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil);
 +
}
 +
 +
if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) {
 +
if (boxMesh === undefined) {
 +
boxMesh = new Mesh(new BoxGeometry(1, 1, 1), new ShaderMaterial({
 +
name: 'BackgroundCubeMaterial',
 +
uniforms: cloneUniforms(ShaderLib.cube.uniforms),
 +
vertexShader: ShaderLib.cube.vertexShader,
 +
fragmentShader: ShaderLib.cube.fragmentShader,
 +
side: BackSide,
 +
depthTest: false,
 +
depthWrite: false,
 +
fog: false
 +
}));
 +
boxMesh.geometry.deleteAttribute('normal');
 +
boxMesh.geometry.deleteAttribute('uv');
 +
 +
boxMesh.onBeforeRender = function (renderer, scene, camera) {
 +
this.matrixWorld.copyPosition(camera.matrixWorld);
 +
}; // enable code injection for non-built-in material
 +
 +
 +
Object.defineProperty(boxMesh.material, 'envMap', {
 +
get: function () {
 +
return this.uniforms.envMap.value;
 +
}
 +
});
 +
objects.update(boxMesh);
 +
}
 +
 +
boxMesh.material.uniforms.envMap.value = background;
 +
boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background._needsFlipEnvMap ? -1 : 1;
 +
 +
if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
 +
boxMesh.material.needsUpdate = true;
 +
currentBackground = background;
 +
currentBackgroundVersion = background.version;
 +
currentTonemapping = renderer.toneMapping;
 +
} // push to the pre-sorted opaque render list
 +
 +
 +
renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null);
 +
} else if (background && background.isTexture) {
 +
if (planeMesh === undefined) {
 +
planeMesh = new Mesh(new PlaneGeometry(2, 2), new ShaderMaterial({
 +
name: 'BackgroundMaterial',
 +
uniforms: cloneUniforms(ShaderLib.background.uniforms),
 +
vertexShader: ShaderLib.background.vertexShader,
 +
fragmentShader: ShaderLib.background.fragmentShader,
 +
side: FrontSide,
 +
depthTest: false,
 +
depthWrite: false,
 +
fog: false
 +
}));
 +
planeMesh.geometry.deleteAttribute('normal'); // enable code injection for non-built-in material
 +
 +
Object.defineProperty(planeMesh.material, 'map', {
 +
get: function () {
 +
return this.uniforms.t2D.value;
 +
}
 +
});
 +
objects.update(planeMesh);
 +
}
 +
 +
planeMesh.material.uniforms.t2D.value = background;
 +
 +
if (background.matrixAutoUpdate === true) {
 +
background.updateMatrix();
 +
}
 +
 +
planeMesh.material.uniforms.uvTransform.value.copy(background.matrix);
 +
 +
if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
 +
planeMesh.material.needsUpdate = true;
 +
currentBackground = background;
 +
currentBackgroundVersion = background.version;
 +
currentTonemapping = renderer.toneMapping;
 +
} // push to the pre-sorted opaque render list
 +
 +
 +
renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null);
 +
}
 +
}
 +
 +
function setClear(color, alpha) {
 +
state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha);
 +
}
 +
 +
return {
 +
getClearColor: function () {
 +
return clearColor;
 +
},
 +
setClearColor: function (color, alpha = 1) {
 +
clearColor.set(color);
 +
clearAlpha = alpha;
 +
setClear(clearColor, clearAlpha);
 +
},
 +
getClearAlpha: function () {
 +
return clearAlpha;
 +
},
 +
setClearAlpha: function (alpha) {
 +
clearAlpha = alpha;
 +
setClear(clearColor, clearAlpha);
 +
},
 +
render: render
 +
};
 +
}
 +
 +
function WebGLBindingStates(gl, extensions, attributes, capabilities) {
 +
const maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);
 +
const extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object');
 +
const vaoAvailable = capabilities.isWebGL2 || extension !== null;
 +
const bindingStates = {};
 +
const defaultState = createBindingState(null);
 +
let currentState = defaultState;
 +
 +
function setup(object, material, program, geometry, index) {
 +
let updateBuffers = false;
 +
 +
if (vaoAvailable) {
 +
const state = getBindingState(geometry, program, material);
 +
 +
if (currentState !== state) {
 +
currentState = state;
 +
bindVertexArrayObject(currentState.object);
 +
}
 +
 +
updateBuffers = needsUpdate(geometry, index);
 +
if (updateBuffers) saveCache(geometry, index);
 +
} else {
 +
const wireframe = material.wireframe === true;
 +
 +
if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) {
 +
currentState.geometry = geometry.id;
 +
currentState.program = program.id;
 +
currentState.wireframe = wireframe;
 +
updateBuffers = true;
 +
}
 +
}
 +
 +
if (object.isInstancedMesh === true) {
 +
updateBuffers = true;
 +
}
 +
 +
if (index !== null) {
 +
attributes.update(index, gl.ELEMENT_ARRAY_BUFFER);
 +
}
 +
 +
if (updateBuffers) {
 +
setupVertexAttributes(object, material, program, geometry);
 +
 +
if (index !== null) {
 +
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, attributes.get(index).buffer);
 +
}
 +
}
 +
}
 +
 +
function createVertexArrayObject() {
 +
if (capabilities.isWebGL2) return gl.createVertexArray();
 +
return extension.createVertexArrayOES();
 +
}
 +
 +
function bindVertexArrayObject(vao) {
 +
if (capabilities.isWebGL2) return gl.bindVertexArray(vao);
 +
return extension.bindVertexArrayOES(vao);
 +
}
 +
 +
function deleteVertexArrayObject(vao) {
 +
if (capabilities.isWebGL2) return gl.deleteVertexArray(vao);
 +
return extension.deleteVertexArrayOES(vao);
 +
}
 +
 +
function getBindingState(geometry, program, material) {
 +
const wireframe = material.wireframe === true;
 +
let programMap = bindingStates[geometry.id];
 +
 +
if (programMap === undefined) {
 +
programMap = {};
 +
bindingStates[geometry.id] = programMap;
 +
}
 +
 +
let stateMap = programMap[program.id];
 +
 +
if (stateMap === undefined) {
 +
stateMap = {};
 +
programMap[program.id] = stateMap;
 +
}
 +
 +
let state = stateMap[wireframe];
 +
 +
if (state === undefined) {
 +
state = createBindingState(createVertexArrayObject());
 +
stateMap[wireframe] = state;
 +
}
 +
 +
return state;
 +
}
 +
 +
function createBindingState(vao) {
 +
const newAttributes = [];
 +
const enabledAttributes = [];
 +
const attributeDivisors = [];
 +
 +
for (let i = 0; i < maxVertexAttributes; i++) {
 +
newAttributes[i] = 0;
 +
enabledAttributes[i] = 0;
 +
attributeDivisors[i] = 0;
 +
}
 +
 +
return {
 +
// for backward compatibility on non-VAO support browser
 +
geometry: null,
 +
program: null,
 +
wireframe: false,
 +
newAttributes: newAttributes,
 +
enabledAttributes: enabledAttributes,
 +
attributeDivisors: attributeDivisors,
 +
object: vao,
 +
attributes: {},
 +
index: null
 +
};
 +
}
 +
 +
function needsUpdate(geometry, index) {
 +
const cachedAttributes = currentState.attributes;
 +
const geometryAttributes = geometry.attributes;
 +
let attributesNum = 0;
 +
 +
for (const key in geometryAttributes) {
 +
const cachedAttribute = cachedAttributes[key];
 +
const geometryAttribute = geometryAttributes[key];
 +
if (cachedAttribute === undefined) return true;
 +
if (cachedAttribute.attribute !== geometryAttribute) return true;
 +
if (cachedAttribute.data !== geometryAttribute.data) return true;
 +
attributesNum++;
 +
}
 +
 +
if (currentState.attributesNum !== attributesNum) return true;
 +
if (currentState.index !== index) return true;
 +
return false;
 +
}
 +
 +
function saveCache(geometry, index) {
 +
const cache = {};
 +
const attributes = geometry.attributes;
 +
let attributesNum = 0;
 +
 +
for (const key in attributes) {
 +
const attribute = attributes[key];
 +
const data = {};
 +
data.attribute = attribute;
 +
 +
if (attribute.data) {
 +
data.data = attribute.data;
 +
}
 +
 +
cache[key] = data;
 +
attributesNum++;
 +
}
 +
 +
currentState.attributes = cache;
 +
currentState.attributesNum = attributesNum;
 +
currentState.index = index;
 +
}
 +
 +
function initAttributes() {
 +
const newAttributes = currentState.newAttributes;
 +
 +
for (let i = 0, il = newAttributes.length; i < il; i++) {
 +
newAttributes[i] = 0;
 +
}
 +
}
 +
 +
function enableAttribute(attribute) {
 +
enableAttributeAndDivisor(attribute, 0);
 +
}
 +
 +
function enableAttributeAndDivisor(attribute, meshPerAttribute) {
 +
const newAttributes = currentState.newAttributes;
 +
const enabledAttributes = currentState.enabledAttributes;
 +
const attributeDivisors = currentState.attributeDivisors;
 +
newAttributes[attribute] = 1;
 +
 +
if (enabledAttributes[attribute] === 0) {
 +
gl.enableVertexAttribArray(attribute);
 +
enabledAttributes[attribute] = 1;
 +
}
 +
 +
if (attributeDivisors[attribute] !== meshPerAttribute) {
 +
const extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays');
 +
extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute);
 +
attributeDivisors[attribute] = meshPerAttribute;
 +
}
 +
}
 +
 +
function disableUnusedAttributes() {
 +
const newAttributes = currentState.newAttributes;
 +
const enabledAttributes = currentState.enabledAttributes;
 +
 +
for (let i = 0, il = enabledAttributes.length; i < il; i++) {
 +
if (enabledAttributes[i] !== newAttributes[i]) {
 +
gl.disableVertexAttribArray(i);
 +
enabledAttributes[i] = 0;
 +
}
 +
}
 +
}
 +
 +
function vertexAttribPointer(index, size, type, normalized, stride, offset) {
 +
if (capabilities.isWebGL2 === true && (type === gl.INT || type === gl.UNSIGNED_INT)) {
 +
gl.vertexAttribIPointer(index, size, type, stride, offset);
 +
} else {
 +
gl.vertexAttribPointer(index, size, type, normalized, stride, offset);
 +
}
 +
}
 +
 +
function setupVertexAttributes(object, material, program, geometry) {
 +
if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) {
 +
if (extensions.get('ANGLE_instanced_arrays') === null) return;
 +
}
 +
 +
initAttributes();
 +
const geometryAttributes = geometry.attributes;
 +
const programAttributes = program.getAttributes();
 +
const materialDefaultAttributeValues = material.defaultAttributeValues;
 +
 +
for (const name in programAttributes) {
 +
const programAttribute = programAttributes[name];
 +
 +
if (programAttribute >= 0) {
 +
const geometryAttribute = geometryAttributes[name];
 +
 +
if (geometryAttribute !== undefined) {
 +
const normalized = geometryAttribute.normalized;
 +
const size = geometryAttribute.itemSize;
 +
const attribute = attributes.get(geometryAttribute); // TODO Attribute may not be available on context restore
 +
 +
if (attribute === undefined) continue;
 +
const buffer = attribute.buffer;
 +
const type = attribute.type;
 +
const bytesPerElement = attribute.bytesPerElement;
 +
 +
if (geometryAttribute.isInterleavedBufferAttribute) {
 +
const data = geometryAttribute.data;
 +
const stride = data.stride;
 +
const offset = geometryAttribute.offset;
 +
 +
if (data && data.isInstancedInterleavedBuffer) {
 +
enableAttributeAndDivisor(programAttribute, data.meshPerAttribute);
 +
 +
if (geometry._maxInstanceCount === undefined) {
 +
geometry._maxInstanceCount = data.meshPerAttribute * data.count;
 +
}
 +
} else {
 +
enableAttribute(programAttribute);
 +
}
 +
 +
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
 +
vertexAttribPointer(programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement);
 +
} else {
 +
if (geometryAttribute.isInstancedBufferAttribute) {
 +
enableAttributeAndDivisor(programAttribute, geometryAttribute.meshPerAttribute);
 +
 +
if (geometry._maxInstanceCount === undefined) {
 +
geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
 +
}
 +
} else {
 +
enableAttribute(programAttribute);
 +
}
 +
 +
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
 +
vertexAttribPointer(programAttribute, size, type, normalized, 0, 0);
 +
}
 +
} else if (name === 'instanceMatrix') {
 +
const attribute = attributes.get(object.instanceMatrix); // TODO Attribute may not be available on context restore
 +
 +
if (attribute === undefined) continue;
 +
const buffer = attribute.buffer;
 +
const type = attribute.type;
 +
enableAttributeAndDivisor(programAttribute + 0, 1);
 +
enableAttributeAndDivisor(programAttribute + 1, 1);
 +
enableAttributeAndDivisor(programAttribute + 2, 1);
 +
enableAttributeAndDivisor(programAttribute + 3, 1);
 +
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
 +
gl.vertexAttribPointer(programAttribute + 0, 4, type, false, 64, 0);
 +
gl.vertexAttribPointer(programAttribute + 1, 4, type, false, 64, 16);
 +
gl.vertexAttribPointer(programAttribute + 2, 4, type, false, 64, 32);
 +
gl.vertexAttribPointer(programAttribute + 3, 4, type, false, 64, 48);
 +
} else if (name === 'instanceColor') {
 +
const attribute = attributes.get(object.instanceColor); // TODO Attribute may not be available on context restore
 +
 +
if (attribute === undefined) continue;
 +
const buffer = attribute.buffer;
 +
const type = attribute.type;
 +
enableAttributeAndDivisor(programAttribute, 1);
 +
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
 +
gl.vertexAttribPointer(programAttribute, 3, type, false, 12, 0);
 +
} else if (materialDefaultAttributeValues !== undefined) {
 +
const value = materialDefaultAttributeValues[name];
 +
 +
if (value !== undefined) {
 +
switch (value.length) {
 +
case 2:
 +
gl.vertexAttrib2fv(programAttribute, value);
 +
break;
 +
 +
case 3:
 +
gl.vertexAttrib3fv(programAttribute, value);
 +
break;
 +
 +
case 4:
 +
gl.vertexAttrib4fv(programAttribute, value);
 +
break;
 +
 +
default:
 +
gl.vertexAttrib1fv(programAttribute, value);
 +
}
 +
}
 +
}
 +
}
 +
}
 +
 +
disableUnusedAttributes();
 +
}
 +
 +
function dispose() {
 +
reset();
 +
 +
for (const geometryId in bindingStates) {
 +
const programMap = bindingStates[geometryId];
 +
 +
for (const programId in programMap) {
 +
const stateMap = programMap[programId];
 +
 +
for (const wireframe in stateMap) {
 +
deleteVertexArrayObject(stateMap[wireframe].object);
 +
delete stateMap[wireframe];
 +
}
 +
 +
delete programMap[programId];
 +
}
 +
 +
delete bindingStates[geometryId];
 +
}
 +
}
 +
 +
function releaseStatesOfGeometry(geometry) {
 +
if (bindingStates[geometry.id] === undefined) return;
 +
const programMap = bindingStates[geometry.id];
 +
 +
for (const programId in programMap) {
 +
const stateMap = programMap[programId];
 +
 +
for (const wireframe in stateMap) {
 +
deleteVertexArrayObject(stateMap[wireframe].object);
 +
delete stateMap[wireframe];
 +
}
 +
 +
delete programMap[programId];
 +
}
 +
 +
delete bindingStates[geometry.id];
 +
}
 +
 +
function releaseStatesOfProgram(program) {
 +
for (const geometryId in bindingStates) {
 +
const programMap = bindingStates[geometryId];
 +
if (programMap[program.id] === undefined) continue;
 +
const stateMap = programMap[program.id];
 +
 +
for (const wireframe in stateMap) {
 +
deleteVertexArrayObject(stateMap[wireframe].object);
 +
delete stateMap[wireframe];
 +
}
 +
 +
delete programMap[program.id];
 +
}
 +
}
 +
 +
function reset() {
 +
resetDefaultState();
 +
if (currentState === defaultState) return;
 +
currentState = defaultState;
 +
bindVertexArrayObject(currentState.object);
 +
} // for backward-compatilibity
 +
 +
 +
function resetDefaultState() {
 +
defaultState.geometry = null;
 +
defaultState.program = null;
 +
defaultState.wireframe = false;
 +
}
 +
 +
return {
 +
setup: setup,
 +
reset: reset,
 +
resetDefaultState: resetDefaultState,
 +
dispose: dispose,
 +
releaseStatesOfGeometry: releaseStatesOfGeometry,
 +
releaseStatesOfProgram: releaseStatesOfProgram,
 +
initAttributes: initAttributes,
 +
enableAttribute: enableAttribute,
 +
disableUnusedAttributes: disableUnusedAttributes
 +
};
 +
}
 +
 +
function WebGLBufferRenderer(gl, extensions, info, capabilities) {
 +
const isWebGL2 = capabilities.isWebGL2;
 +
let mode;
 +
 +
function setMode(value) {
 +
mode = value;
 +
}
 +
 +
function render(start, count) {
 +
gl.drawArrays(mode, start, count);
 +
info.update(count, mode, 1);
 +
}
 +
 +
function renderInstances(start, count, primcount) {
 +
if (primcount === 0) return;
 +
let extension, methodName;
 +
 +
if (isWebGL2) {
 +
extension = gl;
 +
methodName = 'drawArraysInstanced';
 +
} else {
 +
extension = extensions.get('ANGLE_instanced_arrays');
 +
methodName = 'drawArraysInstancedANGLE';
 +
 +
if (extension === null) {
 +
console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
 +
return;
 +
}
 +
}
 +
 +
extension[methodName](mode, start, count, primcount);
 +
info.update(count, mode, primcount);
 +
} //
 +
 +
 +
this.setMode = setMode;
 +
this.render = render;
 +
this.renderInstances = renderInstances;
 +
}
 +
 +
function WebGLCapabilities(gl, extensions, parameters) {
 +
let maxAnisotropy;
 +
 +
function getMaxAnisotropy() {
 +
if (maxAnisotropy !== undefined) return maxAnisotropy;
 +
 +
if (extensions.has('EXT_texture_filter_anisotropic') === true) {
 +
const extension = extensions.get('EXT_texture_filter_anisotropic');
 +
maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT);
 +
} else {
 +
maxAnisotropy = 0;
 +
}
 +
 +
return maxAnisotropy;
 +
}
 +
 +
function getMaxPrecision(precision) {
 +
if (precision === 'highp') {
 +
if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0) {
 +
return 'highp';
 +
}
 +
 +
precision = 'mediump';
 +
}
 +
 +
if (precision === 'mediump') {
 +
if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0) {
 +
return 'mediump';
 +
}
 +
}
 +
 +
return 'lowp';
 +
}
 +
/* eslint-disable no-undef */
 +
 +
 +
const isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext || typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext;
 +
/* eslint-enable no-undef */
 +
 +
let precision = parameters.precision !== undefined ? parameters.precision : 'highp';
 +
const maxPrecision = getMaxPrecision(precision);
 +
 +
if (maxPrecision !== precision) {
 +
console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.');
 +
precision = maxPrecision;
 +
}
 +
 +
const drawBuffers = isWebGL2 || extensions.has('WEBGL_draw_buffers');
 +
const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;
 +
const maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS);
 +
const maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS);
 +
const maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE);
 +
const maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE);
 +
const maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);
 +
const maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS);
 +
const maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS);
 +
const maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS);
 +
const vertexTextures = maxVertexTextures > 0;
 +
const floatFragmentTextures = isWebGL2 || extensions.has('OES_texture_float');
 +
const floatVertexTextures = vertexTextures && floatFragmentTextures;
 +
const maxSamples = isWebGL2 ? gl.getParameter(gl.MAX_SAMPLES) : 0;
 +
return {
 +
isWebGL2: isWebGL2,
 +
drawBuffers: drawBuffers,
 +
getMaxAnisotropy: getMaxAnisotropy,
 +
getMaxPrecision: getMaxPrecision,
 +
precision: precision,
 +
logarithmicDepthBuffer: logarithmicDepthBuffer,
 +
maxTextures: maxTextures,
 +
maxVertexTextures: maxVertexTextures,
 +
maxTextureSize: maxTextureSize,
 +
maxCubemapSize: maxCubemapSize,
 +
maxAttributes: maxAttributes,
 +
maxVertexUniforms: maxVertexUniforms,
 +
maxVaryings: maxVaryings,
 +
maxFragmentUniforms: maxFragmentUniforms,
 +
vertexTextures: vertexTextures,
 +
floatFragmentTextures: floatFragmentTextures,
 +
floatVertexTextures: floatVertexTextures,
 +
maxSamples: maxSamples
 +
};
 +
}
 +
 +
function WebGLClipping(properties) {
 +
const scope = this;
 +
let globalState = null,
 +
numGlobalPlanes = 0,
 +
localClippingEnabled = false,
 +
renderingShadows = false;
 +
const plane = new Plane(),
 +
viewNormalMatrix = new Matrix3(),
 +
uniform = {
 +
value: null,
 +
needsUpdate: false
 +
};
 +
this.uniform = uniform;
 +
this.numPlanes = 0;
 +
this.numIntersection = 0;
 +
 +
this.init = function (planes, enableLocalClipping, camera) {
 +
const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to
 +
// run another frame in order to reset the state:
 +
numGlobalPlanes !== 0 || localClippingEnabled;
 +
localClippingEnabled = enableLocalClipping;
 +
globalState = projectPlanes(planes, camera, 0);
 +
numGlobalPlanes = planes.length;
 +
return enabled;
 +
};
 +
 +
this.beginShadows = function () {
 +
renderingShadows = true;
 +
projectPlanes(null);
 +
};
 +
 +
this.endShadows = function () {
 +
renderingShadows = false;
 +
resetGlobalState();
 +
};
 +
 +
this.setState = function (material, camera, useCache) {
 +
const planes = material.clippingPlanes,
 +
clipIntersection = material.clipIntersection,
 +
clipShadows = material.clipShadows;
 +
const materialProperties = properties.get(material);
 +
 +
if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) {
 +
// there's no local clipping
 +
if (renderingShadows) {
 +
// there's no global clipping
 +
projectPlanes(null);
 +
} else {
 +
resetGlobalState();
 +
}
 +
} else {
 +
const nGlobal = renderingShadows ? 0 : numGlobalPlanes,
 +
lGlobal = nGlobal * 4;
 +
let dstArray = materialProperties.clippingState || null;
 +
uniform.value = dstArray; // ensure unique state
 +
 +
dstArray = projectPlanes(planes, camera, lGlobal, useCache);
 +
 +
for (let i = 0; i !== lGlobal; ++i) {
 +
dstArray[i] = globalState[i];
 +
}
 +
 +
materialProperties.clippingState = dstArray;
 +
this.numIntersection = clipIntersection ? this.numPlanes : 0;
 +
this.numPlanes += nGlobal;
 +
}
 +
};
 +
 +
function resetGlobalState() {
 +
if (uniform.value !== globalState) {
 +
uniform.value = globalState;
 +
uniform.needsUpdate = numGlobalPlanes > 0;
 +
}
 +
 +
scope.numPlanes = numGlobalPlanes;
 +
scope.numIntersection = 0;
 +
}
 +
 +
function projectPlanes(planes, camera, dstOffset, skipTransform) {
 +
const nPlanes = planes !== null ? planes.length : 0;
 +
let dstArray = null;
 +
 +
if (nPlanes !== 0) {
 +
dstArray = uniform.value;
 +
 +
if (skipTransform !== true || dstArray === null) {
 +
const flatSize = dstOffset + nPlanes * 4,
 +
viewMatrix = camera.matrixWorldInverse;
 +
viewNormalMatrix.getNormalMatrix(viewMatrix);
 +
 +
if (dstArray === null || dstArray.length < flatSize) {
 +
dstArray = new Float32Array(flatSize);
 +
}
 +
 +
for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) {
 +
plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix);
 +
plane.normal.toArray(dstArray, i4);
 +
dstArray[i4 + 3] = plane.constant;
 +
}
 +
}
 +
 +
uniform.value = dstArray;
 +
uniform.needsUpdate = true;
 +
}
 +
 +
scope.numPlanes = nPlanes;
 +
scope.numIntersection = 0;
 +
return dstArray;
 +
}
 +
}
 +
 +
function WebGLCubeMaps(renderer) {
 +
let cubemaps = new WeakMap();
 +
 +
function mapTextureMapping(texture, mapping) {
 +
if (mapping === EquirectangularReflectionMapping) {
 +
texture.mapping = CubeReflectionMapping;
 +
} else if (mapping === EquirectangularRefractionMapping) {
 +
texture.mapping = CubeRefractionMapping;
 +
}
 +
 +
return texture;
 +
}
 +
 +
function get(texture) {
 +
if (texture && texture.isTexture) {
 +
const mapping = texture.mapping;
 +
 +
if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) {
 +
if (cubemaps.has(texture)) {
 +
const cubemap = cubemaps.get(texture).texture;
 +
return mapTextureMapping(cubemap, texture.mapping);
 +
} else {
 +
const image = texture.image;
 +
 +
if (image && image.height > 0) {
 +
const currentRenderTarget = renderer.getRenderTarget();
 +
const renderTarget = new WebGLCubeRenderTarget(image.height / 2);
 +
renderTarget.fromEquirectangularTexture(renderer, texture);
 +
cubemaps.set(texture, renderTarget);
 +
renderer.setRenderTarget(currentRenderTarget);
 +
texture.addEventListener('dispose', onTextureDispose);
 +
return mapTextureMapping(renderTarget.texture, texture.mapping);
 +
} else {
 +
// image not yet ready. try the conversion next frame
 +
return null;
 +
}
 +
}
 +
}
 +
}
 +
 +
return texture;
 +
}
 +
 +
function onTextureDispose(event) {
 +
const texture = event.target;
 +
texture.removeEventListener('dispose', onTextureDispose);
 +
const cubemap = cubemaps.get(texture);
 +
 +
if (cubemap !== undefined) {
 +
cubemaps.delete(texture);
 +
cubemap.dispose();
 +
}
 +
}
 +
 +
function dispose() {
 +
cubemaps = new WeakMap();
 +
}
 +
 +
return {
 +
get: get,
 +
dispose: dispose
 +
};
 +
}
 +
 +
function WebGLExtensions(gl) {
 +
const extensions = {};
 +
 +
function getExtension(name) {
 +
if (extensions[name] !== undefined) {
 +
return extensions[name];
 +
}
 +
 +
let extension;
 +
 +
switch (name) {
 +
case 'WEBGL_depth_texture':
 +
extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture');
 +
break;
 +
 +
case 'EXT_texture_filter_anisotropic':
 +
extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic');
 +
break;
 +
 +
case 'WEBGL_compressed_texture_s3tc':
 +
extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc');
 +
break;
 +
 +
case 'WEBGL_compressed_texture_pvrtc':
 +
extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc');
 +
break;
 +
 +
default:
 +
extension = gl.getExtension(name);
 +
}
 +
 +
extensions[name] = extension;
 +
return extension;
 +
}
 +
 +
return {
 +
has: function (name) {
 +
return getExtension(name) !== null;
 +
},
 +
init: function (capabilities) {
 +
if (capabilities.isWebGL2) {
 +
getExtension('EXT_color_buffer_float');
 +
} else {
 +
getExtension('WEBGL_depth_texture');
 +
getExtension('OES_texture_float');
 +
getExtension('OES_texture_half_float');
 +
getExtension('OES_texture_half_float_linear');
 +
getExtension('OES_standard_derivatives');
 +
getExtension('OES_element_index_uint');
 +
getExtension('OES_vertex_array_object');
 +
getExtension('ANGLE_instanced_arrays');
 +
}
 +
 +
getExtension('OES_texture_float_linear');
 +
getExtension('EXT_color_buffer_half_float');
 +
},
 +
get: function (name) {
 +
const extension = getExtension(name);
 +
 +
if (extension === null) {
 +
console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.');
 +
}
 +
 +
return extension;
 +
}
 +
};
 +
}
 +
 +
function WebGLGeometries(gl, attributes, info, bindingStates) {
 +
const geometries = {};
 +
const wireframeAttributes = new WeakMap();
 +
 +
function onGeometryDispose(event) {
 +
const geometry = event.target;
 +
 +
if (geometry.index !== null) {
 +
attributes.remove(geometry.index);
 +
}
 +
 +
for (const name in geometry.attributes) {
 +
attributes.remove(geometry.attributes[name]);
 +
}
 +
 +
geometry.removeEventListener('dispose', onGeometryDispose);
 +
delete geometries[geometry.id];
 +
const attribute = wireframeAttributes.get(geometry);
 +
 +
if (attribute) {
 +
attributes.remove(attribute);
 +
wireframeAttributes.delete(geometry);
 +
}
 +
 +
bindingStates.releaseStatesOfGeometry(geometry);
 +
 +
if (geometry.isInstancedBufferGeometry === true) {
 +
delete geometry._maxInstanceCount;
 +
} //
 +
 +
 +
info.memory.geometries--;
 +
}
 +
 +
function get(object, geometry) {
 +
if (geometries[geometry.id] === true) return geometry;
 +
geometry.addEventListener('dispose', onGeometryDispose);
 +
geometries[geometry.id] = true;
 +
info.memory.geometries++;
 +
return geometry;
 +
}
 +
 +
function update(geometry) {
 +
const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates.
 +
 +
for (const name in geometryAttributes) {
 +
attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER);
 +
} // morph targets
 +
 +
 +
const morphAttributes = geometry.morphAttributes;
 +
 +
for (const name in morphAttributes) {
 +
const array = morphAttributes[name];
 +
 +
for (let i = 0, l = array.length; i < l; i++) {
 +
attributes.update(array[i], gl.ARRAY_BUFFER);
 +
}
 +
}
 +
}
 +
 +
function updateWireframeAttribute(geometry) {
 +
const indices = [];
 +
const geometryIndex = geometry.index;
 +
const geometryPosition = geometry.attributes.position;
 +
let version = 0;
 +
 +
if (geometryIndex !== null) {
 +
const array = geometryIndex.array;
 +
version = geometryIndex.version;
 +
 +
for (let i = 0, l = array.length; i < l; i += 3) {
 +
const a = array[i + 0];
 +
const b = array[i + 1];
 +
const c = array[i + 2];
 +
indices.push(a, b, b, c, c, a);
 +
}
 +
} else {
 +
const array = geometryPosition.array;
 +
version = geometryPosition.version;
 +
 +
for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) {
 +
const a = i + 0;
 +
const b = i + 1;
 +
const c = i + 2;
 +
indices.push(a, b, b, c, c, a);
 +
}
 +
}
 +
 +
const attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1);
 +
attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates
 +
//
 +
 +
const previousAttribute = wireframeAttributes.get(geometry);
 +
if (previousAttribute) attributes.remove(previousAttribute); //
 +
 +
wireframeAttributes.set(geometry, attribute);
 +
}
 +
 +
function getWireframeAttribute(geometry) {
 +
const currentAttribute = wireframeAttributes.get(geometry);
 +
 +
if (currentAttribute) {
 +
const geometryIndex = geometry.index;
 +
 +
if (geometryIndex !== null) {
 +
// if the attribute is obsolete, create a new one
 +
if (currentAttribute.version < geometryIndex.version) {
 +
updateWireframeAttribute(geometry);
 +
}
 +
}
 +
} else {
 +
updateWireframeAttribute(geometry);
 +
}
 +
 +
return wireframeAttributes.get(geometry);
 +
}
 +
 +
return {
 +
get: get,
 +
update: update,
 +
getWireframeAttribute: getWireframeAttribute
 +
};
 +
}
 +
 +
function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) {
 +
const isWebGL2 = capabilities.isWebGL2;
 +
let mode;
 +
 +
function setMode(value) {
 +
mode = value;
 +
}
 +
 +
let type, bytesPerElement;
 +
 +
function setIndex(value) {
 +
type = value.type;
 +
bytesPerElement = value.bytesPerElement;
 +
}
 +
 +
function render(start, count) {
 +
gl.drawElements(mode, count, type, start * bytesPerElement);
 +
info.update(count, mode, 1);
 +
}
 +
 +
function renderInstances(start, count, primcount) {
 +
if (primcount === 0) return;
 +
let extension, methodName;
 +
 +
if (isWebGL2) {
 +
extension = gl;
 +
methodName = 'drawElementsInstanced';
 +
} else {
 +
extension = extensions.get('ANGLE_instanced_arrays');
 +
methodName = 'drawElementsInstancedANGLE';
 +
 +
if (extension === null) {
 +
console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
 +
return;
 +
}
 +
}
 +
 +
extension[methodName](mode, count, type, start * bytesPerElement, primcount);
 +
info.update(count, mode, primcount);
 +
} //
 +
 +
 +
this.setMode = setMode;
 +
this.setIndex = setIndex;
 +
this.render = render;
 +
this.renderInstances = renderInstances;
 +
}
 +
 +
function WebGLInfo(gl) {
 +
const memory = {
 +
geometries: 0,
 +
textures: 0
 +
};
 +
const render = {
 +
frame: 0,
 +
calls: 0,
 +
triangles: 0,
 +
points: 0,
 +
lines: 0
 +
};
 +
 +
function update(count, mode, instanceCount) {
 +
render.calls++;
 +
 +
switch (mode) {
 +
case gl.TRIANGLES:
 +
render.triangles += instanceCount * (count / 3);
 +
break;
 +
 +
case gl.LINES:
 +
render.lines += instanceCount * (count / 2);
 +
break;
 +
 +
case gl.LINE_STRIP:
 +
render.lines += instanceCount * (count - 1);
 +
break;
 +
 +
case gl.LINE_LOOP:
 +
render.lines += instanceCount * count;
 +
break;
 +
 +
case gl.POINTS:
 +
render.points += instanceCount * count;
 +
break;
 +
 +
default:
 +
console.error('THREE.WebGLInfo: Unknown draw mode:', mode);
 +
break;
 +
}
 +
}
 +
 +
function reset() {
 +
render.frame++;
 +
render.calls = 0;
 +
render.triangles = 0;
 +
render.points = 0;
 +
render.lines = 0;
 +
}
 +
 +
return {
 +
memory: memory,
 +
render: render,
 +
programs: null,
 +
autoReset: true,
 +
reset: reset,
 +
update: update
 +
};
 +
}
 +
 +
function numericalSort(a, b) {
 +
return a[0] - b[0];
 +
}
 +
 +
function absNumericalSort(a, b) {
 +
return Math.abs(b[1]) - Math.abs(a[1]);
 +
}
 +
 +
function WebGLMorphtargets(gl) {
 +
const influencesList = {};
 +
const morphInfluences = new Float32Array(8);
 +
const workInfluences = [];
 +
 +
for (let i = 0; i < 8; i++) {
 +
workInfluences[i] = [i, 0];
 +
}
 +
 +
function update(object, geometry, material, program) {
 +
const objectInfluences = object.morphTargetInfluences; // When object doesn't have morph target influences defined, we treat it as a 0-length array
 +
// This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences
 +
 +
const length = objectInfluences === undefined ? 0 : objectInfluences.length;
 +
let influences = influencesList[geometry.id];
 +
 +
if (influences === undefined || influences.length !== length) {
 +
// initialise list
 +
influences = [];
 +
 +
for (let i = 0; i < length; i++) {
 +
influences[i] = [i, 0];
 +
}
 +
 +
influencesList[geometry.id] = influences;
 +
} // Collect influences
 +
 +
 +
for (let i = 0; i < length; i++) {
 +
const influence = influences[i];
 +
influence[0] = i;
 +
influence[1] = objectInfluences[i];
 +
}
 +
 +
influences.sort(absNumericalSort);
 +
 +
for (let i = 0; i < 8; i++) {
 +
if (i < length && influences[i][1]) {
 +
workInfluences[i][0] = influences[i][0];
 +
workInfluences[i][1] = influences[i][1];
 +
} else {
 +
workInfluences[i][0] = Number.MAX_SAFE_INTEGER;
 +
workInfluences[i][1] = 0;
 +
}
 +
}
 +
 +
workInfluences.sort(numericalSort);
 +
const morphTargets = material.morphTargets && geometry.morphAttributes.position;
 +
const morphNormals = material.morphNormals && geometry.morphAttributes.normal;
 +
let morphInfluencesSum = 0;
 +
 +
for (let i = 0; i < 8; i++) {
 +
const influence = workInfluences[i];
 +
const index = influence[0];
 +
const value = influence[1];
 +
 +
if (index !== Number.MAX_SAFE_INTEGER && value) {
 +
if (morphTargets && geometry.getAttribute('morphTarget' + i) !== morphTargets[index]) {
 +
geometry.setAttribute('morphTarget' + i, morphTargets[index]);
 +
}
 +
 +
if (morphNormals && geometry.getAttribute('morphNormal' + i) !== morphNormals[index]) {
 +
geometry.setAttribute('morphNormal' + i, morphNormals[index]);
 +
}
 +
 +
morphInfluences[i] = value;
 +
morphInfluencesSum += value;
 +
} else {
 +
if (morphTargets && geometry.hasAttribute('morphTarget' + i) === true) {
 +
geometry.deleteAttribute('morphTarget' + i);
 +
}
 +
 +
if (morphNormals && geometry.hasAttribute('morphNormal' + i) === true) {
 +
geometry.deleteAttribute('morphNormal' + i);
 +
}
 +
 +
morphInfluences[i] = 0;
 +
}
 +
} // GLSL shader uses formula baseinfluence * base + sum(target * influence)
 +
// This allows us to switch between absolute morphs and relative morphs without changing shader code
 +
// When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)
 +
 +
 +
const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
 +
program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence);
 +
program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences);
 +
}
 +
 +
return {
 +
update: update
 +
};
 +
}
 +
 +
function WebGLObjects(gl, geometries, attributes, info) {
 +
let updateMap = new WeakMap();
 +
 +
function update(object) {
 +
const frame = info.render.frame;
 +
const geometry = object.geometry;
 +
const buffergeometry = geometries.get(object, geometry); // Update once per frame
 +
 +
if (updateMap.get(buffergeometry) !== frame) {
 +
geometries.update(buffergeometry);
 +
updateMap.set(buffergeometry, frame);
 +
}
 +
 +
if (object.isInstancedMesh) {
 +
if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) {
 +
object.addEventListener('dispose', onInstancedMeshDispose);
 +
}
 +
 +
attributes.update(object.instanceMatrix, gl.ARRAY_BUFFER);
 +
 +
if (object.instanceColor !== null) {
 +
attributes.update(object.instanceColor, gl.ARRAY_BUFFER);
 +
}
 +
}
 +
 +
return buffergeometry;
 +
}
 +
 +
function dispose() {
 +
updateMap = new WeakMap();
 +
}
 +
 +
function onInstancedMeshDispose(event) {
 +
const instancedMesh = event.target;
 +
instancedMesh.removeEventListener('dispose', onInstancedMeshDispose);
 +
attributes.remove(instancedMesh.instanceMatrix);
 +
if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor);
 +
}
 +
 +
return {
 +
update: update,
 +
dispose: dispose
 +
};
 +
}
 +
 +
class DataTexture2DArray extends Texture {
 +
constructor(data = null, width = 1, height = 1, depth = 1) {
 +
super(null);
 +
this.image = {
 +
data,
 +
width,
 +
height,
 +
depth
 +
};
 +
this.magFilter = NearestFilter;
 +
this.minFilter = NearestFilter;
 +
this.wrapR = ClampToEdgeWrapping;
 +
this.generateMipmaps = false;
 +
this.flipY = false;
 +
this.unpackAlignment = 1;
 +
this.needsUpdate = true;
 +
}
 +
 +
}
 +
 +
DataTexture2DArray.prototype.isDataTexture2DArray = true;
 +
 +
class DataTexture3D extends Texture {
 +
constructor(data = null, width = 1, height = 1, depth = 1) {
 +
// We're going to add .setXXX() methods for setting properties later.
 +
// Users can still set in DataTexture3D directly.
 +
//
 +
// const texture = new THREE.DataTexture3D( data, width, height, depth );
 +
// texture.anisotropy = 16;
 +
//
 +
// See #14839
 +
super(null);
 +
this.image = {
 +
data,
 +
width,
 +
height,
 +
depth
 +
};
 +
this.magFilter = NearestFilter;
 +
this.minFilter = NearestFilter;
 +
this.wrapR = ClampToEdgeWrapping;
 +
this.generateMipmaps = false;
 +
this.flipY = false;
 +
this.unpackAlignment = 1;
 +
this.needsUpdate = true;
 +
}
 +
 +
}
 +
 +
DataTexture3D.prototype.isDataTexture3D = true;
 +
 +
/**
 +
* Uniforms of a program.
 +
* Those form a tree structure with a special top-level container for the root,
 +
* which you get by calling 'new WebGLUniforms( gl, program )'.
 +
*
 +
*
 +
* Properties of inner nodes including the top-level container:
 +
*
 +
* .seq - array of nested uniforms
 +
* .map - nested uniforms by name
 +
*
 +
*
 +
* Methods of all nodes except the top-level container:
 +
*
 +
* .setValue( gl, value, [textures] )
 +
*
 +
* uploads a uniform value(s)
 +
* the 'textures' parameter is needed for sampler uniforms
 +
*
 +
*
 +
* Static methods of the top-level container (textures factorizations):
 +
*
 +
* .upload( gl, seq, values, textures )
 +
*
 +
* sets uniforms in 'seq' to 'values[id].value'
 +
*
 +
* .seqWithValue( seq, values ) : filteredSeq
 +
*
 +
* filters 'seq' entries with corresponding entry in values
 +
*
 +
*
 +
* Methods of the top-level container (textures factorizations):
 +
*
 +
* .setValue( gl, name, value, textures )
 +
*
 +
* sets uniform with name 'name' to 'value'
 +
*
 +
* .setOptional( gl, obj, prop )
 +
*
 +
* like .set for an optional property of the object
 +
*
 +
*/
 +
const emptyTexture = new Texture();
 +
const emptyTexture2dArray = new DataTexture2DArray();
 +
const emptyTexture3d = new DataTexture3D();
 +
const emptyCubeTexture = new CubeTexture(); // --- Utilities ---
 +
// Array Caches (provide typed arrays for temporary by size)
 +
 +
const arrayCacheF32 = [];
 +
const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms
 +
 +
const mat4array = new Float32Array(16);
 +
const mat3array = new Float32Array(9);
 +
const mat2array = new Float32Array(4); // Flattening for arrays of vectors and matrices
 +
 +
function flatten(array, nBlocks, blockSize) {
 +
const firstElem = array[0];
 +
if (firstElem <= 0 || firstElem > 0) return array; // unoptimized: ! isNaN( firstElem )
 +
// see http://jacksondunstan.com/articles/983
 +
 +
const n = nBlocks * blockSize;
 +
let r = arrayCacheF32[n];
 +
 +
if (r === undefined) {
 +
r = new Float32Array(n);
 +
arrayCacheF32[n] = r;
 +
}
 +
 +
if (nBlocks !== 0) {
 +
firstElem.toArray(r, 0);
 +
 +
for (let i = 1, offset = 0; i !== nBlocks; ++i) {
 +
offset += blockSize;
 +
array[i].toArray(r, offset);
 +
}
 +
}
 +
 +
return r;
 +
}
 +
 +
function arraysEqual(a, b) {
 +
if (a.length !== b.length) return false;
 +
 +
for (let i = 0, l = a.length; i < l; i++) {
 +
if (a[i] !== b[i]) return false;
 +
}
 +
 +
return true;
 +
}
 +
 +
function copyArray(a, b) {
 +
for (let i = 0, l = b.length; i < l; i++) {
 +
a[i] = b[i];
 +
}
 +
} // Texture unit allocation
 +
 +
 +
function allocTexUnits(textures, n) {
 +
let r = arrayCacheI32[n];
 +
 +
if (r === undefined) {
 +
r = new Int32Array(n);
 +
arrayCacheI32[n] = r;
 +
}
 +
 +
for (let i = 0; i !== n; ++i) {
 +
r[i] = textures.allocateTextureUnit();
 +
}
 +
 +
return r;
 +
} // --- Setters ---
 +
// Note: Defining these methods externally, because they come in a bunch
 +
// and this way their names minify.
 +
// Single scalar
 +
 +
 +
function setValueV1f(gl, v) {
 +
const cache = this.cache;
 +
if (cache[0] === v) return;
 +
gl.uniform1f(this.addr, v);
 +
cache[0] = v;
 +
} // Single float vector (from flat array or THREE.VectorN)
 +
 +
 +
function setValueV2f(gl, v) {
 +
const cache = this.cache;
 +
 +
if (v.x !== undefined) {
 +
if (cache[0] !== v.x || cache[1] !== v.y) {
 +
gl.uniform2f(this.addr, v.x, v.y);
 +
cache[0] = v.x;
 +
cache[1] = v.y;
 +
}
 +
} else {
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniform2fv(this.addr, v);
 +
copyArray(cache, v);
 +
}
 +
}
 +
 +
function setValueV3f(gl, v) {
 +
const cache = this.cache;
 +
 +
if (v.x !== undefined) {
 +
if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) {
 +
gl.uniform3f(this.addr, v.x, v.y, v.z);
 +
cache[0] = v.x;
 +
cache[1] = v.y;
 +
cache[2] = v.z;
 +
}
 +
} else if (v.r !== undefined) {
 +
if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) {
 +
gl.uniform3f(this.addr, v.r, v.g, v.b);
 +
cache[0] = v.r;
 +
cache[1] = v.g;
 +
cache[2] = v.b;
 +
}
 +
} else {
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniform3fv(this.addr, v);
 +
copyArray(cache, v);
 +
}
 +
}
 +
 +
function setValueV4f(gl, v) {
 +
const cache = this.cache;
 +
 +
if (v.x !== undefined) {
 +
if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) {
 +
gl.uniform4f(this.addr, v.x, v.y, v.z, v.w);
 +
cache[0] = v.x;
 +
cache[1] = v.y;
 +
cache[2] = v.z;
 +
cache[3] = v.w;
 +
}
 +
} else {
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniform4fv(this.addr, v);
 +
copyArray(cache, v);
 +
}
 +
} // Single matrix (from flat array or THREE.MatrixN)
 +
 +
 +
function setValueM2(gl, v) {
 +
const cache = this.cache;
 +
const elements = v.elements;
 +
 +
if (elements === undefined) {
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniformMatrix2fv(this.addr, false, v);
 +
copyArray(cache, v);
 +
} else {
 +
if (arraysEqual(cache, elements)) return;
 +
mat2array.set(elements);
 +
gl.uniformMatrix2fv(this.addr, false, mat2array);
 +
copyArray(cache, elements);
 +
}
 +
}
 +
 +
function setValueM3(gl, v) {
 +
const cache = this.cache;
 +
const elements = v.elements;
 +
 +
if (elements === undefined) {
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniformMatrix3fv(this.addr, false, v);
 +
copyArray(cache, v);
 +
} else {
 +
if (arraysEqual(cache, elements)) return;
 +
mat3array.set(elements);
 +
gl.uniformMatrix3fv(this.addr, false, mat3array);
 +
copyArray(cache, elements);
 +
}
 +
}
 +
 +
function setValueM4(gl, v) {
 +
const cache = this.cache;
 +
const elements = v.elements;
 +
 +
if (elements === undefined) {
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniformMatrix4fv(this.addr, false, v);
 +
copyArray(cache, v);
 +
} else {
 +
if (arraysEqual(cache, elements)) return;
 +
mat4array.set(elements);
 +
gl.uniformMatrix4fv(this.addr, false, mat4array);
 +
copyArray(cache, elements);
 +
}
 +
} // Single integer / boolean
 +
 +
 +
function setValueV1i(gl, v) {
 +
const cache = this.cache;
 +
if (cache[0] === v) return;
 +
gl.uniform1i(this.addr, v);
 +
cache[0] = v;
 +
} // Single integer / boolean vector (from flat array)
 +
 +
 +
function setValueV2i(gl, v) {
 +
const cache = this.cache;
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniform2iv(this.addr, v);
 +
copyArray(cache, v);
 +
}
 +
 +
function setValueV3i(gl, v) {
 +
const cache = this.cache;
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniform3iv(this.addr, v);
 +
copyArray(cache, v);
 +
}
 +
 +
function setValueV4i(gl, v) {
 +
const cache = this.cache;
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniform4iv(this.addr, v);
 +
copyArray(cache, v);
 +
} // Single unsigned integer
 +
 +
 +
function setValueV1ui(gl, v) {
 +
const cache = this.cache;
 +
if (cache[0] === v) return;
 +
gl.uniform1ui(this.addr, v);
 +
cache[0] = v;
 +
} // Single unsigned integer vector (from flat array)
 +
 +
 +
function setValueV2ui(gl, v) {
 +
const cache = this.cache;
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniform2uiv(this.addr, v);
 +
copyArray(cache, v);
 +
}
 +
 +
function setValueV3ui(gl, v) {
 +
const cache = this.cache;
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniform3uiv(this.addr, v);
 +
copyArray(cache, v);
 +
}
 +
 +
function setValueV4ui(gl, v) {
 +
const cache = this.cache;
 +
if (arraysEqual(cache, v)) return;
 +
gl.uniform4uiv(this.addr, v);
 +
copyArray(cache, v);
 +
} // Single texture (2D / Cube)
 +
 +
 +
function setValueT1(gl, v, textures) {
 +
const cache = this.cache;
 +
const unit = textures.allocateTextureUnit();
 +
 +
if (cache[0] !== unit) {
 +
gl.uniform1i(this.addr, unit);
 +
cache[0] = unit;
 +
}
 +
 +
textures.safeSetTexture2D(v || emptyTexture, unit);
 +
}
 +
 +
function setValueT3D1(gl, v, textures) {
 +
const cache = this.cache;
 +
const unit = textures.allocateTextureUnit();
 +
 +
if (cache[0] !== unit) {
 +
gl.uniform1i(this.addr, unit);
 +
cache[0] = unit;
 +
}
 +
 +
textures.setTexture3D(v || emptyTexture3d, unit);
 +
}
 +
 +
function setValueT6(gl, v, textures) {
 +
const cache = this.cache;
 +
const unit = textures.allocateTextureUnit();
 +
 +
if (cache[0] !== unit) {
 +
gl.uniform1i(this.addr, unit);
 +
cache[0] = unit;
 +
}
 +
 +
textures.safeSetTextureCube(v || emptyCubeTexture, unit);
 +
}
 +
 +
function setValueT2DArray1(gl, v, textures) {
 +
const cache = this.cache;
 +
const unit = textures.allocateTextureUnit();
 +
 +
if (cache[0] !== unit) {
 +
gl.uniform1i(this.addr, unit);
 +
cache[0] = unit;
 +
}
 +
 +
textures.setTexture2DArray(v || emptyTexture2dArray, unit);
 +
} // Helper to pick the right setter for the singular case
 +
 +
 +
function getSingularSetter(type) {
 +
switch (type) {
 +
case 0x1406:
 +
return setValueV1f;
 +
// FLOAT
 +
 +
case 0x8b50:
 +
return setValueV2f;
 +
// _VEC2
 +
 +
case 0x8b51:
 +
return setValueV3f;
 +
// _VEC3
 +
 +
case 0x8b52:
 +
return setValueV4f;
 +
// _VEC4
 +
 +
case 0x8b5a:
 +
return setValueM2;
 +
// _MAT2
 +
 +
case 0x8b5b:
 +
return setValueM3;
 +
// _MAT3
 +
 +
case 0x8b5c:
 +
return setValueM4;
 +
// _MAT4
 +
 +
case 0x1404:
 +
case 0x8b56:
 +
return setValueV1i;
 +
// INT, BOOL
 +
 +
case 0x8b53:
 +
case 0x8b57:
 +
return setValueV2i;
 +
// _VEC2
 +
 +
case 0x8b54:
 +
case 0x8b58:
 +
return setValueV3i;
 +
// _VEC3
 +
 +
case 0x8b55:
 +
case 0x8b59:
 +
return setValueV4i;
 +
// _VEC4
 +
 +
case 0x1405:
 +
return setValueV1ui;
 +
// UINT
 +
 +
case 0x8dc6:
 +
return setValueV2ui;
 +
// _VEC2
 +
 +
case 0x8dc7:
 +
return setValueV3ui;
 +
// _VEC3
 +
 +
case 0x8dc8:
 +
return setValueV4ui;
 +
// _VEC4
 +
 +
case 0x8b5e: // SAMPLER_2D
 +
 +
case 0x8d66: // SAMPLER_EXTERNAL_OES
 +
 +
case 0x8dca: // INT_SAMPLER_2D
 +
 +
case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
 +
 +
case 0x8b62:
 +
// SAMPLER_2D_SHADOW
 +
return setValueT1;
 +
 +
case 0x8b5f: // SAMPLER_3D
 +
 +
case 0x8dcb: // INT_SAMPLER_3D
 +
 +
case 0x8dd3:
 +
// UNSIGNED_INT_SAMPLER_3D
 +
return setValueT3D1;
 +
 +
case 0x8b60: // SAMPLER_CUBE
 +
 +
case 0x8dcc: // INT_SAMPLER_CUBE
 +
 +
case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
 +
 +
case 0x8dc5:
 +
// SAMPLER_CUBE_SHADOW
 +
return setValueT6;
 +
 +
case 0x8dc1: // SAMPLER_2D_ARRAY
 +
 +
case 0x8dcf: // INT_SAMPLER_2D_ARRAY
 +
 +
case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY
 +
 +
case 0x8dc4:
 +
// SAMPLER_2D_ARRAY_SHADOW
 +
return setValueT2DArray1;
 +
}
 +
} // Array of scalars
 +
 +
 +
function setValueV1fArray(gl, v) {
 +
gl.uniform1fv(this.addr, v);
 +
} // Array of vectors (from flat array or array of THREE.VectorN)
 +
 +
 +
function setValueV2fArray(gl, v) {
 +
const data = flatten(v, this.size, 2);
 +
gl.uniform2fv(this.addr, data);
 +
}
 +
 +
function setValueV3fArray(gl, v) {
 +
const data = flatten(v, this.size, 3);
 +
gl.uniform3fv(this.addr, data);
 +
}
 +
 +
function setValueV4fArray(gl, v) {
 +
const data = flatten(v, this.size, 4);
 +
gl.uniform4fv(this.addr, data);
 +
} // Array of matrices (from flat array or array of THREE.MatrixN)
 +
 +
 +
function setValueM2Array(gl, v) {
 +
const data = flatten(v, this.size, 4);
 +
gl.uniformMatrix2fv(this.addr, false, data);
 +
}
 +
 +
function setValueM3Array(gl, v) {
 +
const data = flatten(v, this.size, 9);
 +
gl.uniformMatrix3fv(this.addr, false, data);
 +
}
 +
 +
function setValueM4Array(gl, v) {
 +
const data = flatten(v, this.size, 16);
 +
gl.uniformMatrix4fv(this.addr, false, data);
 +
} // Array of integer / boolean
 +
 +
 +
function setValueV1iArray(gl, v) {
 +
gl.uniform1iv(this.addr, v);
 +
} // Array of integer / boolean vectors (from flat array)
 +
 +
 +
function setValueV2iArray(gl, v) {
 +
gl.uniform2iv(this.addr, v);
 +
}
 +
 +
function setValueV3iArray(gl, v) {
 +
gl.uniform3iv(this.addr, v);
 +
}
 +
 +
function setValueV4iArray(gl, v) {
 +
gl.uniform4iv(this.addr, v);
 +
} // Array of unsigned integer
 +
 +
 +
function setValueV1uiArray(gl, v) {
 +
gl.uniform1uiv(this.addr, v);
 +
} // Array of unsigned integer vectors (from flat array)
 +
 +
 +
function setValueV2uiArray(gl, v) {
 +
gl.uniform2uiv(this.addr, v);
 +
}
 +
 +
function setValueV3uiArray(gl, v) {
 +
gl.uniform3uiv(this.addr, v);
 +
}
 +
 +
function setValueV4uiArray(gl, v) {
 +
gl.uniform4uiv(this.addr, v);
 +
} // Array of textures (2D / Cube)
 +
 +
 +
function setValueT1Array(gl, v, textures) {
 +
const n = v.length;
 +
const units = allocTexUnits(textures, n);
 +
gl.uniform1iv(this.addr, units);
 +
 +
for (let i = 0; i !== n; ++i) {
 +
textures.safeSetTexture2D(v[i] || emptyTexture, units[i]);
 +
}
 +
}
 +
 +
function setValueT6Array(gl, v, textures) {
 +
const n = v.length;
 +
const units = allocTexUnits(textures, n);
 +
gl.uniform1iv(this.addr, units);
 +
 +
for (let i = 0; i !== n; ++i) {
 +
textures.safeSetTextureCube(v[i] || emptyCubeTexture, units[i]);
 +
}
 +
} // Helper to pick the right setter for a pure (bottom-level) array
 +
 +
 +
function getPureArraySetter(type) {
 +
switch (type) {
 +
case 0x1406:
 +
return setValueV1fArray;
 +
// FLOAT
 +
 +
case 0x8b50:
 +
return setValueV2fArray;
 +
// _VEC2
 +
 +
case 0x8b51:
 +
return setValueV3fArray;
 +
// _VEC3
 +
 +
case 0x8b52:
 +
return setValueV4fArray;
 +
// _VEC4
 +
 +
case 0x8b5a:
 +
return setValueM2Array;
 +
// _MAT2
 +
 +
case 0x8b5b:
 +
return setValueM3Array;
 +
// _MAT3
 +
 +
case 0x8b5c:
 +
return setValueM4Array;
 +
// _MAT4
 +
 +
case 0x1404:
 +
case 0x8b56:
 +
return setValueV1iArray;
 +
// INT, BOOL
 +
 +
case 0x8b53:
 +
case 0x8b57:
 +
return setValueV2iArray;
 +
// _VEC2
 +
 +
case 0x8b54:
 +
case 0x8b58:
 +
return setValueV3iArray;
 +
// _VEC3
 +
 +
case 0x8b55:
 +
case 0x8b59:
 +
return setValueV4iArray;
 +
// _VEC4
 +
 +
case 0x1405:
 +
return setValueV1uiArray;
 +
// UINT
 +
 +
case 0x8dc6:
 +
return setValueV2uiArray;
 +
// _VEC2
 +
 +
case 0x8dc7:
 +
return setValueV3uiArray;
 +
// _VEC3
 +
 +
case 0x8dc8:
 +
return setValueV4uiArray;
 +
// _VEC4
 +
 +
case 0x8b5e: // SAMPLER_2D
 +
 +
case 0x8d66: // SAMPLER_EXTERNAL_OES
 +
 +
case 0x8dca: // INT_SAMPLER_2D
 +
 +
case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
 +
 +
case 0x8b62:
 +
// SAMPLER_2D_SHADOW
 +
return setValueT1Array;
 +
 +
case 0x8b60: // SAMPLER_CUBE
 +
 +
case 0x8dcc: // INT_SAMPLER_CUBE
 +
 +
case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
 +
 +
case 0x8dc5:
 +
// SAMPLER_CUBE_SHADOW
 +
return setValueT6Array;
 +
}
 +
} // --- Uniform Classes ---
 +
 +
 +
function SingleUniform(id, activeInfo, addr) {
 +
this.id = id;
 +
this.addr = addr;
 +
this.cache = [];
 +
this.setValue = getSingularSetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
 +
}
 +
 +
function PureArrayUniform(id, activeInfo, addr) {
 +
this.id = id;
 +
this.addr = addr;
 +
this.cache = [];
 +
this.size = activeInfo.size;
 +
this.setValue = getPureArraySetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
 +
}
 +
 +
PureArrayUniform.prototype.updateCache = function (data) {
 +
const cache = this.cache;
 +
 +
if (data instanceof Float32Array && cache.length !== data.length) {
 +
this.cache = new Float32Array(data.length);
 +
}
 +
 +
copyArray(cache, data);
 +
};
 +
 +
function StructuredUniform(id) {
 +
this.id = id;
 +
this.seq = [];
 +
this.map = {};
 +
}
 +
 +
StructuredUniform.prototype.setValue = function (gl, value, textures) {
 +
const seq = this.seq;
 +
 +
for (let i = 0, n = seq.length; i !== n; ++i) {
 +
const u = seq[i];
 +
u.setValue(gl, value[u.id], textures);
 +
}
 +
}; // --- Top-level ---
 +
// Parser - builds up the property tree from the path strings
 +
 +
 +
const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts
 +
// - the identifier (member name or array index)
 +
// - followed by an optional right bracket (found when array index)
 +
// - followed by an optional left bracket or dot (type of subscript)
 +
//
 +
// Note: These portions can be read in a non-overlapping fashion and
 +
// allow straightforward parsing of the hierarchy that WebGL encodes
 +
// in the uniform names.
 +
 +
function addUniform(container, uniformObject) {
 +
container.seq.push(uniformObject);
 +
container.map[uniformObject.id] = uniformObject;
 +
}
 +
 +
function parseUniform(activeInfo, addr, container) {
 +
const path = activeInfo.name,
 +
pathLength = path.length; // reset RegExp object, because of the early exit of a previous run
 +
 +
RePathPart.lastIndex = 0;
 +
 +
while (true) {
 +
const match = RePathPart.exec(path),
 +
matchEnd = RePathPart.lastIndex;
 +
let id = match[1];
 +
const idIsIndex = match[2] === ']',
 +
subscript = match[3];
 +
if (idIsIndex) id = id | 0; // convert to integer
 +
 +
if (subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength) {
 +
// bare name or "pure" bottom-level array "[0]" suffix
 +
addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr));
 +
break;
 +
} else {
 +
// step into inner node / create it in case it doesn't exist
 +
const map = container.map;
 +
let next = map[id];
 +
 +
if (next === undefined) {
 +
next = new StructuredUniform(id);
 +
addUniform(container, next);
 +
}
 +
 +
container = next;
 +
}
 +
}
 +
} // Root Container
 +
 +
 +
function WebGLUniforms(gl, program) {
 +
this.seq = [];
 +
this.map = {};
 +
const n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS);
 +
 +
for (let i = 0; i < n; ++i) {
 +
const info = gl.getActiveUniform(program, i),
 +
addr = gl.getUniformLocation(program, info.name);
 +
parseUniform(info, addr, this);
 +
}
 +
}
 +
 +
WebGLUniforms.prototype.setValue = function (gl, name, value, textures) {
 +
const u = this.map[name];
 +
if (u !== undefined) u.setValue(gl, value, textures);
 +
};
 +
 +
WebGLUniforms.prototype.setOptional = function (gl, object, name) {
 +
const v = object[name];
 +
if (v !== undefined) this.setValue(gl, name, v);
 +
}; // Static interface
 +
 +
 +
WebGLUniforms.upload = function (gl, seq, values, textures) {
 +
for (let i = 0, n = seq.length; i !== n; ++i) {
 +
const u = seq[i],
 +
v = values[u.id];
 +
 +
if (v.needsUpdate !== false) {
 +
// note: always updating when .needsUpdate is undefined
 +
u.setValue(gl, v.value, textures);
 +
}
 +
}
 +
};
 +
 +
WebGLUniforms.seqWithValue = function (seq, values) {
 +
const r = [];
 +
 +
for (let i = 0, n = seq.length; i !== n; ++i) {
 +
const u = seq[i];
 +
if (u.id in values) r.push(u);
 +
}
 +
 +
return r;
 +
};
 +
 +
function WebGLShader(gl, type, string) {
 +
const shader = gl.createShader(type);
 +
gl.shaderSource(shader, string);
 +
gl.compileShader(shader);
 +
return shader;
 +
}
 +
 +
let programIdCount = 0;
 +
 +
function addLineNumbers(string) {
 +
const lines = string.split('\n');
 +
 +
for (let i = 0; i < lines.length; i++) {
 +
lines[i] = i + 1 + ': ' + lines[i];
 +
}
 +
 +
return lines.join('\n');
 +
}
 +
 +
function getEncodingComponents(encoding) {
 +
switch (encoding) {
 +
case LinearEncoding:
 +
return ['Linear', '( value )'];
 +
 +
case sRGBEncoding:
 +
return ['sRGB', '( value )'];
 +
 +
case RGBEEncoding:
 +
return ['RGBE', '( value )'];
 +
 +
case RGBM7Encoding:
 +
return ['RGBM', '( value, 7.0 )'];
 +
 +
case RGBM16Encoding:
 +
return ['RGBM', '( value, 16.0 )'];
 +
 +
case RGBDEncoding:
 +
return ['RGBD', '( value, 256.0 )'];
 +
 +
case GammaEncoding:
 +
return ['Gamma', '( value, float( GAMMA_FACTOR ) )'];
 +
 +
case LogLuvEncoding:
 +
return ['LogLuv', '( value )'];
 +
 +
default:
 +
console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding);
 +
return ['Linear', '( value )'];
 +
}
 +
}
 +
 +
function getShaderErrors(gl, shader, type) {
 +
const status = gl.getShaderParameter(shader, gl.COMPILE_STATUS);
 +
const log = gl.getShaderInfoLog(shader).trim();
 +
if (status && log === '') return ''; // --enable-privileged-webgl-extension
 +
// console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
 +
 +
const source = gl.getShaderSource(shader);
 +
return 'THREE.WebGLShader: gl.getShaderInfoLog() ' + type + '\n' + log + addLineNumbers(source);
 +
}
 +
 +
function getTexelDecodingFunction(functionName, encoding) {
 +
const components = getEncodingComponents(encoding);
 +
return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }';
 +
}
 +
 +
function getTexelEncodingFunction(functionName, encoding) {
 +
const components = getEncodingComponents(encoding);
 +
return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }';
 +
}
 +
 +
function getToneMappingFunction(functionName, toneMapping) {
 +
let toneMappingName;
 +
 +
switch (toneMapping) {
 +
case LinearToneMapping:
 +
toneMappingName = 'Linear';
 +
break;
 +
 +
case ReinhardToneMapping:
 +
toneMappingName = 'Reinhard';
 +
break;
 +
 +
case CineonToneMapping:
 +
toneMappingName = 'OptimizedCineon';
 +
break;
 +
 +
case ACESFilmicToneMapping:
 +
toneMappingName = 'ACESFilmic';
 +
break;
 +
 +
case CustomToneMapping:
 +
toneMappingName = 'Custom';
 +
break;
 +
 +
default:
 +
console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping);
 +
toneMappingName = 'Linear';
 +
}
 +
 +
return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';
 +
}
 +
 +
function generateExtensions(parameters) {
 +
const chunks = [parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission > 0.0) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''];
 +
return chunks.filter(filterEmptyLine).join('\n');
 +
}
 +
 +
function generateDefines(defines) {
 +
const chunks = [];
 +
 +
for (const name in defines) {
 +
const value = defines[name];
 +
if (value === false) continue;
 +
chunks.push('#define ' + name + ' ' + value);
 +
}
 +
 +
return chunks.join('\n');
 +
}
 +
 +
function fetchAttributeLocations(gl, program) {
 +
const attributes = {};
 +
const n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES);
 +
 +
for (let i = 0; i < n; i++) {
 +
const info = gl.getActiveAttrib(program, i);
 +
const name = info.name; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );
 +
 +
attributes[name] = gl.getAttribLocation(program, name);
 +
}
 +
 +
return attributes;
 +
}
 +
 +
function filterEmptyLine(string) {
 +
return string !== '';
 +
}
 +
 +
function replaceLightNums(string, parameters) {
 +
return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows);
 +
}
 +
 +
function replaceClippingPlaneNums(string, parameters) {
 +
return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection);
 +
} // Resolve Includes
 +
 +
 +
const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;
 +
 +
function resolveIncludes(string) {
 +
return string.replace(includePattern, includeReplacer);
 +
}
 +
 +
function includeReplacer(match, include) {
 +
const string = ShaderChunk[include];
 +
 +
if (string === undefined) {
 +
throw new Error('Can not resolve #include <' + include + '>');
 +
}
 +
 +
return resolveIncludes(string);
 +
} // Unroll Loops
 +
 +
 +
const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
 +
const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g;
 +
 +
function unrollLoops(string) {
 +
return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer);
 +
}
 +
 +
function deprecatedLoopReplacer(match, start, end, snippet) {
 +
console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.');
 +
return loopReplacer(match, start, end, snippet);
 +
}
 +
 +
function loopReplacer(match, start, end, snippet) {
 +
let string = '';
 +
 +
for (let i = parseInt(start); i < parseInt(end); i++) {
 +
string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i);
 +
}
 +
 +
return string;
 +
} //
 +
 +
 +
function generatePrecision(parameters) {
 +
let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;';
 +
 +
if (parameters.precision === 'highp') {
 +
precisionstring += '\n#define HIGH_PRECISION';
 +
} else if (parameters.precision === 'mediump') {
 +
precisionstring += '\n#define MEDIUM_PRECISION';
 +
} else if (parameters.precision === 'lowp') {
 +
precisionstring += '\n#define LOW_PRECISION';
 +
}
 +
 +
return precisionstring;
 +
}
 +
 +
function generateShadowMapTypeDefine(parameters) {
 +
let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
 +
 +
if (parameters.shadowMapType === PCFShadowMap) {
 +
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
 +
} else if (parameters.shadowMapType === PCFSoftShadowMap) {
 +
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
 +
} else if (parameters.shadowMapType === VSMShadowMap) {
 +
shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';
 +
}
 +
 +
return shadowMapTypeDefine;
 +
}
 +
 +
function generateEnvMapTypeDefine(parameters) {
 +
let envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
 +
 +
if (parameters.envMap) {
 +
switch (parameters.envMapMode) {
 +
case CubeReflectionMapping:
 +
case CubeRefractionMapping:
 +
envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
 +
break;
 +
 +
case CubeUVReflectionMapping:
 +
case CubeUVRefractionMapping:
 +
envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
 +
break;
 +
}
 +
}
 +
 +
return envMapTypeDefine;
 +
}
 +
 +
function generateEnvMapModeDefine(parameters) {
 +
let envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
 +
 +
if (parameters.envMap) {
 +
switch (parameters.envMapMode) {
 +
case CubeRefractionMapping:
 +
case CubeUVRefractionMapping:
 +
envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
 +
break;
 +
}
 +
}
 +
 +
return envMapModeDefine;
 +
}
 +
 +
function generateEnvMapBlendingDefine(parameters) {
 +
let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';
 +
 +
if (parameters.envMap) {
 +
switch (parameters.combine) {
 +
case MultiplyOperation:
 +
envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
 +
break;
 +
 +
case MixOperation:
 +
envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
 +
break;
 +
 +
case AddOperation:
 +
envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
 +
break;
 +
}
 +
}
 +
 +
return envMapBlendingDefine;
 +
}
 +
 +
function WebGLProgram(renderer, cacheKey, parameters, bindingStates) {
 +
const gl = renderer.getContext();
 +
const defines = parameters.defines;
 +
let vertexShader = parameters.vertexShader;
 +
let fragmentShader = parameters.fragmentShader;
 +
const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters);
 +
const envMapTypeDefine = generateEnvMapTypeDefine(parameters);
 +
const envMapModeDefine = generateEnvMapModeDefine(parameters);
 +
const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters);
 +
const gammaFactorDefine = renderer.gammaFactor > 0 ? renderer.gammaFactor : 1.0;
 +
const customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters);
 +
const customDefines = generateDefines(defines);
 +
const program = gl.createProgram();
 +
let prefixVertex, prefixFragment;
 +
let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : '';
 +
 +
if (parameters.isRawShaderMaterial) {
 +
prefixVertex = [customDefines].filter(filterEmptyLine).join('\n');
 +
 +
if (prefixVertex.length > 0) {
 +
prefixVertex += '\n';
 +
}
 +
 +
prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n');
 +
 +
if (prefixFragment.length > 0) {
 +
prefixFragment += '\n';
 +
}
 +
} else {
 +
prefixVertex = [generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n'].filter(filterEmptyLine).join('\n');
 +
prefixFragment = [customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + (parameters.alphaTest % 1 ? '' : '.0') : '', // add '.0' if integer
 +
'#define GAMMA_FACTOR ' + gammaFactorDefine, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below
 +
parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below
 +
parameters.map ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.matcap ? getTexelDecodingFunction('matcapTexelToLinear', parameters.matcapEncoding) : '', parameters.envMap ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMap ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.lightMap ? getTexelDecodingFunction('lightMapTexelToLinear', parameters.lightMapEncoding) : '', getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n'].filter(filterEmptyLine).join('\n');
 +
}
 +
 +
vertexShader = resolveIncludes(vertexShader);
 +
vertexShader = replaceLightNums(vertexShader, parameters);
 +
vertexShader = replaceClippingPlaneNums(vertexShader, parameters);
 +
fragmentShader = resolveIncludes(fragmentShader);
 +
fragmentShader = replaceLightNums(fragmentShader, parameters);
 +
fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters);
 +
vertexShader = unrollLoops(vertexShader);
 +
fragmentShader = unrollLoops(fragmentShader);
 +
 +
if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) {
 +
// GLSL 3.0 conversion for built-in materials and ShaderMaterial
 +
versionString = '#version 300 es\n';
 +
prefixVertex = ['#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex;
 +
prefixFragment = ['#define varying in', parameters.glslVersion === GLSL3 ? '' : 'out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad'].join('\n') + '\n' + prefixFragment;
 +
}
 +
 +
const vertexGlsl = versionString + prefixVertex + vertexShader;
 +
const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl );
 +
// console.log( '*FRAGMENT*', fragmentGlsl );
 +
 +
const glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl);
 +
const glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl);
 +
gl.attachShader(program, glVertexShader);
 +
gl.attachShader(program, glFragmentShader); // Force a particular attribute to index 0.
 +
 +
if (parameters.index0AttributeName !== undefined) {
 +
gl.bindAttribLocation(program, 0, parameters.index0AttributeName);
 +
} else if (parameters.morphTargets === true) {
 +
// programs with morphTargets displace position out of attribute 0
 +
gl.bindAttribLocation(program, 0, 'position');
 +
}
 +
 +
gl.linkProgram(program); // check for link errors
 +
 +
if (renderer.debug.checkShaderErrors) {
 +
const programLog = gl.getProgramInfoLog(program).trim();
 +
const vertexLog = gl.getShaderInfoLog(glVertexShader).trim();
 +
const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim();
 +
let runnable = true;
 +
let haveDiagnostics = true;
 +
 +
if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) {
 +
runnable = false;
 +
const vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex');
 +
const fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment');
 +
console.error('THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter(program, gl.VALIDATE_STATUS), 'gl.getProgramInfoLog', programLog, vertexErrors, fragmentErrors);
 +
} else if (programLog !== '') {
 +
console.warn('THREE.WebGLProgram: gl.getProgramInfoLog()', programLog);
 +
} else if (vertexLog === '' || fragmentLog === '') {
 +
haveDiagnostics = false;
 +
}
 +
 +
if (haveDiagnostics) {
 +
this.diagnostics = {
 +
runnable: runnable,
 +
programLog: programLog,
 +
vertexShader: {
 +
log: vertexLog,
 +
prefix: prefixVertex
 +
},
 +
fragmentShader: {
 +
log: fragmentLog,
 +
prefix: prefixFragment
 +
}
 +
};
 +
}
 +
} // Clean up
 +
// Crashes in iOS9 and iOS10. #18402
 +
// gl.detachShader( program, glVertexShader );
 +
// gl.detachShader( program, glFragmentShader );
 +
 +
 +
gl.deleteShader(glVertexShader);
 +
gl.deleteShader(glFragmentShader); // set up caching for uniform locations
 +
 +
let cachedUniforms;
 +
 +
this.getUniforms = function () {
 +
if (cachedUniforms === undefined) {
 +
cachedUniforms = new WebGLUniforms(gl, program);
 +
}
 +
 +
return cachedUniforms;
 +
}; // set up caching for attribute locations
 +
 +
 +
let cachedAttributes;
 +
 +
this.getAttributes = function () {
 +
if (cachedAttributes === undefined) {
 +
cachedAttributes = fetchAttributeLocations(gl, program);
 +
}
 +
 +
return cachedAttributes;
 +
}; // free resource
 +
 +
 +
this.destroy = function () {
 +
bindingStates.releaseStatesOfProgram(this);
 +
gl.deleteProgram(program);
 +
this.program = undefined;
 +
}; //
 +
 +
 +
this.name = parameters.shaderName;
 +
this.id = programIdCount++;
 +
this.cacheKey = cacheKey;
 +
this.usedTimes = 1;
 +
this.program = program;
 +
this.vertexShader = glVertexShader;
 +
this.fragmentShader = glFragmentShader;
 +
return this;
 +
}
 +
 +
function WebGLPrograms(renderer, cubemaps, extensions, capabilities, bindingStates, clipping) {
 +
const programs = [];
 +
const isWebGL2 = capabilities.isWebGL2;
 +
const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;
 +
const floatVertexTextures = capabilities.floatVertexTextures;
 +
const maxVertexUniforms = capabilities.maxVertexUniforms;
 +
const vertexTextures = capabilities.vertexTextures;
 +
let precision = capabilities.precision;
 +
const shaderIDs = {
 +
MeshDepthMaterial: 'depth',
 +
MeshDistanceMaterial: 'distanceRGBA',
 +
MeshNormalMaterial: 'normal',
 +
MeshBasicMaterial: 'basic',
 +
MeshLambertMaterial: 'lambert',
 +
MeshPhongMaterial: 'phong',
 +
MeshToonMaterial: 'toon',
 +
MeshStandardMaterial: 'physical',
 +
MeshPhysicalMaterial: 'physical',
 +
MeshMatcapMaterial: 'matcap',
 +
LineBasicMaterial: 'basic',
 +
LineDashedMaterial: 'dashed',
 +
PointsMaterial: 'points',
 +
ShadowMaterial: 'shadow',
 +
SpriteMaterial: 'sprite'
 +
};
 +
const parameterNames = ['precision', 'isWebGL2', 'supportsVertexTextures', 'outputEncoding', 'instancing', 'instancingColor', 'map', 'mapEncoding', 'matcap', 'matcapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'envMapCubeUV', 'lightMap', 'lightMapEncoding', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'objectSpaceNormalMap', 'tangentSpaceNormalMap', 'clearcoatMap', 'clearcoatRoughnessMap', 'clearcoatNormalMap', 'displacementMap', 'specularMap', 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'combine', 'vertexColors', 'vertexAlphas', 'vertexTangents', 'vertexUvs', 'uvsVertexOnly', 'fog', 'useFog', 'fogExp2', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'numDirLightShadows', 'numPointLightShadows', 'numSpotLightShadows', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'alphaTest', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering', 'sheen', 'transmission', 'transmissionMap', 'thicknessMap'];
 +
 +
function getMaxBones(object) {
 +
const skeleton = object.skeleton;
 +
const bones = skeleton.bones;
 +
 +
if (floatVertexTextures) {
 +
return 1024;
 +
} else {
 +
// default for when object is not specified
 +
// ( for example when prebuilding shader to be used with multiple objects )
 +
//
 +
// - leave some extra space for other uniforms
 +
// - limit here is ANGLE's 254 max uniform vectors
 +
// (up to 54 should be safe)
 +
const nVertexUniforms = maxVertexUniforms;
 +
const nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4);
 +
const maxBones = Math.min(nVertexMatrices, bones.length);
 +
 +
if (maxBones < bones.length) {
 +
console.warn('THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.');
 +
return 0;
 +
}
 +
 +
return maxBones;
 +
}
 +
}
 +
 +
function getTextureEncodingFromMap(map) {
 +
let encoding;
 +
 +
if (map && map.isTexture) {
 +
encoding = map.encoding;
 +
} else if (map && map.isWebGLRenderTarget) {
 +
console.warn('THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.');
 +
encoding = map.texture.encoding;
 +
} else {
 +
encoding = LinearEncoding;
 +
}
 +
 +
return encoding;
 +
}
 +
 +
function getParameters(material, lights, shadows, scene, object) {
 +
const fog = scene.fog;
 +
const environment = material.isMeshStandardMaterial ? scene.environment : null;
 +
const envMap = cubemaps.get(material.envMap || environment);
 +
const shaderID = shaderIDs[material.type]; // heuristics to create shader parameters according to lights in the scene
 +
// (not to blow over maxLights budget)
 +
 +
const maxBones = object.isSkinnedMesh ? getMaxBones(object) : 0;
 +
 +
if (material.precision !== null) {
 +
precision = capabilities.getMaxPrecision(material.precision);
 +
 +
if (precision !== material.precision) {
 +
console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.');
 +
}
 +
}
 +
 +
let vertexShader, fragmentShader;
 +
 +
if (shaderID) {
 +
const shader = ShaderLib[shaderID];
 +
vertexShader = shader.vertexShader;
 +
fragmentShader = shader.fragmentShader;
 +
} else {
 +
vertexShader = material.vertexShader;
 +
fragmentShader = material.fragmentShader;
 +
}
 +
 +
const currentRenderTarget = renderer.getRenderTarget();
 +
const parameters = {
 +
isWebGL2: isWebGL2,
 +
shaderID: shaderID,
 +
shaderName: material.type,
 +
vertexShader: vertexShader,
 +
fragmentShader: fragmentShader,
 +
defines: material.defines,
 +
isRawShaderMaterial: material.isRawShaderMaterial === true,
 +
glslVersion: material.glslVersion,
 +
precision: precision,
 +
instancing: object.isInstancedMesh === true,
 +
instancingColor: object.isInstancedMesh === true && object.instanceColor !== null,
 +
supportsVertexTextures: vertexTextures,
 +
outputEncoding: currentRenderTarget !== null ? getTextureEncodingFromMap(currentRenderTarget.texture) : renderer.outputEncoding,
 +
map: !!material.map,
 +
mapEncoding: getTextureEncodingFromMap(material.map),
 +
matcap: !!material.matcap,
 +
matcapEncoding: getTextureEncodingFromMap(material.matcap),
 +
envMap: !!envMap,
 +
envMapMode: envMap && envMap.mapping,
 +
envMapEncoding: getTextureEncodingFromMap(envMap),
 +
envMapCubeUV: !!envMap && (envMap.mapping === CubeUVReflectionMapping || envMap.mapping === CubeUVRefractionMapping),
 +
lightMap: !!material.lightMap,
 +
lightMapEncoding: getTextureEncodingFromMap(material.lightMap),
 +
aoMap: !!material.aoMap,
 +
emissiveMap: !!material.emissiveMap,
 +
emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap),
 +
bumpMap: !!material.bumpMap,
 +
normalMap: !!material.normalMap,
 +
objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,
 +
tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,
 +
clearcoatMap: !!material.clearcoatMap,
 +
clearcoatRoughnessMap: !!material.clearcoatRoughnessMap,
 +
clearcoatNormalMap: !!material.clearcoatNormalMap,
 +
displacementMap: !!material.displacementMap,
 +
roughnessMap: !!material.roughnessMap,
 +
metalnessMap: !!material.metalnessMap,
 +
specularMap: !!material.specularMap,
 +
alphaMap: !!material.alphaMap,
 +
gradientMap: !!material.gradientMap,
 +
sheen: !!material.sheen,
 +
transmission: !!material.transmission,
 +
transmissionMap: !!material.transmissionMap,
 +
thicknessMap: !!material.thicknessMap,
 +
combine: material.combine,
 +
vertexTangents: material.normalMap && material.vertexTangents,
 +
vertexColors: material.vertexColors,
 +
vertexAlphas: material.vertexColors === true && object.geometry && object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4,
 +
vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.displacementMap || !!material.transmissionMap || !!material.thicknessMap,
 +
uvsVertexOnly: !(!!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || !!material.transmission || !!material.transmissionMap || !!material.thicknessMap) && !!material.displacementMap,
 +
fog: !!fog,
 +
useFog: material.fog,
 +
fogExp2: fog && fog.isFogExp2,
 +
flatShading: !!material.flatShading,
 +
sizeAttenuation: material.sizeAttenuation,
 +
logarithmicDepthBuffer: logarithmicDepthBuffer,
 +
skinning: object.isSkinnedMesh === true && maxBones > 0,
 +
maxBones: maxBones,
 +
useVertexTexture: floatVertexTextures,
 +
morphTargets: material.morphTargets,
 +
morphNormals: material.morphNormals,
 +
numDirLights: lights.directional.length,
 +
numPointLights: lights.point.length,
 +
numSpotLights: lights.spot.length,
 +
numRectAreaLights: lights.rectArea.length,
 +
numHemiLights: lights.hemi.length,
 +
numDirLightShadows: lights.directionalShadowMap.length,
 +
numPointLightShadows: lights.pointShadowMap.length,
 +
numSpotLightShadows: lights.spotShadowMap.length,
 +
numClippingPlanes: clipping.numPlanes,
 +
numClipIntersection: clipping.numIntersection,
 +
dithering: material.dithering,
 +
shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,
 +
shadowMapType: renderer.shadowMap.type,
 +
toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,
 +
physicallyCorrectLights: renderer.physicallyCorrectLights,
 +
premultipliedAlpha: material.premultipliedAlpha,
 +
alphaTest: material.alphaTest,
 +
doubleSided: material.side === DoubleSide,
 +
flipSided: material.side === BackSide,
 +
depthPacking: material.depthPacking !== undefined ? material.depthPacking : false,
 +
index0AttributeName: material.index0AttributeName,
 +
extensionDerivatives: material.extensions && material.extensions.derivatives,
 +
extensionFragDepth: material.extensions && material.extensions.fragDepth,
 +
extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,
 +
extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,
 +
rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'),
 +
rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'),
 +
rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'),
 +
customProgramCacheKey: material.customProgramCacheKey()
 +
};
 +
return parameters;
 +
}
 +
 +
function getProgramCacheKey(parameters) {
 +
const array = [];
 +
 +
if (parameters.shaderID) {
 +
array.push(parameters.shaderID);
 +
} else {
 +
array.push(parameters.fragmentShader);
 +
array.push(parameters.vertexShader);
 +
}
 +
 +
if (parameters.defines !== undefined) {
 +
for (const name in parameters.defines) {
 +
array.push(name);
 +
array.push(parameters.defines[name]);
 +
}
 +
}
 +
 +
if (parameters.isRawShaderMaterial === false) {
 +
for (let i = 0; i < parameterNames.length; i++) {
 +
array.push(parameters[parameterNames[i]]);
 +
}
 +
 +
array.push(renderer.outputEncoding);
 +
array.push(renderer.gammaFactor);
 +
}
 +
 +
array.push(parameters.customProgramCacheKey);
 +
return array.join();
 +
}
 +
 +
function getUniforms(material) {
 +
const shaderID = shaderIDs[material.type];
 +
let uniforms;
 +
 +
if (shaderID) {
 +
const shader = ShaderLib[shaderID];
 +
uniforms = UniformsUtils.clone(shader.uniforms);
 +
} else {
 +
uniforms = material.uniforms;
 +
}
 +
 +
return uniforms;
 +
}
 +
 +
function acquireProgram(parameters, cacheKey) {
 +
let program; // Check if code has been already compiled
 +
 +
for (let p = 0, pl = programs.length; p < pl; p++) {
 +
const preexistingProgram = programs[p];
 +
 +
if (preexistingProgram.cacheKey === cacheKey) {
 +
program = preexistingProgram;
 +
++program.usedTimes;
 +
break;
 +
}
 +
}
 +
 +
if (program === undefined) {
 +
program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates);
 +
programs.push(program);
 +
}
 +
 +
return program;
 +
}
 +
 +
function releaseProgram(program) {
 +
if (--program.usedTimes === 0) {
 +
// Remove from unordered set
 +
const i = programs.indexOf(program);
 +
programs[i] = programs[programs.length - 1];
 +
programs.pop(); // Free WebGL resources
 +
 +
program.destroy();
 +
}
 +
}
 +
 +
return {
 +
getParameters: getParameters,
 +
getProgramCacheKey: getProgramCacheKey,
 +
getUniforms: getUniforms,
 +
acquireProgram: acquireProgram,
 +
releaseProgram: releaseProgram,
 +
// Exposed for resource monitoring & error feedback via renderer.info:
 +
programs: programs
 +
};
 +
}
 +
 +
function WebGLProperties() {
 +
let properties = new WeakMap();
 +
 +
function get(object) {
 +
let map = properties.get(object);
 +
 +
if (map === undefined) {
 +
map = {};
 +
properties.set(object, map);
 +
}
 +
 +
return map;
 +
}
 +
 +
function remove(object) {
 +
properties.delete(object);
 +
}
 +
 +
function update(object, key, value) {
 +
properties.get(object)[key] = value;
 +
}
 +
 +
function dispose() {
 +
properties = new WeakMap();
 +
}
 +
 +
return {
 +
get: get,
 +
remove: remove,
 +
update: update,
 +
dispose: dispose
 +
};
 +
}
 +
 +
function painterSortStable(a, b) {
 +
if (a.groupOrder !== b.groupOrder) {
 +
return a.groupOrder - b.groupOrder;
 +
} else if (a.renderOrder !== b.renderOrder) {
 +
return a.renderOrder - b.renderOrder;
 +
} else if (a.program !== b.program) {
 +
return a.program.id - b.program.id;
 +
} else if (a.material.id !== b.material.id) {
 +
return a.material.id - b.material.id;
 +
} else if (a.z !== b.z) {
 +
return a.z - b.z;
 +
} else {
 +
return a.id - b.id;
 +
}
 +
}
 +
 +
function reversePainterSortStable(a, b) {
 +
if (a.groupOrder !== b.groupOrder) {
 +
return a.groupOrder - b.groupOrder;
 +
} else if (a.renderOrder !== b.renderOrder) {
 +
return a.renderOrder - b.renderOrder;
 +
} else if (a.z !== b.z) {
 +
return b.z - a.z;
 +
} else {
 +
return a.id - b.id;
 +
}
 +
}
 +
 +
function WebGLRenderList(properties) {
 +
const renderItems = [];
 +
let renderItemsIndex = 0;
 +
const opaque = [];
 +
const transmissive = [];
 +
const transparent = [];
 +
const defaultProgram = {
 +
id: -1
 +
};
 +
 +
function init() {
 +
renderItemsIndex = 0;
 +
opaque.length = 0;
 +
transmissive.length = 0;
 +
transparent.length = 0;
 +
}
 +
 +
function getNextRenderItem(object, geometry, material, groupOrder, z, group) {
 +
let renderItem = renderItems[renderItemsIndex];
 +
const materialProperties = properties.get(material);
 +
 +
if (renderItem === undefined) {
 +
renderItem = {
 +
id: object.id,
 +
object: object,
 +
geometry: geometry,
 +
material: material,
 +
program: materialProperties.program || defaultProgram,
 +
groupOrder: groupOrder,
 +
renderOrder: object.renderOrder,
 +
z: z,
 +
group: group
 +
};
 +
renderItems[renderItemsIndex] = renderItem;
 +
} else {
 +
renderItem.id = object.id;
 +
renderItem.object = object;
 +
renderItem.geometry = geometry;
 +
renderItem.material = material;
 +
renderItem.program = materialProperties.program || defaultProgram;
 +
renderItem.groupOrder = groupOrder;
 +
renderItem.renderOrder = object.renderOrder;
 +
renderItem.z = z;
 +
renderItem.group = group;
 +
}
 +
 +
renderItemsIndex++;
 +
return renderItem;
 +
}
 +
 +
function push(object, geometry, material, groupOrder, z, group) {
 +
const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
 +
 +
if (material.transmission > 0.0) {
 +
transmissive.push(renderItem);
 +
} else if (material.transparent === true) {
 +
transparent.push(renderItem);
 +
} else {
 +
opaque.push(renderItem);
 +
}
 +
}
 +
 +
function unshift(object, geometry, material, groupOrder, z, group) {
 +
const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
 +
 +
if (material.transmission > 0.0) {
 +
transmissive.unshift(renderItem);
 +
} else if (material.transparent === true) {
 +
transparent.unshift(renderItem);
 +
} else {
 +
opaque.unshift(renderItem);
 +
}
 +
}
 +
 +
function sort(customOpaqueSort, customTransparentSort) {
 +
if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable);
 +
if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable);
 +
if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable);
 +
}
 +
 +
function finish() {
 +
// Clear references from inactive renderItems in the list
 +
for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) {
 +
const renderItem = renderItems[i];
 +
if (renderItem.id === null) break;
 +
renderItem.id = null;
 +
renderItem.object = null;
 +
renderItem.geometry = null;
 +
renderItem.material = null;
 +
renderItem.program = null;
 +
renderItem.group = null;
 +
}
 +
}
 +
 +
return {
 +
opaque: opaque,
 +
transmissive: transmissive,
 +
transparent: transparent,
 +
init: init,
 +
push: push,
 +
unshift: unshift,
 +
finish: finish,
 +
sort: sort
 +
};
 +
}
 +
 +
function WebGLRenderLists(properties) {
 +
let lists = new WeakMap();
 +
 +
function get(scene, renderCallDepth) {
 +
let list;
 +
 +
if (lists.has(scene) === false) {
 +
list = new WebGLRenderList(properties);
 +
lists.set(scene, [list]);
 +
} else {
 +
if (renderCallDepth >= lists.get(scene).length) {
 +
list = new WebGLRenderList(properties);
 +
lists.get(scene).push(list);
 +
} else {
 +
list = lists.get(scene)[renderCallDepth];
 +
}
 +
}
 +
 +
return list;
 +
}
 +
 +
function dispose() {
 +
lists = new WeakMap();
 +
}
 +
 +
return {
 +
get: get,
 +
dispose: dispose
 +
};
 +
}
 +
 +
function UniformsCache() {
 +
const lights = {};
 +
return {
 +
get: function (light) {
 +
if (lights[light.id] !== undefined) {
 +
return lights[light.id];
 +
}
 +
 +
let uniforms;
 +
 +
switch (light.type) {
 +
case 'DirectionalLight':
 +
uniforms = {
 +
direction: new Vector3(),
 +
color: new Color()
 +
};
 +
break;
 +
 +
case 'SpotLight':
 +
uniforms = {
 +
position: new Vector3(),
 +
direction: new Vector3(),
 +
color: new Color(),
 +
distance: 0,
 +
coneCos: 0,
 +
penumbraCos: 0,
 +
decay: 0
 +
};
 +
break;
 +
 +
case 'PointLight':
 +
uniforms = {
 +
position: new Vector3(),
 +
color: new Color(),
 +
distance: 0,
 +
decay: 0
 +
};
 +
break;
 +
 +
case 'HemisphereLight':
 +
uniforms = {
 +
direction: new Vector3(),
 +
skyColor: new Color(),
 +
groundColor: new Color()
 +
};
 +
break;
 +
 +
case 'RectAreaLight':
 +
uniforms = {
 +
color: new Color(),
 +
position: new Vector3(),
 +
halfWidth: new Vector3(),
 +
halfHeight: new Vector3()
 +
};
 +
break;
 +
}
 +
 +
lights[light.id] = uniforms;
 +
return uniforms;
 +
}
 +
};
 +
}
 +
 +
function ShadowUniformsCache() {
 +
const lights = {};
 +
return {
 +
get: function (light) {
 +
if (lights[light.id] !== undefined) {
 +
return lights[light.id];
 +
}
 +
 +
let uniforms;
 +
 +
switch (light.type) {
 +
case 'DirectionalLight':
 +
uniforms = {
 +
shadowBias: 0,
 +
shadowNormalBias: 0,
 +
shadowRadius: 1,
 +
shadowMapSize: new Vector2()
 +
};
 +
break;
 +
 +
case 'SpotLight':
 +
uniforms = {
 +
shadowBias: 0,
 +
shadowNormalBias: 0,
 +
shadowRadius: 1,
 +
shadowMapSize: new Vector2()
 +
};
 +
break;
 +
 +
case 'PointLight':
 +
uniforms = {
 +
shadowBias: 0,
 +
shadowNormalBias: 0,
 +
shadowRadius: 1,
 +
shadowMapSize: new Vector2(),
 +
shadowCameraNear: 1,
 +
shadowCameraFar: 1000
 +
};
 +
break;
 +
// TODO (abelnation): set RectAreaLight shadow uniforms
 +
}
 +
 +
lights[light.id] = uniforms;
 +
return uniforms;
 +
}
 +
};
 +
}
 +
 +
let nextVersion = 0;
 +
 +
function shadowCastingLightsFirst(lightA, lightB) {
 +
return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0);
 +
}
 +
 +
function WebGLLights(extensions, capabilities) {
 +
const cache = new UniformsCache();
 +
const shadowCache = ShadowUniformsCache();
 +
const state = {
 +
version: 0,
 +
hash: {
 +
directionalLength: -1,
 +
pointLength: -1,
 +
spotLength: -1,
 +
rectAreaLength: -1,
 +
hemiLength: -1,
 +
numDirectionalShadows: -1,
 +
numPointShadows: -1,
 +
numSpotShadows: -1
 +
},
 +
ambient: [0, 0, 0],
 +
probe: [],
 +
directional: [],
 +
directionalShadow: [],
 +
directionalShadowMap: [],
 +
directionalShadowMatrix: [],
 +
spot: [],
 +
spotShadow: [],
 +
spotShadowMap: [],
 +
spotShadowMatrix: [],
 +
rectArea: [],
 +
rectAreaLTC1: null,
 +
rectAreaLTC2: null,
 +
point: [],
 +
pointShadow: [],
 +
pointShadowMap: [],
 +
pointShadowMatrix: [],
 +
hemi: []
 +
};
 +
 +
for (let i = 0; i < 9; i++) state.probe.push(new Vector3());
 +
 +
const vector3 = new Vector3();
 +
const matrix4 = new Matrix4();
 +
const matrix42 = new Matrix4();
 +
 +
function setup(lights) {
 +
let r = 0,
 +
g = 0,
 +
b = 0;
 +
 +
for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0);
 +
 +
let directionalLength = 0;
 +
let pointLength = 0;
 +
let spotLength = 0;
 +
let rectAreaLength = 0;
 +
let hemiLength = 0;
 +
let numDirectionalShadows = 0;
 +
let numPointShadows = 0;
 +
let numSpotShadows = 0;
 +
lights.sort(shadowCastingLightsFirst);
 +
 +
for (let i = 0, l = lights.length; i < l; i++) {
 +
const light = lights[i];
 +
const color = light.color;
 +
const intensity = light.intensity;
 +
const distance = light.distance;
 +
const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null;
 +
 +
if (light.isAmbientLight) {
 +
r += color.r * intensity;
 +
g += color.g * intensity;
 +
b += color.b * intensity;
 +
} else if (light.isLightProbe) {
 +
for (let j = 0; j < 9; j++) {
 +
state.probe[j].addScaledVector(light.sh.coefficients[j], intensity);
 +
}
 +
} else if (light.isDirectionalLight) {
 +
const uniforms = cache.get(light);
 +
uniforms.color.copy(light.color).multiplyScalar(light.intensity);
 +
 +
if (light.castShadow) {
 +
const shadow = light.shadow;
 +
const shadowUniforms = shadowCache.get(light);
 +
shadowUniforms.shadowBias = shadow.bias;
 +
shadowUniforms.shadowNormalBias = shadow.normalBias;
 +
shadowUniforms.shadowRadius = shadow.radius;
 +
shadowUniforms.shadowMapSize = shadow.mapSize;
 +
state.directionalShadow[directionalLength] = shadowUniforms;
 +
state.directionalShadowMap[directionalLength] = shadowMap;
 +
state.directionalShadowMatrix[directionalLength] = light.shadow.matrix;
 +
numDirectionalShadows++;
 +
}
 +
 +
state.directional[directionalLength] = uniforms;
 +
directionalLength++;
 +
} else if (light.isSpotLight) {
 +
const uniforms = cache.get(light);
 +
uniforms.position.setFromMatrixPosition(light.matrixWorld);
 +
uniforms.color.copy(color).multiplyScalar(intensity);
 +
uniforms.distance = distance;
 +
uniforms.coneCos = Math.cos(light.angle);
 +
uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra));
 +
uniforms.decay = light.decay;
 +
 +
if (light.castShadow) {
 +
const shadow = light.shadow;
 +
const shadowUniforms = shadowCache.get(light);
 +
shadowUniforms.shadowBias = shadow.bias;
 +
shadowUniforms.shadowNormalBias = shadow.normalBias;
 +
shadowUniforms.shadowRadius = shadow.radius;
 +
shadowUniforms.shadowMapSize = shadow.mapSize;
 +
state.spotShadow[spotLength] = shadowUniforms;
 +
state.spotShadowMap[spotLength] = shadowMap;
 +
state.spotShadowMatrix[spotLength] = light.shadow.matrix;
 +
numSpotShadows++;
 +
}
 +
 +
state.spot[spotLength] = uniforms;
 +
spotLength++;
 +
} else if (light.isRectAreaLight) {
 +
const uniforms = cache.get(light); // (a) intensity is the total visible light emitted
 +
//uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );
 +
// (b) intensity is the brightness of the light
 +
 +
uniforms.color.copy(color).multiplyScalar(intensity);
 +
uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);
 +
uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);
 +
state.rectArea[rectAreaLength] = uniforms;
 +
rectAreaLength++;
 +
} else if (light.isPointLight) {
 +
const uniforms = cache.get(light);
 +
uniforms.color.copy(light.color).multiplyScalar(light.intensity);
 +
uniforms.distance = light.distance;
 +
uniforms.decay = light.decay;
 +
 +
if (light.castShadow) {
 +
const shadow = light.shadow;
 +
const shadowUniforms = shadowCache.get(light);
 +
shadowUniforms.shadowBias = shadow.bias;
 +
shadowUniforms.shadowNormalBias = shadow.normalBias;
 +
shadowUniforms.shadowRadius = shadow.radius;
 +
shadowUniforms.shadowMapSize = shadow.mapSize;
 +
shadowUniforms.shadowCameraNear = shadow.camera.near;
 +
shadowUniforms.shadowCameraFar = shadow.camera.far;
 +
state.pointShadow[pointLength] = shadowUniforms;
 +
state.pointShadowMap[pointLength] = shadowMap;
 +
state.pointShadowMatrix[pointLength] = light.shadow.matrix;
 +
numPointShadows++;
 +
}
 +
 +
state.point[pointLength] = uniforms;
 +
pointLength++;
 +
} else if (light.isHemisphereLight) {
 +
const uniforms = cache.get(light);
 +
uniforms.skyColor.copy(light.color).multiplyScalar(intensity);
 +
uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity);
 +
state.hemi[hemiLength] = uniforms;
 +
hemiLength++;
 +
}
 +
}
 +
 +
if (rectAreaLength > 0) {
 +
if (capabilities.isWebGL2) {
 +
// WebGL 2
 +
state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
 +
state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
 +
} else {
 +
// WebGL 1
 +
if (extensions.has('OES_texture_float_linear') === true) {
 +
state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
 +
state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
 +
} else if (extensions.has('OES_texture_half_float_linear') === true) {
 +
state.rectAreaLTC1 = UniformsLib.LTC_HALF_1;
 +
state.rectAreaLTC2 = UniformsLib.LTC_HALF_2;
 +
} else {
 +
console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.');
 +
}
 +
}
 +
}
 +
 +
state.ambient[0] = r;
 +
state.ambient[1] = g;
 +
state.ambient[2] = b;
 +
const hash = state.hash;
 +
 +
if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows) {
 +
state.directional.length = directionalLength;
 +
state.spot.length = spotLength;
 +
state.rectArea.length = rectAreaLength;
 +
state.point.length = pointLength;
 +
state.hemi.length = hemiLength;
 +
state.directionalShadow.length = numDirectionalShadows;
 +
state.directionalShadowMap.length = numDirectionalShadows;
 +
state.pointShadow.length = numPointShadows;
 +
state.pointShadowMap.length = numPointShadows;
 +
state.spotShadow.length = numSpotShadows;
 +
state.spotShadowMap.length = numSpotShadows;
 +
state.directionalShadowMatrix.length = numDirectionalShadows;
 +
state.pointShadowMatrix.length = numPointShadows;
 +
state.spotShadowMatrix.length = numSpotShadows;
 +
hash.directionalLength = directionalLength;
 +
hash.pointLength = pointLength;
 +
hash.spotLength = spotLength;
 +
hash.rectAreaLength = rectAreaLength;
 +
hash.hemiLength = hemiLength;
 +
hash.numDirectionalShadows = numDirectionalShadows;
 +
hash.numPointShadows = numPointShadows;
 +
hash.numSpotShadows = numSpotShadows;
 +
state.version = nextVersion++;
 +
}
 +
}
 +
 +
function setupView(lights, camera) {
 +
let directionalLength = 0;
 +
let pointLength = 0;
 +
let spotLength = 0;
 +
let rectAreaLength = 0;
 +
let hemiLength = 0;
 +
const viewMatrix = camera.matrixWorldInverse;
 +
 +
for (let i = 0, l = lights.length; i < l; i++) {
 +
const light = lights[i];
 +
 +
if (light.isDirectionalLight) {
 +
const uniforms = state.directional[directionalLength];
 +
uniforms.direction.setFromMatrixPosition(light.matrixWorld);
 +
vector3.setFromMatrixPosition(light.target.matrixWorld);
 +
uniforms.direction.sub(vector3);
 +
uniforms.direction.transformDirection(viewMatrix);
 +
directionalLength++;
 +
} else if (light.isSpotLight) {
 +
const uniforms = state.spot[spotLength];
 +
uniforms.position.setFromMatrixPosition(light.matrixWorld);
 +
uniforms.position.applyMatrix4(viewMatrix);
 +
uniforms.direction.setFromMatrixPosition(light.matrixWorld);
 +
vector3.setFromMatrixPosition(light.target.matrixWorld);
 +
uniforms.direction.sub(vector3);
 +
uniforms.direction.transformDirection(viewMatrix);
 +
spotLength++;
 +
} else if (light.isRectAreaLight) {
 +
const uniforms = state.rectArea[rectAreaLength];
 +
uniforms.position.setFromMatrixPosition(light.matrixWorld);
 +
uniforms.position.applyMatrix4(viewMatrix); // extract local rotation of light to derive width/height half vectors
 +
 +
matrix42.identity();
 +
matrix4.copy(light.matrixWorld);
 +
matrix4.premultiply(viewMatrix);
 +
matrix42.extractRotation(matrix4);
 +
uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);
 +
uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);
 +
uniforms.halfWidth.applyMatrix4(matrix42);
 +
uniforms.halfHeight.applyMatrix4(matrix42);
 +
rectAreaLength++;
 +
} else if (light.isPointLight) {
 +
const uniforms = state.point[pointLength];
 +
uniforms.position.setFromMatrixPosition(light.matrixWorld);
 +
uniforms.position.applyMatrix4(viewMatrix);
 +
pointLength++;
 +
} else if (light.isHemisphereLight) {
 +
const uniforms = state.hemi[hemiLength];
 +
uniforms.direction.setFromMatrixPosition(light.matrixWorld);
 +
uniforms.direction.transformDirection(viewMatrix);
 +
uniforms.direction.normalize();
 +
hemiLength++;
 +
}
 +
}
 +
}
 +
 +
return {
 +
setup: setup,
 +
setupView: setupView,
 +
state: state
 +
};
 +
}
 +
 +
function WebGLRenderState(extensions, capabilities) {
 +
const lights = new WebGLLights(extensions, capabilities);
 +
const lightsArray = [];
 +
const shadowsArray = [];
 +
 +
function init() {
 +
lightsArray.length = 0;
 +
shadowsArray.length = 0;
 +
}
 +
 +
function pushLight(light) {
 +
lightsArray.push(light);
 +
}
 +
 +
function pushShadow(shadowLight) {
 +
shadowsArray.push(shadowLight);
 +
}
 +
 +
function setupLights() {
 +
lights.setup(lightsArray);
 +
}
 +
 +
function setupLightsView(camera) {
 +
lights.setupView(lightsArray, camera);
 +
}
 +
 +
const state = {
 +
lightsArray: lightsArray,
 +
shadowsArray: shadowsArray,
 +
lights: lights
 +
};
 +
return {
 +
init: init,
 +
state: state,
 +
setupLights: setupLights,
 +
setupLightsView: setupLightsView,
 +
pushLight: pushLight,
 +
pushShadow: pushShadow
 +
};
 +
}
 +
 +
function WebGLRenderStates(extensions, capabilities) {
 +
let renderStates = new WeakMap();
 +
 +
function get(scene, renderCallDepth = 0) {
 +
let renderState;
 +
 +
if (renderStates.has(scene) === false) {
 +
renderState = new WebGLRenderState(extensions, capabilities);
 +
renderStates.set(scene, [renderState]);
 +
} else {
 +
if (renderCallDepth >= renderStates.get(scene).length) {
 +
renderState = new WebGLRenderState(extensions, capabilities);
 +
renderStates.get(scene).push(renderState);
 +
} else {
 +
renderState = renderStates.get(scene)[renderCallDepth];
 +
}
 +
}
 +
 +
return renderState;
 +
}
 +
 +
function dispose() {
 +
renderStates = new WeakMap();
 +
}
 +
 +
return {
 +
get: get,
 +
dispose: dispose
 +
};
 +
}
 +
 +
/**
 +
* parameters = {
 +
*
 +
* opacity: <float>,
 +
*
 +
* map: new THREE.Texture( <Image> ),
 +
*
 +
* alphaMap: new THREE.Texture( <Image> ),
 +
*
 +
* displacementMap: new THREE.Texture( <Image> ),
 +
* displacementScale: <float>,
 +
* displacementBias: <float>,
 +
*
 +
* wireframe: <boolean>,
 +
* wireframeLinewidth: <float>
 +
* }
 +
*/
 +
 +
class MeshDepthMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'MeshDepthMaterial';
 +
this.depthPacking = BasicDepthPacking;
 +
this.morphTargets = false;
 +
this.map = null;
 +
this.alphaMap = null;
 +
this.displacementMap = null;
 +
this.displacementScale = 1;
 +
this.displacementBias = 0;
 +
this.wireframe = false;
 +
this.wireframeLinewidth = 1;
 +
this.fog = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.depthPacking = source.depthPacking;
 +
this.morphTargets = source.morphTargets;
 +
this.map = source.map;
 +
this.alphaMap = source.alphaMap;
 +
this.displacementMap = source.displacementMap;
 +
this.displacementScale = source.displacementScale;
 +
this.displacementBias = source.displacementBias;
 +
this.wireframe = source.wireframe;
 +
this.wireframeLinewidth = source.wireframeLinewidth;
 +
return this;
 +
}
 +
 +
}
 +
 +
MeshDepthMaterial.prototype.isMeshDepthMaterial = true;
 +
 +
/**
 +
* parameters = {
 +
*
 +
* referencePosition: <float>,
 +
* nearDistance: <float>,
 +
* farDistance: <float>,
 +
*
 +
* morphTargets: <bool>,
 +
*
 +
* map: new THREE.Texture( <Image> ),
 +
*
 +
* alphaMap: new THREE.Texture( <Image> ),
 +
*
 +
* displacementMap: new THREE.Texture( <Image> ),
 +
* displacementScale: <float>,
 +
* displacementBias: <float>
 +
*
 +
* }
 +
*/
 +
 +
class MeshDistanceMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'MeshDistanceMaterial';
 +
this.referencePosition = new Vector3();
 +
this.nearDistance = 1;
 +
this.farDistance = 1000;
 +
this.morphTargets = false;
 +
this.map = null;
 +
this.alphaMap = null;
 +
this.displacementMap = null;
 +
this.displacementScale = 1;
 +
this.displacementBias = 0;
 +
this.fog = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.referencePosition.copy(source.referencePosition);
 +
this.nearDistance = source.nearDistance;
 +
this.farDistance = source.farDistance;
 +
this.morphTargets = source.morphTargets;
 +
this.map = source.map;
 +
this.alphaMap = source.alphaMap;
 +
this.displacementMap = source.displacementMap;
 +
this.displacementScale = source.displacementScale;
 +
this.displacementBias = source.displacementBias;
 +
return this;
 +
}
 +
 +
}
 +
 +
MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;
 +
 +
var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include <packing>\nvoid main() {\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy ) / resolution ) );\n\tfor ( float i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, i ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean * HALF_SAMPLE_RATE;\n\tsquared_mean = squared_mean * HALF_SAMPLE_RATE;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";
 +
 +
var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";
 +
 +
function WebGLShadowMap(_renderer, _objects, _capabilities) {
 +
let _frustum = new Frustum();
 +
 +
const _shadowMapSize = new Vector2(),
 +
_viewportSize = new Vector2(),
 +
_viewport = new Vector4(),
 +
_depthMaterials = [],
 +
_distanceMaterials = [],
 +
_materialCache = {},
 +
_maxTextureSize = _capabilities.maxTextureSize;
 +
 +
const shadowSide = {
 +
0: BackSide,
 +
1: FrontSide,
 +
2: DoubleSide
 +
};
 +
const shadowMaterialVertical = new ShaderMaterial({
 +
defines: {
 +
SAMPLE_RATE: 2.0 / 8.0,
 +
HALF_SAMPLE_RATE: 1.0 / 8.0
 +
},
 +
uniforms: {
 +
shadow_pass: {
 +
value: null
 +
},
 +
resolution: {
 +
value: new Vector2()
 +
},
 +
radius: {
 +
value: 4.0
 +
}
 +
},
 +
vertexShader: vsm_vert,
 +
fragmentShader: vsm_frag
 +
});
 +
const shadowMaterialHorizontal = shadowMaterialVertical.clone();
 +
shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1;
 +
const fullScreenTri = new BufferGeometry();
 +
fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3));
 +
const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical);
 +
const scope = this;
 +
this.enabled = false;
 +
this.autoUpdate = true;
 +
this.needsUpdate = false;
 +
this.type = PCFShadowMap;
 +
 +
this.render = function (lights, scene, camera) {
 +
if (scope.enabled === false) return;
 +
if (scope.autoUpdate === false && scope.needsUpdate === false) return;
 +
if (lights.length === 0) return;
 +
 +
const currentRenderTarget = _renderer.getRenderTarget();
 +
 +
const activeCubeFace = _renderer.getActiveCubeFace();
 +
 +
const activeMipmapLevel = _renderer.getActiveMipmapLevel();
 +
 +
const _state = _renderer.state; // Set GL state for depth map.
 +
 +
_state.setBlending(NoBlending);
 +
 +
_state.buffers.color.setClear(1, 1, 1, 1);
 +
 +
_state.buffers.depth.setTest(true);
 +
 +
_state.setScissorTest(false); // render depth map
 +
 +
 +
for (let i = 0, il = lights.length; i < il; i++) {
 +
const light = lights[i];
 +
const shadow = light.shadow;
 +
 +
if (shadow === undefined) {
 +
console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.');
 +
continue;
 +
}
 +
 +
if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue;
 +
 +
_shadowMapSize.copy(shadow.mapSize);
 +
 +
const shadowFrameExtents = shadow.getFrameExtents();
 +
 +
_shadowMapSize.multiply(shadowFrameExtents);
 +
 +
_viewportSize.copy(shadow.mapSize);
 +
 +
if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) {
 +
if (_shadowMapSize.x > _maxTextureSize) {
 +
_viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x);
 +
_shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
 +
shadow.mapSize.x = _viewportSize.x;
 +
}
 +
 +
if (_shadowMapSize.y > _maxTextureSize) {
 +
_viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y);
 +
_shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
 +
shadow.mapSize.y = _viewportSize.y;
 +
}
 +
}
 +
 +
if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) {
 +
const pars = {
 +
minFilter: LinearFilter,
 +
magFilter: LinearFilter,
 +
format: RGBAFormat
 +
};
 +
shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
 +
shadow.map.texture.name = light.name + '.shadowMap';
 +
shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
 +
shadow.camera.updateProjectionMatrix();
 +
}
 +
 +
if (shadow.map === null) {
 +
const pars = {
 +
minFilter: NearestFilter,
 +
magFilter: NearestFilter,
 +
format: RGBAFormat
 +
};
 +
shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
 +
shadow.map.texture.name = light.name + '.shadowMap';
 +
shadow.camera.updateProjectionMatrix();
 +
}
 +
 +
_renderer.setRenderTarget(shadow.map);
 +
 +
_renderer.clear();
 +
 +
const viewportCount = shadow.getViewportCount();
 +
 +
for (let vp = 0; vp < viewportCount; vp++) {
 +
const viewport = shadow.getViewport(vp);
 +
 +
_viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w);
 +
 +
_state.viewport(_viewport);
 +
 +
shadow.updateMatrices(light, vp);
 +
_frustum = shadow.getFrustum();
 +
renderObject(scene, camera, shadow.camera, light, this.type);
 +
} // do blur pass for VSM
 +
 +
 +
if (!shadow.isPointLightShadow && this.type === VSMShadowMap) {
 +
VSMPass(shadow, camera);
 +
}
 +
 +
shadow.needsUpdate = false;
 +
}
 +
 +
scope.needsUpdate = false;
 +
 +
_renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel);
 +
};
 +
 +
function VSMPass(shadow, camera) {
 +
const geometry = _objects.update(fullScreenMesh); // vertical pass
 +
 +
 +
shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;
 +
shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
 +
shadowMaterialVertical.uniforms.radius.value = shadow.radius;
 +
 +
_renderer.setRenderTarget(shadow.mapPass);
 +
 +
_renderer.clear();
 +
 +
_renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); // horizontal pass
 +
 +
 +
shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture;
 +
shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize;
 +
shadowMaterialHorizontal.uniforms.radius.value = shadow.radius;
 +
 +
_renderer.setRenderTarget(shadow.map);
 +
 +
_renderer.clear();
 +
 +
_renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null);
 +
}
 +
 +
function getDepthMaterialVariant(useMorphing) {
 +
const index = useMorphing << 0;
 +
let material = _depthMaterials[index];
 +
 +
if (material === undefined) {
 +
material = new MeshDepthMaterial({
 +
depthPacking: RGBADepthPacking,
 +
morphTargets: useMorphing
 +
});
 +
_depthMaterials[index] = material;
 +
}
 +
 +
return material;
 +
}
 +
 +
function getDistanceMaterialVariant(useMorphing) {
 +
const index = useMorphing << 0;
 +
let material = _distanceMaterials[index];
 +
 +
if (material === undefined) {
 +
material = new MeshDistanceMaterial({
 +
morphTargets: useMorphing
 +
});
 +
_distanceMaterials[index] = material;
 +
}
 +
 +
return material;
 +
}
 +
 +
function getDepthMaterial(object, geometry, material, light, shadowCameraNear, shadowCameraFar, type) {
 +
let result = null;
 +
let getMaterialVariant = getDepthMaterialVariant;
 +
let customMaterial = object.customDepthMaterial;
 +
 +
if (light.isPointLight === true) {
 +
getMaterialVariant = getDistanceMaterialVariant;
 +
customMaterial = object.customDistanceMaterial;
 +
}
 +
 +
if (customMaterial === undefined) {
 +
let useMorphing = false;
 +
 +
if (material.morphTargets === true) {
 +
useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0;
 +
}
 +
 +
result = getMaterialVariant(useMorphing);
 +
} else {
 +
result = customMaterial;
 +
}
 +
 +
if (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0) {
 +
// in this case we need a unique material instance reflecting the
 +
// appropriate state
 +
const keyA = result.uuid,
 +
keyB = material.uuid;
 +
let materialsForVariant = _materialCache[keyA];
 +
 +
if (materialsForVariant === undefined) {
 +
materialsForVariant = {};
 +
_materialCache[keyA] = materialsForVariant;
 +
}
 +
 +
let cachedMaterial = materialsForVariant[keyB];
 +
 +
if (cachedMaterial === undefined) {
 +
cachedMaterial = result.clone();
 +
materialsForVariant[keyB] = cachedMaterial;
 +
}
 +
 +
result = cachedMaterial;
 +
}
 +
 +
result.visible = material.visible;
 +
result.wireframe = material.wireframe;
 +
 +
if (type === VSMShadowMap) {
 +
result.side = material.shadowSide !== null ? material.shadowSide : material.side;
 +
} else {
 +
result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side];
 +
}
 +
 +
result.clipShadows = material.clipShadows;
 +
result.clippingPlanes = material.clippingPlanes;
 +
result.clipIntersection = material.clipIntersection;
 +
result.wireframeLinewidth = material.wireframeLinewidth;
 +
result.linewidth = material.linewidth;
 +
 +
if (light.isPointLight === true && result.isMeshDistanceMaterial === true) {
 +
result.referencePosition.setFromMatrixPosition(light.matrixWorld);
 +
result.nearDistance = shadowCameraNear;
 +
result.farDistance = shadowCameraFar;
 +
}
 +
 +
return result;
 +
}
 +
 +
function renderObject(object, camera, shadowCamera, light, type) {
 +
if (object.visible === false) return;
 +
const visible = object.layers.test(camera.layers);
 +
 +
if (visible && (object.isMesh || object.isLine || object.isPoints)) {
 +
if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum.intersectsObject(object))) {
 +
object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld);
 +
 +
const geometry = _objects.update(object);
 +
 +
const material = object.material;
 +
 +
if (Array.isArray(material)) {
 +
const groups = geometry.groups;
 +
 +
for (let k = 0, kl = groups.length; k < kl; k++) {
 +
const group = groups[k];
 +
const groupMaterial = material[group.materialIndex];
 +
 +
if (groupMaterial && groupMaterial.visible) {
 +
const depthMaterial = getDepthMaterial(object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type);
 +
 +
_renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group);
 +
}
 +
}
 +
} else if (material.visible) {
 +
const depthMaterial = getDepthMaterial(object, geometry, material, light, shadowCamera.near, shadowCamera.far, type);
 +
 +
_renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null);
 +
}
 +
}
 +
}
 +
 +
const children = object.children;
 +
 +
for (let i = 0, l = children.length; i < l; i++) {
 +
renderObject(children[i], camera, shadowCamera, light, type);
 +
}
 +
}
 +
}
 +
 +
function WebGLState(gl, extensions, capabilities) {
 +
const isWebGL2 = capabilities.isWebGL2;
 +
 +
function ColorBuffer() {
 +
let locked = false;
 +
const color = new Vector4();
 +
let currentColorMask = null;
 +
const currentColorClear = new Vector4(0, 0, 0, 0);
 +
return {
 +
setMask: function (colorMask) {
 +
if (currentColorMask !== colorMask && !locked) {
 +
gl.colorMask(colorMask, colorMask, colorMask, colorMask);
 +
currentColorMask = colorMask;
 +
}
 +
},
 +
setLocked: function (lock) {
 +
locked = lock;
 +
},
 +
setClear: function (r, g, b, a, premultipliedAlpha) {
 +
if (premultipliedAlpha === true) {
 +
r *= a;
 +
g *= a;
 +
b *= a;
 +
}
 +
 +
color.set(r, g, b, a);
 +
 +
if (currentColorClear.equals(color) === false) {
 +
gl.clearColor(r, g, b, a);
 +
currentColorClear.copy(color);
 +
}
 +
},
 +
reset: function () {
 +
locked = false;
 +
currentColorMask = null;
 +
currentColorClear.set(-1, 0, 0, 0); // set to invalid state
 +
}
 +
};
 +
}
 +
 +
function DepthBuffer() {
 +
let locked = false;
 +
let currentDepthMask = null;
 +
let currentDepthFunc = null;
 +
let currentDepthClear = null;
 +
return {
 +
setTest: function (depthTest) {
 +
if (depthTest) {
 +
enable(gl.DEPTH_TEST);
 +
} else {
 +
disable(gl.DEPTH_TEST);
 +
}
 +
},
 +
setMask: function (depthMask) {
 +
if (currentDepthMask !== depthMask && !locked) {
 +
gl.depthMask(depthMask);
 +
currentDepthMask = depthMask;
 +
}
 +
},
 +
setFunc: function (depthFunc) {
 +
if (currentDepthFunc !== depthFunc) {
 +
if (depthFunc) {
 +
switch (depthFunc) {
 +
case NeverDepth:
 +
gl.depthFunc(gl.NEVER);
 +
break;
 +
 +
case AlwaysDepth:
 +
gl.depthFunc(gl.ALWAYS);
 +
break;
 +
 +
case LessDepth:
 +
gl.depthFunc(gl.LESS);
 +
break;
 +
 +
case LessEqualDepth:
 +
gl.depthFunc(gl.LEQUAL);
 +
break;
 +
 +
case EqualDepth:
 +
gl.depthFunc(gl.EQUAL);
 +
break;
 +
 +
case GreaterEqualDepth:
 +
gl.depthFunc(gl.GEQUAL);
 +
break;
 +
 +
case GreaterDepth:
 +
gl.depthFunc(gl.GREATER);
 +
break;
 +
 +
case NotEqualDepth:
 +
gl.depthFunc(gl.NOTEQUAL);
 +
break;
 +
 +
default:
 +
gl.depthFunc(gl.LEQUAL);
 +
}
 +
} else {
 +
gl.depthFunc(gl.LEQUAL);
 +
}
 +
 +
currentDepthFunc = depthFunc;
 +
}
 +
},
 +
setLocked: function (lock) {
 +
locked = lock;
 +
},
 +
setClear: function (depth) {
 +
if (currentDepthClear !== depth) {
 +
gl.clearDepth(depth);
 +
currentDepthClear = depth;
 +
}
 +
},
 +
reset: function () {
 +
locked = false;
 +
currentDepthMask = null;
 +
currentDepthFunc = null;
 +
currentDepthClear = null;
 +
}
 +
};
 +
}
 +
 +
function StencilBuffer() {
 +
let locked = false;
 +
let currentStencilMask = null;
 +
let currentStencilFunc = null;
 +
let currentStencilRef = null;
 +
let currentStencilFuncMask = null;
 +
let currentStencilFail = null;
 +
let currentStencilZFail = null;
 +
let currentStencilZPass = null;
 +
let currentStencilClear = null;
 +
return {
 +
setTest: function (stencilTest) {
 +
if (!locked) {
 +
if (stencilTest) {
 +
enable(gl.STENCIL_TEST);
 +
} else {
 +
disable(gl.STENCIL_TEST);
 +
}
 +
}
 +
},
 +
setMask: function (stencilMask) {
 +
if (currentStencilMask !== stencilMask && !locked) {
 +
gl.stencilMask(stencilMask);
 +
currentStencilMask = stencilMask;
 +
}
 +
},
 +
setFunc: function (stencilFunc, stencilRef, stencilMask) {
 +
if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) {
 +
gl.stencilFunc(stencilFunc, stencilRef, stencilMask);
 +
currentStencilFunc = stencilFunc;
 +
currentStencilRef = stencilRef;
 +
currentStencilFuncMask = stencilMask;
 +
}
 +
},
 +
setOp: function (stencilFail, stencilZFail, stencilZPass) {
 +
if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) {
 +
gl.stencilOp(stencilFail, stencilZFail, stencilZPass);
 +
currentStencilFail = stencilFail;
 +
currentStencilZFail = stencilZFail;
 +
currentStencilZPass = stencilZPass;
 +
}
 +
},
 +
setLocked: function (lock) {
 +
locked = lock;
 +
},
 +
setClear: function (stencil) {
 +
if (currentStencilClear !== stencil) {
 +
gl.clearStencil(stencil);
 +
currentStencilClear = stencil;
 +
}
 +
},
 +
reset: function () {
 +
locked = false;
 +
currentStencilMask = null;
 +
currentStencilFunc = null;
 +
currentStencilRef = null;
 +
currentStencilFuncMask = null;
 +
currentStencilFail = null;
 +
currentStencilZFail = null;
 +
currentStencilZPass = null;
 +
currentStencilClear = null;
 +
}
 +
};
 +
} //
 +
 +
 +
const colorBuffer = new ColorBuffer();
 +
const depthBuffer = new DepthBuffer();
 +
const stencilBuffer = new StencilBuffer();
 +
let enabledCapabilities = {};
 +
let xrFramebuffer = null;
 +
let currentBoundFramebuffers = {};
 +
let currentProgram = null;
 +
let currentBlendingEnabled = false;
 +
let currentBlending = null;
 +
let currentBlendEquation = null;
 +
let currentBlendSrc = null;
 +
let currentBlendDst = null;
 +
let currentBlendEquationAlpha = null;
 +
let currentBlendSrcAlpha = null;
 +
let currentBlendDstAlpha = null;
 +
let currentPremultipledAlpha = false;
 +
let currentFlipSided = null;
 +
let currentCullFace = null;
 +
let currentLineWidth = null;
 +
let currentPolygonOffsetFactor = null;
 +
let currentPolygonOffsetUnits = null;
 +
const maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS);
 +
let lineWidthAvailable = false;
 +
let version = 0;
 +
const glVersion = gl.getParameter(gl.VERSION);
 +
 +
if (glVersion.indexOf('WebGL') !== -1) {
 +
version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]);
 +
lineWidthAvailable = version >= 1.0;
 +
} else if (glVersion.indexOf('OpenGL ES') !== -1) {
 +
version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]);
 +
lineWidthAvailable = version >= 2.0;
 +
}
 +
 +
let currentTextureSlot = null;
 +
let currentBoundTextures = {};
 +
const scissorParam = gl.getParameter(gl.SCISSOR_BOX);
 +
const viewportParam = gl.getParameter(gl.VIEWPORT);
 +
const currentScissor = new Vector4().fromArray(scissorParam);
 +
const currentViewport = new Vector4().fromArray(viewportParam);
 +
 +
function createTexture(type, target, count) {
 +
const data = new Uint8Array(4); // 4 is required to match default unpack alignment of 4.
 +
 +
const texture = gl.createTexture();
 +
gl.bindTexture(type, texture);
 +
gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
 +
gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
 +
 +
for (let i = 0; i < count; i++) {
 +
gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data);
 +
}
 +
 +
return texture;
 +
}
 +
 +
const emptyTextures = {};
 +
emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1);
 +
emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6); // init
 +
 +
colorBuffer.setClear(0, 0, 0, 1);
 +
depthBuffer.setClear(1);
 +
stencilBuffer.setClear(0);
 +
enable(gl.DEPTH_TEST);
 +
depthBuffer.setFunc(LessEqualDepth);
 +
setFlipSided(false);
 +
setCullFace(CullFaceBack);
 +
enable(gl.CULL_FACE);
 +
setBlending(NoBlending); //
 +
 +
function enable(id) {
 +
if (enabledCapabilities[id] !== true) {
 +
gl.enable(id);
 +
enabledCapabilities[id] = true;
 +
}
 +
}
 +
 +
function disable(id) {
 +
if (enabledCapabilities[id] !== false) {
 +
gl.disable(id);
 +
enabledCapabilities[id] = false;
 +
}
 +
}
 +
 +
function bindXRFramebuffer(framebuffer) {
 +
if (framebuffer !== xrFramebuffer) {
 +
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
 +
xrFramebuffer = framebuffer;
 +
}
 +
}
 +
 +
function bindFramebuffer(target, framebuffer) {
 +
if (framebuffer === null && xrFramebuffer !== null) framebuffer = xrFramebuffer; // use active XR framebuffer if available
 +
 +
if (currentBoundFramebuffers[target] !== framebuffer) {
 +
gl.bindFramebuffer(target, framebuffer);
 +
currentBoundFramebuffers[target] = framebuffer;
 +
 +
if (isWebGL2) {
 +
// gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER
 +
if (target === gl.DRAW_FRAMEBUFFER) {
 +
currentBoundFramebuffers[gl.FRAMEBUFFER] = framebuffer;
 +
}
 +
 +
if (target === gl.FRAMEBUFFER) {
 +
currentBoundFramebuffers[gl.DRAW_FRAMEBUFFER] = framebuffer;
 +
}
 +
}
 +
 +
return true;
 +
}
 +
 +
return false;
 +
}
 +
 +
function useProgram(program) {
 +
if (currentProgram !== program) {
 +
gl.useProgram(program);
 +
currentProgram = program;
 +
return true;
 +
}
 +
 +
return false;
 +
}
 +
 +
const equationToGL = {
 +
[AddEquation]: gl.FUNC_ADD,
 +
[SubtractEquation]: gl.FUNC_SUBTRACT,
 +
[ReverseSubtractEquation]: gl.FUNC_REVERSE_SUBTRACT
 +
};
 +
 +
if (isWebGL2) {
 +
equationToGL[MinEquation] = gl.MIN;
 +
equationToGL[MaxEquation] = gl.MAX;
 +
} else {
 +
const extension = extensions.get('EXT_blend_minmax');
 +
 +
if (extension !== null) {
 +
equationToGL[MinEquation] = extension.MIN_EXT;
 +
equationToGL[MaxEquation] = extension.MAX_EXT;
 +
}
 +
}
 +
 +
const factorToGL = {
 +
[ZeroFactor]: gl.ZERO,
 +
[OneFactor]: gl.ONE,
 +
[SrcColorFactor]: gl.SRC_COLOR,
 +
[SrcAlphaFactor]: gl.SRC_ALPHA,
 +
[SrcAlphaSaturateFactor]: gl.SRC_ALPHA_SATURATE,
 +
[DstColorFactor]: gl.DST_COLOR,
 +
[DstAlphaFactor]: gl.DST_ALPHA,
 +
[OneMinusSrcColorFactor]: gl.ONE_MINUS_SRC_COLOR,
 +
[OneMinusSrcAlphaFactor]: gl.ONE_MINUS_SRC_ALPHA,
 +
[OneMinusDstColorFactor]: gl.ONE_MINUS_DST_COLOR,
 +
[OneMinusDstAlphaFactor]: gl.ONE_MINUS_DST_ALPHA
 +
};
 +
 +
function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) {
 +
if (blending === NoBlending) {
 +
if (currentBlendingEnabled === true) {
 +
disable(gl.BLEND);
 +
currentBlendingEnabled = false;
 +
}
 +
 +
return;
 +
}
 +
 +
if (currentBlendingEnabled === false) {
 +
enable(gl.BLEND);
 +
currentBlendingEnabled = true;
 +
}
 +
 +
if (blending !== CustomBlending) {
 +
if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) {
 +
if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) {
 +
gl.blendEquation(gl.FUNC_ADD);
 +
currentBlendEquation = AddEquation;
 +
currentBlendEquationAlpha = AddEquation;
 +
}
 +
 +
if (premultipliedAlpha) {
 +
switch (blending) {
 +
case NormalBlending:
 +
gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
 +
break;
 +
 +
case AdditiveBlending:
 +
gl.blendFunc(gl.ONE, gl.ONE);
 +
break;
 +
 +
case SubtractiveBlending:
 +
gl.blendFuncSeparate(gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA);
 +
break;
 +
 +
case MultiplyBlending:
 +
gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA);
 +
break;
 +
 +
default:
 +
console.error('THREE.WebGLState: Invalid blending: ', blending);
 +
break;
 +
}
 +
} else {
 +
switch (blending) {
 +
case NormalBlending:
 +
gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
 +
break;
 +
 +
case AdditiveBlending:
 +
gl.blendFunc(gl.SRC_ALPHA, gl.ONE);
 +
break;
 +
 +
case SubtractiveBlending:
 +
gl.blendFunc(gl.ZERO, gl.ONE_MINUS_SRC_COLOR);
 +
break;
 +
 +
case MultiplyBlending:
 +
gl.blendFunc(gl.ZERO, gl.SRC_COLOR);
 +
break;
 +
 +
default:
 +
console.error('THREE.WebGLState: Invalid blending: ', blending);
 +
break;
 +
}
 +
}
 +
 +
currentBlendSrc = null;
 +
currentBlendDst = null;
 +
currentBlendSrcAlpha = null;
 +
currentBlendDstAlpha = null;
 +
currentBlending = blending;
 +
currentPremultipledAlpha = premultipliedAlpha;
 +
}
 +
 +
return;
 +
} // custom blending
 +
 +
 +
blendEquationAlpha = blendEquationAlpha || blendEquation;
 +
blendSrcAlpha = blendSrcAlpha || blendSrc;
 +
blendDstAlpha = blendDstAlpha || blendDst;
 +
 +
if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) {
 +
gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]);
 +
currentBlendEquation = blendEquation;
 +
currentBlendEquationAlpha = blendEquationAlpha;
 +
}
 +
 +
if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) {
 +
gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]);
 +
currentBlendSrc = blendSrc;
 +
currentBlendDst = blendDst;
 +
currentBlendSrcAlpha = blendSrcAlpha;
 +
currentBlendDstAlpha = blendDstAlpha;
 +
}
 +
 +
currentBlending = blending;
 +
currentPremultipledAlpha = null;
 +
}
 +
 +
function setMaterial(material, frontFaceCW) {
 +
material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE);
 +
let flipSided = material.side === BackSide;
 +
if (frontFaceCW) flipSided = !flipSided;
 +
setFlipSided(flipSided);
 +
material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha);
 +
depthBuffer.setFunc(material.depthFunc);
 +
depthBuffer.setTest(material.depthTest);
 +
depthBuffer.setMask(material.depthWrite);
 +
colorBuffer.setMask(material.colorWrite);
 +
const stencilWrite = material.stencilWrite;
 +
stencilBuffer.setTest(stencilWrite);
 +
 +
if (stencilWrite) {
 +
stencilBuffer.setMask(material.stencilWriteMask);
 +
stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask);
 +
stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass);
 +
}
 +
 +
setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits);
 +
material.alphaToCoverage === true ? enable(gl.SAMPLE_ALPHA_TO_COVERAGE) : disable(gl.SAMPLE_ALPHA_TO_COVERAGE);
 +
} //
 +
 +
 +
function setFlipSided(flipSided) {
 +
if (currentFlipSided !== flipSided) {
 +
if (flipSided) {
 +
gl.frontFace(gl.CW);
 +
} else {
 +
gl.frontFace(gl.CCW);
 +
}
 +
 +
currentFlipSided = flipSided;
 +
}
 +
}
 +
 +
function setCullFace(cullFace) {
 +
if (cullFace !== CullFaceNone) {
 +
enable(gl.CULL_FACE);
 +
 +
if (cullFace !== currentCullFace) {
 +
if (cullFace === CullFaceBack) {
 +
gl.cullFace(gl.BACK);
 +
} else if (cullFace === CullFaceFront) {
 +
gl.cullFace(gl.FRONT);
 +
} else {
 +
gl.cullFace(gl.FRONT_AND_BACK);
 +
}
 +
}
 +
} else {
 +
disable(gl.CULL_FACE);
 +
}
 +
 +
currentCullFace = cullFace;
 +
}
 +
 +
function setLineWidth(width) {
 +
if (width !== currentLineWidth) {
 +
if (lineWidthAvailable) gl.lineWidth(width);
 +
currentLineWidth = width;
 +
}
 +
}
 +
 +
function setPolygonOffset(polygonOffset, factor, units) {
 +
if (polygonOffset) {
 +
enable(gl.POLYGON_OFFSET_FILL);
 +
 +
if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) {
 +
gl.polygonOffset(factor, units);
 +
currentPolygonOffsetFactor = factor;
 +
currentPolygonOffsetUnits = units;
 +
}
 +
} else {
 +
disable(gl.POLYGON_OFFSET_FILL);
 +
}
 +
}
 +
 +
function setScissorTest(scissorTest) {
 +
if (scissorTest) {
 +
enable(gl.SCISSOR_TEST);
 +
} else {
 +
disable(gl.SCISSOR_TEST);
 +
}
 +
} // texture
 +
 +
 +
function activeTexture(webglSlot) {
 +
if (webglSlot === undefined) webglSlot = gl.TEXTURE0 + maxTextures - 1;
 +
 +
if (currentTextureSlot !== webglSlot) {
 +
gl.activeTexture(webglSlot);
 +
currentTextureSlot = webglSlot;
 +
}
 +
}
 +
 +
function bindTexture(webglType, webglTexture) {
 +
if (currentTextureSlot === null) {
 +
activeTexture();
 +
}
 +
 +
let boundTexture = currentBoundTextures[currentTextureSlot];
 +
 +
if (boundTexture === undefined) {
 +
boundTexture = {
 +
type: undefined,
 +
texture: undefined
 +
};
 +
currentBoundTextures[currentTextureSlot] = boundTexture;
 +
}
 +
 +
if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) {
 +
gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]);
 +
boundTexture.type = webglType;
 +
boundTexture.texture = webglTexture;
 +
}
 +
}
 +
 +
function unbindTexture() {
 +
const boundTexture = currentBoundTextures[currentTextureSlot];
 +
 +
if (boundTexture !== undefined && boundTexture.type !== undefined) {
 +
gl.bindTexture(boundTexture.type, null);
 +
boundTexture.type = undefined;
 +
boundTexture.texture = undefined;
 +
}
 +
}
 +
 +
function compressedTexImage2D() {
 +
try {
 +
gl.compressedTexImage2D.apply(gl, arguments);
 +
} catch (error) {
 +
console.error('THREE.WebGLState:', error);
 +
}
 +
}
 +
 +
function texImage2D() {
 +
try {
 +
gl.texImage2D.apply(gl, arguments);
 +
} catch (error) {
 +
console.error('THREE.WebGLState:', error);
 +
}
 +
}
 +
 +
function texImage3D() {
 +
try {
 +
gl.texImage3D.apply(gl, arguments);
 +
} catch (error) {
 +
console.error('THREE.WebGLState:', error);
 +
}
 +
} //
 +
 +
 +
function scissor(scissor) {
 +
if (currentScissor.equals(scissor) === false) {
 +
gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w);
 +
currentScissor.copy(scissor);
 +
}
 +
}
 +
 +
function viewport(viewport) {
 +
if (currentViewport.equals(viewport) === false) {
 +
gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w);
 +
currentViewport.copy(viewport);
 +
}
 +
} //
 +
 +
 +
function reset() {
 +
// reset state
 +
gl.disable(gl.BLEND);
 +
gl.disable(gl.CULL_FACE);
 +
gl.disable(gl.DEPTH_TEST);
 +
gl.disable(gl.POLYGON_OFFSET_FILL);
 +
gl.disable(gl.SCISSOR_TEST);
 +
gl.disable(gl.STENCIL_TEST);
 +
gl.disable(gl.SAMPLE_ALPHA_TO_COVERAGE);
 +
gl.blendEquation(gl.FUNC_ADD);
 +
gl.blendFunc(gl.ONE, gl.ZERO);
 +
gl.blendFuncSeparate(gl.ONE, gl.ZERO, gl.ONE, gl.ZERO);
 +
gl.colorMask(true, true, true, true);
 +
gl.clearColor(0, 0, 0, 0);
 +
gl.depthMask(true);
 +
gl.depthFunc(gl.LESS);
 +
gl.clearDepth(1);
 +
gl.stencilMask(0xffffffff);
 +
gl.stencilFunc(gl.ALWAYS, 0, 0xffffffff);
 +
gl.stencilOp(gl.KEEP, gl.KEEP, gl.KEEP);
 +
gl.clearStencil(0);
 +
gl.cullFace(gl.BACK);
 +
gl.frontFace(gl.CCW);
 +
gl.polygonOffset(0, 0);
 +
gl.activeTexture(gl.TEXTURE0);
 +
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
 +
 +
if (isWebGL2 === true) {
 +
gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null);
 +
gl.bindFramebuffer(gl.READ_FRAMEBUFFER, null);
 +
}
 +
 +
gl.useProgram(null);
 +
gl.lineWidth(1);
 +
gl.scissor(0, 0, gl.canvas.width, gl.canvas.height);
 +
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height); // reset internals
 +
 +
enabledCapabilities = {};
 +
currentTextureSlot = null;
 +
currentBoundTextures = {};
 +
xrFramebuffer = null;
 +
currentBoundFramebuffers = {};
 +
currentProgram = null;
 +
currentBlendingEnabled = false;
 +
currentBlending = null;
 +
currentBlendEquation = null;
 +
currentBlendSrc = null;
 +
currentBlendDst = null;
 +
currentBlendEquationAlpha = null;
 +
currentBlendSrcAlpha = null;
 +
currentBlendDstAlpha = null;
 +
currentPremultipledAlpha = false;
 +
currentFlipSided = null;
 +
currentCullFace = null;
 +
currentLineWidth = null;
 +
currentPolygonOffsetFactor = null;
 +
currentPolygonOffsetUnits = null;
 +
currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height);
 +
currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height);
 +
colorBuffer.reset();
 +
depthBuffer.reset();
 +
stencilBuffer.reset();
 +
}
 +
 +
return {
 +
buffers: {
 +
color: colorBuffer,
 +
depth: depthBuffer,
 +
stencil: stencilBuffer
 +
},
 +
enable: enable,
 +
disable: disable,
 +
bindFramebuffer: bindFramebuffer,
 +
bindXRFramebuffer: bindXRFramebuffer,
 +
useProgram: useProgram,
 +
setBlending: setBlending,
 +
setMaterial: setMaterial,
 +
setFlipSided: setFlipSided,
 +
setCullFace: setCullFace,
 +
setLineWidth: setLineWidth,
 +
setPolygonOffset: setPolygonOffset,
 +
setScissorTest: setScissorTest,
 +
activeTexture: activeTexture,
 +
bindTexture: bindTexture,
 +
unbindTexture: unbindTexture,
 +
compressedTexImage2D: compressedTexImage2D,
 +
texImage2D: texImage2D,
 +
texImage3D: texImage3D,
 +
scissor: scissor,
 +
viewport: viewport,
 +
reset: reset
 +
};
 +
}
 +
 +
function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) {
 +
const isWebGL2 = capabilities.isWebGL2;
 +
const maxTextures = capabilities.maxTextures;
 +
const maxCubemapSize = capabilities.maxCubemapSize;
 +
const maxTextureSize = capabilities.maxTextureSize;
 +
const maxSamples = capabilities.maxSamples;
 +
 +
const _videoTextures = new WeakMap();
 +
 +
let _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,
 +
// also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!
 +
// Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).
 +
 +
 +
let useOffscreenCanvas = false;
 +
 +
try {
 +
useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && new OffscreenCanvas(1, 1).getContext('2d') !== null;
 +
} catch (err) {// Ignore any errors
 +
}
 +
 +
function createCanvas(width, height) {
 +
// Use OffscreenCanvas when available. Specially needed in web workers
 +
return useOffscreenCanvas ? new OffscreenCanvas(width, height) : document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
 +
}
 +
 +
function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) {
 +
let scale = 1; // handle case if texture exceeds max size
 +
 +
if (image.width > maxSize || image.height > maxSize) {
 +
scale = maxSize / Math.max(image.width, image.height);
 +
} // only perform resize if necessary
 +
 +
 +
if (scale < 1 || needsPowerOfTwo === true) {
 +
// only perform resize for certain image types
 +
if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
 +
const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor;
 +
const width = floor(scale * image.width);
 +
const height = floor(scale * image.height);
 +
if (_canvas === undefined) _canvas = createCanvas(width, height); // cube textures can't reuse the same canvas
 +
 +
const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas;
 +
canvas.width = width;
 +
canvas.height = height;
 +
const context = canvas.getContext('2d');
 +
context.drawImage(image, 0, 0, width, height);
 +
console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').');
 +
return canvas;
 +
} else {
 +
if ('data' in image) {
 +
console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').');
 +
}
 +
 +
return image;
 +
}
 +
}
 +
 +
return image;
 +
}
 +
 +
function isPowerOfTwo$1(image) {
 +
return isPowerOfTwo(image.width) && isPowerOfTwo(image.height);
 +
}
 +
 +
function textureNeedsPowerOfTwo(texture) {
 +
if (isWebGL2) return false;
 +
return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
 +
}
 +
 +
function textureNeedsGenerateMipmaps(texture, supportsMips) {
 +
return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
 +
}
 +
 +
function generateMipmap(target, texture, width, height, depth = 1) {
 +
_gl.generateMipmap(target);
 +
 +
const textureProperties = properties.get(texture);
 +
textureProperties.__maxMipLevel = Math.log2(Math.max(width, height, depth));
 +
}
 +
 +
function getInternalFormat(internalFormatName, glFormat, glType) {
 +
if (isWebGL2 === false) return glFormat;
 +
 +
if (internalFormatName !== null) {
 +
if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName];
 +
console.warn('THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'');
 +
}
 +
 +
let internalFormat = glFormat;
 +
 +
if (glFormat === _gl.RED) {
 +
if (glType === _gl.FLOAT) internalFormat = _gl.R32F;
 +
if (glType === _gl.HALF_FLOAT) internalFormat = _gl.R16F;
 +
if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8;
 +
}
 +
 +
if (glFormat === _gl.RGB) {
 +
if (glType === _gl.FLOAT) internalFormat = _gl.RGB32F;
 +
if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGB16F;
 +
if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGB8;
 +
}
 +
 +
if (glFormat === _gl.RGBA) {
 +
if (glType === _gl.FLOAT) internalFormat = _gl.RGBA32F;
 +
if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGBA16F;
 +
if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGBA8;
 +
}
 +
 +
if (internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F) {
 +
extensions.get('EXT_color_buffer_float');
 +
}
 +
 +
return internalFormat;
 +
} // Fallback filters for non-power-of-2 textures
 +
 +
 +
function filterFallback(f) {
 +
if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) {
 +
return _gl.NEAREST;
 +
}
 +
 +
return _gl.LINEAR;
 +
} //
 +
 +
 +
function onTextureDispose(event) {
 +
const texture = event.target;
 +
texture.removeEventListener('dispose', onTextureDispose);
 +
deallocateTexture(texture);
 +
 +
if (texture.isVideoTexture) {
 +
_videoTextures.delete(texture);
 +
}
 +
 +
info.memory.textures--;
 +
}
 +
 +
function onRenderTargetDispose(event) {
 +
const renderTarget = event.target;
 +
renderTarget.removeEventListener('dispose', onRenderTargetDispose);
 +
deallocateRenderTarget(renderTarget);
 +
} //
 +
 +
 +
function deallocateTexture(texture) {
 +
const textureProperties = properties.get(texture);
 +
if (textureProperties.__webglInit === undefined) return;
 +
 +
_gl.deleteTexture(textureProperties.__webglTexture);
 +
 +
properties.remove(texture);
 +
}
 +
 +
function deallocateRenderTarget(renderTarget) {
 +
const texture = renderTarget.texture;
 +
const renderTargetProperties = properties.get(renderTarget);
 +
const textureProperties = properties.get(texture);
 +
if (!renderTarget) return;
 +
 +
if (textureProperties.__webglTexture !== undefined) {
 +
_gl.deleteTexture(textureProperties.__webglTexture);
 +
 +
info.memory.textures--;
 +
}
 +
 +
if (renderTarget.depthTexture) {
 +
renderTarget.depthTexture.dispose();
 +
}
 +
 +
if (renderTarget.isWebGLCubeRenderTarget) {
 +
for (let i = 0; i < 6; i++) {
 +
_gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]);
 +
 +
if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]);
 +
}
 +
} else {
 +
_gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer);
 +
 +
if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer);
 +
if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer);
 +
if (renderTargetProperties.__webglColorRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer);
 +
if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer);
 +
}
 +
 +
if (renderTarget.isWebGLMultipleRenderTargets) {
 +
for (let i = 0, il = texture.length; i < il; i++) {
 +
const attachmentProperties = properties.get(texture[i]);
 +
 +
if (attachmentProperties.__webglTexture) {
 +
_gl.deleteTexture(attachmentProperties.__webglTexture);
 +
 +
info.memory.textures--;
 +
}
 +
 +
properties.remove(texture[i]);
 +
}
 +
}
 +
 +
properties.remove(texture);
 +
properties.remove(renderTarget);
 +
} //
 +
 +
 +
let textureUnits = 0;
 +
 +
function resetTextureUnits() {
 +
textureUnits = 0;
 +
}
 +
 +
function allocateTextureUnit() {
 +
const textureUnit = textureUnits;
 +
 +
if (textureUnit >= maxTextures) {
 +
console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures);
 +
}
 +
 +
textureUnits += 1;
 +
return textureUnit;
 +
} //
 +
 +
 +
function setTexture2D(texture, slot) {
 +
const textureProperties = properties.get(texture);
 +
if (texture.isVideoTexture) updateVideoTexture(texture);
 +
 +
if (texture.version > 0 && textureProperties.__version !== texture.version) {
 +
const image = texture.image;
 +
 +
if (image === undefined) {
 +
console.warn('THREE.WebGLRenderer: Texture marked for update but image is undefined');
 +
} else if (image.complete === false) {
 +
console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete');
 +
} else {
 +
uploadTexture(textureProperties, texture, slot);
 +
return;
 +
}
 +
}
 +
 +
state.activeTexture(_gl.TEXTURE0 + slot);
 +
state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture);
 +
}
 +
 +
function setTexture2DArray(texture, slot) {
 +
const textureProperties = properties.get(texture);
 +
 +
if (texture.version > 0 && textureProperties.__version !== texture.version) {
 +
uploadTexture(textureProperties, texture, slot);
 +
return;
 +
}
 +
 +
state.activeTexture(_gl.TEXTURE0 + slot);
 +
state.bindTexture(_gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture);
 +
}
 +
 +
function setTexture3D(texture, slot) {
 +
const textureProperties = properties.get(texture);
 +
 +
if (texture.version > 0 && textureProperties.__version !== texture.version) {
 +
uploadTexture(textureProperties, texture, slot);
 +
return;
 +
}
 +
 +
state.activeTexture(_gl.TEXTURE0 + slot);
 +
state.bindTexture(_gl.TEXTURE_3D, textureProperties.__webglTexture);
 +
}
 +
 +
function setTextureCube(texture, slot) {
 +
const textureProperties = properties.get(texture);
 +
 +
if (texture.version > 0 && textureProperties.__version !== texture.version) {
 +
uploadCubeTexture(textureProperties, texture, slot);
 +
return;
 +
}
 +
 +
state.activeTexture(_gl.TEXTURE0 + slot);
 +
state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
 +
}
 +
 +
const wrappingToGL = {
 +
[RepeatWrapping]: _gl.REPEAT,
 +
[ClampToEdgeWrapping]: _gl.CLAMP_TO_EDGE,
 +
[MirroredRepeatWrapping]: _gl.MIRRORED_REPEAT
 +
};
 +
const filterToGL = {
 +
[NearestFilter]: _gl.NEAREST,
 +
[NearestMipmapNearestFilter]: _gl.NEAREST_MIPMAP_NEAREST,
 +
[NearestMipmapLinearFilter]: _gl.NEAREST_MIPMAP_LINEAR,
 +
[LinearFilter]: _gl.LINEAR,
 +
[LinearMipmapNearestFilter]: _gl.LINEAR_MIPMAP_NEAREST,
 +
[LinearMipmapLinearFilter]: _gl.LINEAR_MIPMAP_LINEAR
 +
};
 +
 +
function setTextureParameters(textureType, texture, supportsMips) {
 +
if (supportsMips) {
 +
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[texture.wrapS]);
 +
 +
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[texture.wrapT]);
 +
 +
if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {
 +
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[texture.wrapR]);
 +
}
 +
 +
_gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[texture.magFilter]);
 +
 +
_gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[texture.minFilter]);
 +
} else {
 +
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE);
 +
 +
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE);
 +
 +
if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {
 +
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, _gl.CLAMP_TO_EDGE);
 +
}
 +
 +
if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) {
 +
console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.');
 +
}
 +
 +
_gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterFallback(texture.magFilter));
 +
 +
_gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterFallback(texture.minFilter));
 +
 +
if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) {
 +
console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.');
 +
}
 +
}
 +
 +
if (extensions.has('EXT_texture_filter_anisotropic') === true) {
 +
const extension = extensions.get('EXT_texture_filter_anisotropic');
 +
if (texture.type === FloatType && extensions.has('OES_texture_float_linear') === false) return; // verify extension for WebGL 1 and WebGL 2
 +
 +
if (isWebGL2 === false && texture.type === HalfFloatType && extensions.has('OES_texture_half_float_linear') === false) return; // verify extension for WebGL 1 only
 +
 +
if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) {
 +
_gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy()));
 +
 +
properties.get(texture).__currentAnisotropy = texture.anisotropy;
 +
}
 +
}
 +
}
 +
 +
function initTexture(textureProperties, texture) {
 +
if (textureProperties.__webglInit === undefined) {
 +
textureProperties.__webglInit = true;
 +
texture.addEventListener('dispose', onTextureDispose);
 +
textureProperties.__webglTexture = _gl.createTexture();
 +
info.memory.textures++;
 +
}
 +
}
 +
 +
function uploadTexture(textureProperties, texture, slot) {
 +
let textureType = _gl.TEXTURE_2D;
 +
if (texture.isDataTexture2DArray) textureType = _gl.TEXTURE_2D_ARRAY;
 +
if (texture.isDataTexture3D) textureType = _gl.TEXTURE_3D;
 +
initTexture(textureProperties, texture);
 +
state.activeTexture(_gl.TEXTURE0 + slot);
 +
state.bindTexture(textureType, textureProperties.__webglTexture);
 +
 +
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);
 +
 +
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);
 +
 +
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);
 +
 +
_gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);
 +
 +
const needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo$1(texture.image) === false;
 +
const image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize);
 +
const supportsMips = isPowerOfTwo$1(image) || isWebGL2,
 +
glFormat = utils.convert(texture.format);
 +
let glType = utils.convert(texture.type),
 +
glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
 +
setTextureParameters(textureType, texture, supportsMips);
 +
let mipmap;
 +
const mipmaps = texture.mipmaps;
 +
 +
if (texture.isDepthTexture) {
 +
// populate depth texture with dummy data
 +
glInternalFormat = _gl.DEPTH_COMPONENT;
 +
 +
if (isWebGL2) {
 +
if (texture.type === FloatType) {
 +
glInternalFormat = _gl.DEPTH_COMPONENT32F;
 +
} else if (texture.type === UnsignedIntType) {
 +
glInternalFormat = _gl.DEPTH_COMPONENT24;
 +
} else if (texture.type === UnsignedInt248Type) {
 +
glInternalFormat = _gl.DEPTH24_STENCIL8;
 +
} else {
 +
glInternalFormat = _gl.DEPTH_COMPONENT16; // WebGL2 requires sized internalformat for glTexImage2D
 +
}
 +
} else {
 +
if (texture.type === FloatType) {
 +
console.error('WebGLRenderer: Floating point depth texture requires WebGL2.');
 +
}
 +
} // validation checks for WebGL 1
 +
 +
 +
if (texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {
 +
// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
 +
// DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
 +
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
 +
if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) {
 +
console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.');
 +
texture.type = UnsignedShortType;
 +
glType = utils.convert(texture.type);
 +
}
 +
}
 +
 +
if (texture.format === DepthStencilFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {
 +
// Depth stencil textures need the DEPTH_STENCIL internal format
 +
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
 +
glInternalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
 +
// DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
 +
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
 +
 +
if (texture.type !== UnsignedInt248Type) {
 +
console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.');
 +
texture.type = UnsignedInt248Type;
 +
glType = utils.convert(texture.type);
 +
}
 +
} //
 +
 +
 +
state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null);
 +
} else if (texture.isDataTexture) {
 +
// use manually created mipmaps if available
 +
// if there are no manual mipmaps
 +
// set 0 level mipmap and then use GL to generate other mipmap levels
 +
if (mipmaps.length > 0 && supportsMips) {
 +
for (let i = 0, il = mipmaps.length; i < il; i++) {
 +
mipmap = mipmaps[i];
 +
state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
 +
}
 +
 +
texture.generateMipmaps = false;
 +
textureProperties.__maxMipLevel = mipmaps.length - 1;
 +
} else {
 +
state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data);
 +
textureProperties.__maxMipLevel = 0;
 +
}
 +
} else if (texture.isCompressedTexture) {
 +
for (let i = 0, il = mipmaps.length; i < il; i++) {
 +
mipmap = mipmaps[i];
 +
 +
if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
 +
if (glFormat !== null) {
 +
state.compressedTexImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
 +
} else {
 +
console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()');
 +
}
 +
} else {
 +
state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
 +
}
 +
}
 +
 +
textureProperties.__maxMipLevel = mipmaps.length - 1;
 +
} else if (texture.isDataTexture2DArray) {
 +
state.texImage3D(_gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
 +
textureProperties.__maxMipLevel = 0;
 +
} else if (texture.isDataTexture3D) {
 +
state.texImage3D(_gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
 +
textureProperties.__maxMipLevel = 0;
 +
} else {
 +
// regular Texture (image, video, canvas)
 +
// use manually created mipmaps if available
 +
// if there are no manual mipmaps
 +
// set 0 level mipmap and then use GL to generate other mipmap levels
 +
if (mipmaps.length > 0 && supportsMips) {
 +
for (let i = 0, il = mipmaps.length; i < il; i++) {
 +
mipmap = mipmaps[i];
 +
state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap);
 +
}
 +
 +
texture.generateMipmaps = false;
 +
textureProperties.__maxMipLevel = mipmaps.length - 1;
 +
} else {
 +
state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image);
 +
textureProperties.__maxMipLevel = 0;
 +
}
 +
}
 +
 +
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
 +
generateMipmap(textureType, texture, image.width, image.height);
 +
}
 +
 +
textureProperties.__version = texture.version;
 +
if (texture.onUpdate) texture.onUpdate(texture);
 +
}
 +
 +
function uploadCubeTexture(textureProperties, texture, slot) {
 +
if (texture.image.length !== 6) return;
 +
initTexture(textureProperties, texture);
 +
state.activeTexture(_gl.TEXTURE0 + slot);
 +
state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
 +
 +
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);
 +
 +
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);
 +
 +
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);
 +
 +
_gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);
 +
 +
const isCompressed = texture && (texture.isCompressedTexture || texture.image[0].isCompressedTexture);
 +
const isDataTexture = texture.image[0] && texture.image[0].isDataTexture;
 +
const cubeImage = [];
 +
 +
for (let i = 0; i < 6; i++) {
 +
if (!isCompressed && !isDataTexture) {
 +
cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize);
 +
} else {
 +
cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i];
 +
}
 +
}
 +
 +
const image = cubeImage[0],
 +
supportsMips = isPowerOfTwo$1(image) || isWebGL2,
 +
glFormat = utils.convert(texture.format),
 +
glType = utils.convert(texture.type),
 +
glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
 +
setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);
 +
let mipmaps;
 +
 +
if (isCompressed) {
 +
for (let i = 0; i < 6; i++) {
 +
mipmaps = cubeImage[i].mipmaps;
 +
 +
for (let j = 0; j < mipmaps.length; j++) {
 +
const mipmap = mipmaps[j];
 +
 +
if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
 +
if (glFormat !== null) {
 +
state.compressedTexImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
 +
} else {
 +
console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()');
 +
}
 +
} else {
 +
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
 +
}
 +
}
 +
}
 +
 +
textureProperties.__maxMipLevel = mipmaps.length - 1;
 +
} else {
 +
mipmaps = texture.mipmaps;
 +
 +
for (let i = 0; i < 6; i++) {
 +
if (isDataTexture) {
 +
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data);
 +
 +
for (let j = 0; j < mipmaps.length; j++) {
 +
const mipmap = mipmaps[j];
 +
const mipmapImage = mipmap.image[i].image;
 +
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data);
 +
}
 +
} else {
 +
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]);
 +
 +
for (let j = 0; j < mipmaps.length; j++) {
 +
const mipmap = mipmaps[j];
 +
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]);
 +
}
 +
}
 +
}
 +
 +
textureProperties.__maxMipLevel = mipmaps.length;
 +
}
 +
 +
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
 +
// We assume images for cube map have the same size.
 +
generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, image.width, image.height);
 +
}
 +
 +
textureProperties.__version = texture.version;
 +
if (texture.onUpdate) texture.onUpdate(texture);
 +
} // Render targets
 +
// Setup storage for target texture and bind it to correct framebuffer
 +
 +
 +
function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget) {
 +
const glFormat = utils.convert(texture.format);
 +
const glType = utils.convert(texture.type);
 +
const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
 +
 +
if (textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY) {
 +
state.texImage3D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null);
 +
} else {
 +
state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null);
 +
}
 +
 +
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
 +
 +
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0);
 +
 +
state.bindFramebuffer(_gl.FRAMEBUFFER, null);
 +
} // Setup storage for internal depth/stencil buffers and bind to correct framebuffer
 +
 +
 +
function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) {
 +
_gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer);
 +
 +
if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) {
 +
let glInternalFormat = _gl.DEPTH_COMPONENT16;
 +
 +
if (isMultisample) {
 +
const depthTexture = renderTarget.depthTexture;
 +
 +
if (depthTexture && depthTexture.isDepthTexture) {
 +
if (depthTexture.type === FloatType) {
 +
glInternalFormat = _gl.DEPTH_COMPONENT32F;
 +
} else if (depthTexture.type === UnsignedIntType) {
 +
glInternalFormat = _gl.DEPTH_COMPONENT24;
 +
}
 +
}
 +
 +
const samples = getRenderTargetSamples(renderTarget);
 +
 +
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
 +
} else {
 +
_gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);
 +
}
 +
 +
_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);
 +
} else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) {
 +
if (isMultisample) {
 +
const samples = getRenderTargetSamples(renderTarget);
 +
 +
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height);
 +
} else {
 +
_gl.renderbufferStorage(_gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height);
 +
}
 +
 +
_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);
 +
} else {
 +
// Use the first texture for MRT so far
 +
const texture = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture[0] : renderTarget.texture;
 +
const glFormat = utils.convert(texture.format);
 +
const glType = utils.convert(texture.type);
 +
const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
 +
 +
if (isMultisample) {
 +
const samples = getRenderTargetSamples(renderTarget);
 +
 +
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
 +
} else {
 +
_gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);
 +
}
 +
}
 +
 +
_gl.bindRenderbuffer(_gl.RENDERBUFFER, null);
 +
} // Setup resources for a Depth Texture for a FBO (needs an extension)
 +
 +
 +
function setupDepthTexture(framebuffer, renderTarget) {
 +
const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget;
 +
if (isCube) throw new Error('Depth Texture with cube render targets is not supported');
 +
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
 +
 +
if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) {
 +
throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');
 +
} // upload an empty depth texture with framebuffer size
 +
 +
 +
if (!properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) {
 +
renderTarget.depthTexture.image.width = renderTarget.width;
 +
renderTarget.depthTexture.image.height = renderTarget.height;
 +
renderTarget.depthTexture.needsUpdate = true;
 +
}
 +
 +
setTexture2D(renderTarget.depthTexture, 0);
 +
 +
const webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture;
 +
 +
if (renderTarget.depthTexture.format === DepthFormat) {
 +
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);
 +
} else if (renderTarget.depthTexture.format === DepthStencilFormat) {
 +
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);
 +
} else {
 +
throw new Error('Unknown depthTexture format');
 +
}
 +
} // Setup GL resources for a non-texture depth buffer
 +
 +
 +
function setupDepthRenderbuffer(renderTarget) {
 +
const renderTargetProperties = properties.get(renderTarget);
 +
const isCube = renderTarget.isWebGLCubeRenderTarget === true;
 +
 +
if (renderTarget.depthTexture) {
 +
if (isCube) throw new Error('target.depthTexture not supported in Cube render targets');
 +
setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget);
 +
} else {
 +
if (isCube) {
 +
renderTargetProperties.__webglDepthbuffer = [];
 +
 +
for (let i = 0; i < 6; i++) {
 +
state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]);
 +
renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer();
 +
setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false);
 +
}
 +
} else {
 +
state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);
 +
renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
 +
setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false);
 +
}
 +
}
 +
 +
state.bindFramebuffer(_gl.FRAMEBUFFER, null);
 +
} // Set up GL resources for the render target
 +
 +
 +
function setupRenderTarget(renderTarget) {
 +
const texture = renderTarget.texture;
 +
const renderTargetProperties = properties.get(renderTarget);
 +
const textureProperties = properties.get(texture);
 +
renderTarget.addEventListener('dispose', onRenderTargetDispose);
 +
 +
if (renderTarget.isWebGLMultipleRenderTargets !== true) {
 +
textureProperties.__webglTexture = _gl.createTexture();
 +
textureProperties.__version = texture.version;
 +
info.memory.textures++;
 +
}
 +
 +
const isCube = renderTarget.isWebGLCubeRenderTarget === true;
 +
const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true;
 +
const isMultisample = renderTarget.isWebGLMultisampleRenderTarget === true;
 +
const isRenderTarget3D = texture.isDataTexture3D || texture.isDataTexture2DArray;
 +
const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858
 +
 +
if (isWebGL2 && texture.format === RGBFormat && (texture.type === FloatType || texture.type === HalfFloatType)) {
 +
texture.format = RGBAFormat;
 +
console.warn('THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.');
 +
} // Setup framebuffer
 +
 +
 +
if (isCube) {
 +
renderTargetProperties.__webglFramebuffer = [];
 +
 +
for (let i = 0; i < 6; i++) {
 +
renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer();
 +
}
 +
} else {
 +
renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
 +
 +
if (isMultipleRenderTargets) {
 +
if (capabilities.drawBuffers) {
 +
const textures = renderTarget.texture;
 +
 +
for (let i = 0, il = textures.length; i < il; i++) {
 +
const attachmentProperties = properties.get(textures[i]);
 +
 +
if (attachmentProperties.__webglTexture === undefined) {
 +
attachmentProperties.__webglTexture = _gl.createTexture();
 +
info.memory.textures++;
 +
}
 +
}
 +
} else {
 +
console.warn('THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.');
 +
}
 +
} else if (isMultisample) {
 +
if (isWebGL2) {
 +
renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();
 +
renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();
 +
 +
_gl.bindRenderbuffer(_gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);
 +
 +
const glFormat = utils.convert(texture.format);
 +
const glType = utils.convert(texture.type);
 +
const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
 +
const samples = getRenderTargetSamples(renderTarget);
 +
 +
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
 +
 +
state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
 +
 +
_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);
 +
 +
_gl.bindRenderbuffer(_gl.RENDERBUFFER, null);
 +
 +
if (renderTarget.depthBuffer) {
 +
renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();
 +
setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true);
 +
}
 +
 +
state.bindFramebuffer(_gl.FRAMEBUFFER, null);
 +
} else {
 +
console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
 +
}
 +
}
 +
} // Setup color buffer
 +
 +
 +
if (isCube) {
 +
state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
 +
setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);
 +
 +
for (let i = 0; i < 6; i++) {
 +
setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i);
 +
}
 +
 +
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
 +
generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, renderTarget.width, renderTarget.height);
 +
}
 +
 +
state.bindTexture(_gl.TEXTURE_CUBE_MAP, null);
 +
} else if (isMultipleRenderTargets) {
 +
const textures = renderTarget.texture;
 +
 +
for (let i = 0, il = textures.length; i < il; i++) {
 +
const attachment = textures[i];
 +
const attachmentProperties = properties.get(attachment);
 +
state.bindTexture(_gl.TEXTURE_2D, attachmentProperties.__webglTexture);
 +
setTextureParameters(_gl.TEXTURE_2D, attachment, supportsMips);
 +
setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D);
 +
 +
if (textureNeedsGenerateMipmaps(attachment, supportsMips)) {
 +
generateMipmap(_gl.TEXTURE_2D, attachment, renderTarget.width, renderTarget.height);
 +
}
 +
}
 +
 +
state.bindTexture(_gl.TEXTURE_2D, null);
 +
} else {
 +
let glTextureType = _gl.TEXTURE_2D;
 +
 +
if (isRenderTarget3D) {
 +
// Render targets containing layers, i.e: Texture 3D and 2d arrays
 +
if (isWebGL2) {
 +
const isTexture3D = texture.isDataTexture3D;
 +
glTextureType = isTexture3D ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY;
 +
} else {
 +
console.warn('THREE.DataTexture3D and THREE.DataTexture2DArray only supported with WebGL2.');
 +
}
 +
}
 +
 +
state.bindTexture(glTextureType, textureProperties.__webglTexture);
 +
setTextureParameters(glTextureType, texture, supportsMips);
 +
setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType);
 +
 +
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
 +
generateMipmap(glTextureType, texture, renderTarget.width, renderTarget.height, renderTarget.depth);
 +
}
 +
 +
state.bindTexture(glTextureType, null);
 +
} // Setup depth and stencil buffers
 +
 +
 +
if (renderTarget.depthBuffer) {
 +
setupDepthRenderbuffer(renderTarget);
 +
}
 +
}
 +
 +
function updateRenderTargetMipmap(renderTarget) {
 +
const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2;
 +
const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture];
 +
 +
for (let i = 0, il = textures.length; i < il; i++) {
 +
const texture = textures[i];
 +
 +
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
 +
const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;
 +
 +
const webglTexture = properties.get(texture).__webglTexture;
 +
 +
state.bindTexture(target, webglTexture);
 +
generateMipmap(target, texture, renderTarget.width, renderTarget.height);
 +
state.bindTexture(target, null);
 +
}
 +
}
 +
}
 +
 +
function updateMultisampleRenderTarget(renderTarget) {
 +
if (renderTarget.isWebGLMultisampleRenderTarget) {
 +
if (isWebGL2) {
 +
const width = renderTarget.width;
 +
const height = renderTarget.height;
 +
let mask = _gl.COLOR_BUFFER_BIT;
 +
if (renderTarget.depthBuffer) mask |= _gl.DEPTH_BUFFER_BIT;
 +
if (renderTarget.stencilBuffer) mask |= _gl.STENCIL_BUFFER_BIT;
 +
const renderTargetProperties = properties.get(renderTarget);
 +
state.bindFramebuffer(_gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
 +
state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);
 +
 +
_gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST);
 +
 +
state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null);
 +
state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
 +
} else {
 +
console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
 +
}
 +
}
 +
}
 +
 +
function getRenderTargetSamples(renderTarget) {
 +
return isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ? Math.min(maxSamples, renderTarget.samples) : 0;
 +
}
 +
 +
function updateVideoTexture(texture) {
 +
const frame = info.render.frame; // Check the last frame we updated the VideoTexture
 +
 +
if (_videoTextures.get(texture) !== frame) {
 +
_videoTextures.set(texture, frame);
 +
 +
texture.update();
 +
}
 +
} // backwards compatibility
 +
 +
 +
let warnedTexture2D = false;
 +
let warnedTextureCube = false;
 +
 +
function safeSetTexture2D(texture, slot) {
 +
if (texture && texture.isWebGLRenderTarget) {
 +
if (warnedTexture2D === false) {
 +
console.warn('THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.');
 +
warnedTexture2D = true;
 +
}
 +
 +
texture = texture.texture;
 +
}
 +
 +
setTexture2D(texture, slot);
 +
}
 +
 +
function safeSetTextureCube(texture, slot) {
 +
if (texture && texture.isWebGLCubeRenderTarget) {
 +
if (warnedTextureCube === false) {
 +
console.warn('THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.');
 +
warnedTextureCube = true;
 +
}
 +
 +
texture = texture.texture;
 +
}
 +
 +
setTextureCube(texture, slot);
 +
} //
 +
 +
 +
this.allocateTextureUnit = allocateTextureUnit;
 +
this.resetTextureUnits = resetTextureUnits;
 +
this.setTexture2D = setTexture2D;
 +
this.setTexture2DArray = setTexture2DArray;
 +
this.setTexture3D = setTexture3D;
 +
this.setTextureCube = setTextureCube;
 +
this.setupRenderTarget = setupRenderTarget;
 +
this.updateRenderTargetMipmap = updateRenderTargetMipmap;
 +
this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;
 +
this.safeSetTexture2D = safeSetTexture2D;
 +
this.safeSetTextureCube = safeSetTextureCube;
 +
}
 +
 +
function WebGLUtils(gl, extensions, capabilities) {
 +
const isWebGL2 = capabilities.isWebGL2;
 +
 +
function convert(p) {
 +
let extension;
 +
if (p === UnsignedByteType) return gl.UNSIGNED_BYTE;
 +
if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4;
 +
if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1;
 +
if (p === UnsignedShort565Type) return gl.UNSIGNED_SHORT_5_6_5;
 +
if (p === ByteType) return gl.BYTE;
 +
if (p === ShortType) return gl.SHORT;
 +
if (p === UnsignedShortType) return gl.UNSIGNED_SHORT;
 +
if (p === IntType) return gl.INT;
 +
if (p === UnsignedIntType) return gl.UNSIGNED_INT;
 +
if (p === FloatType) return gl.FLOAT;
 +
 +
if (p === HalfFloatType) {
 +
if (isWebGL2) return gl.HALF_FLOAT;
 +
extension = extensions.get('OES_texture_half_float');
 +
 +
if (extension !== null) {
 +
return extension.HALF_FLOAT_OES;
 +
} else {
 +
return null;
 +
}
 +
}
 +
 +
if (p === AlphaFormat) return gl.ALPHA;
 +
if (p === RGBFormat) return gl.RGB;
 +
if (p === RGBAFormat) return gl.RGBA;
 +
if (p === LuminanceFormat) return gl.LUMINANCE;
 +
if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA;
 +
if (p === DepthFormat) return gl.DEPTH_COMPONENT;
 +
if (p === DepthStencilFormat) return gl.DEPTH_STENCIL;
 +
if (p === RedFormat) return gl.RED; // WebGL2 formats.
 +
 +
if (p === RedIntegerFormat) return gl.RED_INTEGER;
 +
if (p === RGFormat) return gl.RG;
 +
if (p === RGIntegerFormat) return gl.RG_INTEGER;
 +
if (p === RGBIntegerFormat) return gl.RGB_INTEGER;
 +
if (p === RGBAIntegerFormat) return gl.RGBA_INTEGER;
 +
 +
if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) {
 +
extension = extensions.get('WEBGL_compressed_texture_s3tc');
 +
 +
if (extension !== null) {
 +
if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
 +
if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
 +
if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
 +
if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
 +
} else {
 +
return null;
 +
}
 +
}
 +
 +
if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) {
 +
extension = extensions.get('WEBGL_compressed_texture_pvrtc');
 +
 +
if (extension !== null) {
 +
if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
 +
if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
 +
if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
 +
if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
 +
} else {
 +
return null;
 +
}
 +
}
 +
 +
if (p === RGB_ETC1_Format) {
 +
extension = extensions.get('WEBGL_compressed_texture_etc1');
 +
 +
if (extension !== null) {
 +
return extension.COMPRESSED_RGB_ETC1_WEBGL;
 +
} else {
 +
return null;
 +
}
 +
}
 +
 +
if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) {
 +
extension = extensions.get('WEBGL_compressed_texture_etc');
 +
 +
if (extension !== null) {
 +
if (p === RGB_ETC2_Format) return extension.COMPRESSED_RGB8_ETC2;
 +
if (p === RGBA_ETC2_EAC_Format) return extension.COMPRESSED_RGBA8_ETC2_EAC;
 +
}
 +
}
 +
 +
if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format) {
 +
extension = extensions.get('WEBGL_compressed_texture_astc');
 +
 +
if (extension !== null) {
 +
// TODO Complete?
 +
return p;
 +
} else {
 +
return null;
 +
}
 +
}
 +
 +
if (p === RGBA_BPTC_Format) {
 +
extension = extensions.get('EXT_texture_compression_bptc');
 +
 +
if (extension !== null) {
 +
// TODO Complete?
 +
return p;
 +
} else {
 +
return null;
 +
}
 +
}
 +
 +
if (p === UnsignedInt248Type) {
 +
if (isWebGL2) return gl.UNSIGNED_INT_24_8;
 +
extension = extensions.get('WEBGL_depth_texture');
 +
 +
if (extension !== null) {
 +
return extension.UNSIGNED_INT_24_8_WEBGL;
 +
} else {
 +
return null;
 +
}
 +
}
 +
}
 +
 +
return {
 +
convert: convert
 +
};
 +
}
 +
 +
class ArrayCamera extends PerspectiveCamera {
 +
constructor(array = []) {
 +
super();
 +
this.cameras = array;
 +
}
 +
 +
}
 +
 +
ArrayCamera.prototype.isArrayCamera = true;
 +
 +
class Group extends Object3D {
 +
constructor() {
 +
super();
 +
this.type = 'Group';
 +
}
 +
 +
}
 +
 +
Group.prototype.isGroup = true;
 +
 +
const _moveEvent = {
 +
type: 'move'
 +
};
 +
 +
class WebXRController {
 +
constructor() {
 +
this._targetRay = null;
 +
this._grip = null;
 +
this._hand = null;
 +
}
 +
 +
getHandSpace() {
 +
if (this._hand === null) {
 +
this._hand = new Group();
 +
this._hand.matrixAutoUpdate = false;
 +
this._hand.visible = false;
 +
this._hand.joints = {};
 +
this._hand.inputState = {
 +
pinching: false
 +
};
 +
}
 +
 +
return this._hand;
 +
}
 +
 +
getTargetRaySpace() {
 +
if (this._targetRay === null) {
 +
this._targetRay = new Group();
 +
this._targetRay.matrixAutoUpdate = false;
 +
this._targetRay.visible = false;
 +
this._targetRay.hasLinearVelocity = false;
 +
this._targetRay.linearVelocity = new Vector3();
 +
this._targetRay.hasAngularVelocity = false;
 +
this._targetRay.angularVelocity = new Vector3();
 +
}
 +
 +
return this._targetRay;
 +
}
 +
 +
getGripSpace() {
 +
if (this._grip === null) {
 +
this._grip = new Group();
 +
this._grip.matrixAutoUpdate = false;
 +
this._grip.visible = false;
 +
this._grip.hasLinearVelocity = false;
 +
this._grip.linearVelocity = new Vector3();
 +
this._grip.hasAngularVelocity = false;
 +
this._grip.angularVelocity = new Vector3();
 +
}
 +
 +
return this._grip;
 +
}
 +
 +
dispatchEvent(event) {
 +
if (this._targetRay !== null) {
 +
this._targetRay.dispatchEvent(event);
 +
}
 +
 +
if (this._grip !== null) {
 +
this._grip.dispatchEvent(event);
 +
}
 +
 +
if (this._hand !== null) {
 +
this._hand.dispatchEvent(event);
 +
}
 +
 +
return this;
 +
}
 +
 +
disconnect(inputSource) {
 +
this.dispatchEvent({
 +
type: 'disconnected',
 +
data: inputSource
 +
});
 +
 +
if (this._targetRay !== null) {
 +
this._targetRay.visible = false;
 +
}
 +
 +
if (this._grip !== null) {
 +
this._grip.visible = false;
 +
}
 +
 +
if (this._hand !== null) {
 +
this._hand.visible = false;
 +
}
 +
 +
return this;
 +
}
 +
 +
update(inputSource, frame, referenceSpace) {
 +
let inputPose = null;
 +
let gripPose = null;
 +
let handPose = null;
 +
const targetRay = this._targetRay;
 +
const grip = this._grip;
 +
const hand = this._hand;
 +
 +
if (inputSource && frame.session.visibilityState !== 'visible-blurred') {
 +
if (targetRay !== null) {
 +
inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace);
 +
 +
if (inputPose !== null) {
 +
targetRay.matrix.fromArray(inputPose.transform.matrix);
 +
targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale);
 +
 +
if (inputPose.linearVelocity) {
 +
targetRay.hasLinearVelocity = true;
 +
targetRay.linearVelocity.copy(inputPose.linearVelocity);
 +
} else {
 +
targetRay.hasLinearVelocity = false;
 +
}
 +
 +
if (inputPose.angularVelocity) {
 +
targetRay.hasAngularVelocity = true;
 +
targetRay.angularVelocity.copy(inputPose.angularVelocity);
 +
} else {
 +
targetRay.hasAngularVelocity = false;
 +
}
 +
 +
this.dispatchEvent(_moveEvent);
 +
}
 +
}
 +
 +
if (hand && inputSource.hand) {
 +
handPose = true;
 +
 +
for (const inputjoint of inputSource.hand.values()) {
 +
// Update the joints groups with the XRJoint poses
 +
const jointPose = frame.getJointPose(inputjoint, referenceSpace);
 +
 +
if (hand.joints[inputjoint.jointName] === undefined) {
 +
// The transform of this joint will be updated with the joint pose on each frame
 +
const joint = new Group();
 +
joint.matrixAutoUpdate = false;
 +
joint.visible = false;
 +
hand.joints[inputjoint.jointName] = joint; // ??
 +
 +
hand.add(joint);
 +
}
 +
 +
const joint = hand.joints[inputjoint.jointName];
 +
 +
if (jointPose !== null) {
 +
joint.matrix.fromArray(jointPose.transform.matrix);
 +
joint.matrix.decompose(joint.position, joint.rotation, joint.scale);
 +
joint.jointRadius = jointPose.radius;
 +
}
 +
 +
joint.visible = jointPose !== null;
 +
} // Custom events
 +
// Check pinchz
 +
 +
 +
const indexTip = hand.joints['index-finger-tip'];
 +
const thumbTip = hand.joints['thumb-tip'];
 +
const distance = indexTip.position.distanceTo(thumbTip.position);
 +
const distanceToPinch = 0.02;
 +
const threshold = 0.005;
 +
 +
if (hand.inputState.pinching && distance > distanceToPinch + threshold) {
 +
hand.inputState.pinching = false;
 +
this.dispatchEvent({
 +
type: 'pinchend',
 +
handedness: inputSource.handedness,
 +
target: this
 +
});
 +
} else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) {
 +
hand.inputState.pinching = true;
 +
this.dispatchEvent({
 +
type: 'pinchstart',
 +
handedness: inputSource.handedness,
 +
target: this
 +
});
 +
}
 +
} else {
 +
if (grip !== null && inputSource.gripSpace) {
 +
gripPose = frame.getPose(inputSource.gripSpace, referenceSpace);
 +
 +
if (gripPose !== null) {
 +
grip.matrix.fromArray(gripPose.transform.matrix);
 +
grip.matrix.decompose(grip.position, grip.rotation, grip.scale);
 +
 +
if (gripPose.linearVelocity) {
 +
grip.hasLinearVelocity = true;
 +
grip.linearVelocity.copy(gripPose.linearVelocity);
 +
} else {
 +
grip.hasLinearVelocity = false;
 +
}
 +
 +
if (gripPose.angularVelocity) {
 +
grip.hasAngularVelocity = true;
 +
grip.angularVelocity.copy(gripPose.angularVelocity);
 +
} else {
 +
grip.hasAngularVelocity = false;
 +
}
 +
}
 +
}
 +
}
 +
}
 +
 +
if (targetRay !== null) {
 +
targetRay.visible = inputPose !== null;
 +
}
 +
 +
if (grip !== null) {
 +
grip.visible = gripPose !== null;
 +
}
 +
 +
if (hand !== null) {
 +
hand.visible = handPose !== null;
 +
}
 +
 +
return this;
 +
}
 +
 +
}
 +
 +
class WebXRManager extends EventDispatcher {
 +
constructor(renderer, gl) {
 +
super();
 +
const scope = this;
 +
const state = renderer.state;
 +
let session = null;
 +
let framebufferScaleFactor = 1.0;
 +
let referenceSpace = null;
 +
let referenceSpaceType = 'local-floor';
 +
let pose = null;
 +
let glBinding = null;
 +
let glFramebuffer = null;
 +
let glProjLayer = null;
 +
const controllers = [];
 +
const inputSourcesMap = new Map(); //
 +
 +
const cameraL = new PerspectiveCamera();
 +
cameraL.layers.enable(1);
 +
cameraL.viewport = new Vector4();
 +
const cameraR = new PerspectiveCamera();
 +
cameraR.layers.enable(2);
 +
cameraR.viewport = new Vector4();
 +
const cameras = [cameraL, cameraR];
 +
const cameraVR = new ArrayCamera();
 +
cameraVR.layers.enable(1);
 +
cameraVR.layers.enable(2);
 +
let _currentDepthNear = null;
 +
let _currentDepthFar = null; //
 +
 +
this.cameraAutoUpdate = true;
 +
this.enabled = false;
 +
this.isPresenting = false;
 +
 +
this.getController = function (index) {
 +
let controller = controllers[index];
 +
 +
if (controller === undefined) {
 +
controller = new WebXRController();
 +
controllers[index] = controller;
 +
}
 +
 +
return controller.getTargetRaySpace();
 +
};
 +
 +
this.getControllerGrip = function (index) {
 +
let controller = controllers[index];
 +
 +
if (controller === undefined) {
 +
controller = new WebXRController();
 +
controllers[index] = controller;
 +
}
 +
 +
return controller.getGripSpace();
 +
};
 +
 +
this.getHand = function (index) {
 +
let controller = controllers[index];
 +
 +
if (controller === undefined) {
 +
controller = new WebXRController();
 +
controllers[index] = controller;
 +
}
 +
 +
return controller.getHandSpace();
 +
}; //
 +
 +
 +
function onSessionEvent(event) {
 +
const controller = inputSourcesMap.get(event.inputSource);
 +
 +
if (controller) {
 +
controller.dispatchEvent({
 +
type: event.type,
 +
data: event.inputSource
 +
});
 +
}
 +
}
 +
 +
function onSessionEnd() {
 +
inputSourcesMap.forEach(function (controller, inputSource) {
 +
controller.disconnect(inputSource);
 +
});
 +
inputSourcesMap.clear();
 +
_currentDepthNear = null;
 +
_currentDepthFar = null; // restore framebuffer/rendering state
 +
 +
state.bindXRFramebuffer(null);
 +
renderer.setRenderTarget(renderer.getRenderTarget()); //
 +
 +
animation.stop();
 +
scope.isPresenting = false;
 +
scope.dispatchEvent({
 +
type: 'sessionend'
 +
});
 +
}
 +
 +
this.setFramebufferScaleFactor = function (value) {
 +
framebufferScaleFactor = value;
 +
 +
if (scope.isPresenting === true) {
 +
console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.');
 +
}
 +
};
 +
 +
this.setReferenceSpaceType = function (value) {
 +
referenceSpaceType = value;
 +
 +
if (scope.isPresenting === true) {
 +
console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.');
 +
}
 +
};
 +
 +
this.getReferenceSpace = function () {
 +
return referenceSpace;
 +
};
 +
 +
this.getSession = function () {
 +
return session;
 +
};
 +
 +
this.setSession = async function (value) {
 +
session = value;
 +
 +
if (session !== null) {
 +
session.addEventListener('select', onSessionEvent);
 +
session.addEventListener('selectstart', onSessionEvent);
 +
session.addEventListener('selectend', onSessionEvent);
 +
session.addEventListener('squeeze', onSessionEvent);
 +
session.addEventListener('squeezestart', onSessionEvent);
 +
session.addEventListener('squeezeend', onSessionEvent);
 +
session.addEventListener('end', onSessionEnd);
 +
session.addEventListener('inputsourceschange', onInputSourcesChange);
 +
const attributes = gl.getContextAttributes();
 +
 +
if (attributes.xrCompatible !== true) {
 +
await gl.makeXRCompatible();
 +
}
 +
 +
if (session.renderState.layers === undefined) {
 +
const layerInit = {
 +
antialias: attributes.antialias,
 +
alpha: attributes.alpha,
 +
depth: attributes.depth,
 +
stencil: attributes.stencil,
 +
framebufferScaleFactor: framebufferScaleFactor
 +
}; // eslint-disable-next-line no-undef
 +
 +
const baseLayer = new XRWebGLLayer(session, gl, layerInit);
 +
session.updateRenderState({
 +
baseLayer: baseLayer
 +
});
 +
} else {
 +
let depthFormat = 0;
 +
 +
if (attributes.depth) {
 +
depthFormat = attributes.stencil ? gl.DEPTH_STENCIL : gl.DEPTH_COMPONENT;
 +
}
 +
 +
const projectionlayerInit = {
 +
colorFormat: attributes.alpha ? gl.RGBA : gl.RGB,
 +
depthFormat: depthFormat,
 +
scaleFactor: framebufferScaleFactor
 +
}; // eslint-disable-next-line no-undef
 +
 +
glBinding = new XRWebGLBinding(session, gl);
 +
glProjLayer = glBinding.createProjectionLayer(projectionlayerInit);
 +
glFramebuffer = gl.createFramebuffer();
 +
session.updateRenderState({
 +
layers: [glProjLayer]
 +
});
 +
}
 +
 +
referenceSpace = await session.requestReferenceSpace(referenceSpaceType);
 +
animation.setContext(session);
 +
animation.start();
 +
scope.isPresenting = true;
 +
scope.dispatchEvent({
 +
type: 'sessionstart'
 +
});
 +
}
 +
};
 +
 +
function onInputSourcesChange(event) {
 +
const inputSources = session.inputSources; // Assign inputSources to available controllers
 +
 +
for (let i = 0; i < controllers.length; i++) {
 +
inputSourcesMap.set(inputSources[i], controllers[i]);
 +
} // Notify disconnected
 +
 +
 +
for (let i = 0; i < event.removed.length; i++) {
 +
const inputSource = event.removed[i];
 +
const controller = inputSourcesMap.get(inputSource);
 +
 +
if (controller) {
 +
controller.dispatchEvent({
 +
type: 'disconnected',
 +
data: inputSource
 +
});
 +
inputSourcesMap.delete(inputSource);
 +
}
 +
} // Notify connected
 +
 +
 +
for (let i = 0; i < event.added.length; i++) {
 +
const inputSource = event.added[i];
 +
const controller = inputSourcesMap.get(inputSource);
 +
 +
if (controller) {
 +
controller.dispatchEvent({
 +
type: 'connected',
 +
data: inputSource
 +
});
 +
}
 +
}
 +
} //
 +
 +
 +
const cameraLPos = new Vector3();
 +
const cameraRPos = new Vector3();
 +
/**
 +
* Assumes 2 cameras that are parallel and share an X-axis, and that
 +
* the cameras' projection and world matrices have already been set.
 +
* And that near and far planes are identical for both cameras.
 +
* Visualization of this technique: https://computergraphics.stackexchange.com/a/4765
 +
*/
 +
 +
function setProjectionFromUnion(camera, cameraL, cameraR) {
 +
cameraLPos.setFromMatrixPosition(cameraL.matrixWorld);
 +
cameraRPos.setFromMatrixPosition(cameraR.matrixWorld);
 +
const ipd = cameraLPos.distanceTo(cameraRPos);
 +
const projL = cameraL.projectionMatrix.elements;
 +
const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and
 +
// most likely identical top and bottom frustum extents.
 +
// Use the left camera for these values.
 +
 +
const near = projL[14] / (projL[10] - 1);
 +
const far = projL[14] / (projL[10] + 1);
 +
const topFov = (projL[9] + 1) / projL[5];
 +
const bottomFov = (projL[9] - 1) / projL[5];
 +
const leftFov = (projL[8] - 1) / projL[0];
 +
const rightFov = (projR[8] + 1) / projR[0];
 +
const left = near * leftFov;
 +
const right = near * rightFov; // Calculate the new camera's position offset from the
 +
// left camera. xOffset should be roughly half `ipd`.
 +
 +
const zOffset = ipd / (-leftFov + rightFov);
 +
const xOffset = zOffset * -leftFov; // TODO: Better way to apply this offset?
 +
 +
cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale);
 +
camera.translateX(xOffset);
 +
camera.translateZ(zOffset);
 +
camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale);
 +
camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); // Find the union of the frustum values of the cameras and scale
 +
// the values so that the near plane's position does not change in world space,
 +
// although must now be relative to the new union camera.
 +
 +
const near2 = near + zOffset;
 +
const far2 = far + zOffset;
 +
const left2 = left - xOffset;
 +
const right2 = right + (ipd - xOffset);
 +
const top2 = topFov * far / far2 * near2;
 +
const bottom2 = bottomFov * far / far2 * near2;
 +
camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2);
 +
}
 +
 +
function updateCamera(camera, parent) {
 +
if (parent === null) {
 +
camera.matrixWorld.copy(camera.matrix);
 +
} else {
 +
camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix);
 +
}
 +
 +
camera.matrixWorldInverse.copy(camera.matrixWorld).invert();
 +
}
 +
 +
this.updateCamera = function (camera) {
 +
if (session === null) return;
 +
cameraVR.near = cameraR.near = cameraL.near = camera.near;
 +
cameraVR.far = cameraR.far = cameraL.far = camera.far;
 +
 +
if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) {
 +
// Note that the new renderState won't apply until the next frame. See #18320
 +
session.updateRenderState({
 +
depthNear: cameraVR.near,
 +
depthFar: cameraVR.far
 +
});
 +
_currentDepthNear = cameraVR.near;
 +
_currentDepthFar = cameraVR.far;
 +
}
 +
 +
const parent = camera.parent;
 +
const cameras = cameraVR.cameras;
 +
updateCamera(cameraVR, parent);
 +
 +
for (let i = 0; i < cameras.length; i++) {
 +
updateCamera(cameras[i], parent);
 +
}
 +
 +
cameraVR.matrixWorld.decompose(cameraVR.position, cameraVR.quaternion, cameraVR.scale); // update user camera and its children
 +
 +
camera.position.copy(cameraVR.position);
 +
camera.quaternion.copy(cameraVR.quaternion);
 +
camera.scale.copy(cameraVR.scale);
 +
camera.matrix.copy(cameraVR.matrix);
 +
camera.matrixWorld.copy(cameraVR.matrixWorld);
 +
const children = camera.children;
 +
 +
for (let i = 0, l = children.length; i < l; i++) {
 +
children[i].updateMatrixWorld(true);
 +
} // update projection matrix for proper view frustum culling
 +
 +
 +
if (cameras.length === 2) {
 +
setProjectionFromUnion(cameraVR, cameraL, cameraR);
 +
} else {
 +
// assume single camera setup (AR)
 +
cameraVR.projectionMatrix.copy(cameraL.projectionMatrix);
 +
}
 +
};
 +
 +
this.getCamera = function () {
 +
return cameraVR;
 +
}; // Animation Loop
 +
 +
 +
let onAnimationFrameCallback = null;
 +
 +
function onAnimationFrame(time, frame) {
 +
pose = frame.getViewerPose(referenceSpace);
 +
 +
if (pose !== null) {
 +
const views = pose.views;
 +
const baseLayer = session.renderState.baseLayer;
 +
 +
if (session.renderState.layers === undefined) {
 +
state.bindXRFramebuffer(baseLayer.framebuffer);
 +
}
 +
 +
let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list
 +
 +
if (views.length !== cameraVR.cameras.length) {
 +
cameraVR.cameras.length = 0;
 +
cameraVRNeedsUpdate = true;
 +
}
 +
 +
for (let i = 0; i < views.length; i++) {
 +
const view = views[i];
 +
let viewport = null;
 +
 +
if (session.renderState.layers === undefined) {
 +
viewport = baseLayer.getViewport(view);
 +
} else {
 +
const glSubImage = glBinding.getViewSubImage(glProjLayer, view);
 +
state.bindXRFramebuffer(glFramebuffer);
 +
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, glSubImage.colorTexture, 0);
 +
 +
if (glSubImage.depthStencilTexture !== undefined) {
 +
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.TEXTURE_2D, glSubImage.depthStencilTexture, 0);
 +
}
 +
 +
viewport = glSubImage.viewport;
 +
}
 +
 +
const camera = cameras[i];
 +
camera.matrix.fromArray(view.transform.matrix);
 +
camera.projectionMatrix.fromArray(view.projectionMatrix);
 +
camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height);
 +
 +
if (i === 0) {
 +
cameraVR.matrix.copy(camera.matrix);
 +
}
 +
 +
if (cameraVRNeedsUpdate === true) {
 +
cameraVR.cameras.push(camera);
 +
}
 +
}
 +
} //
 +
 +
 +
const inputSources = session.inputSources;
 +
 +
for (let i = 0; i < controllers.length; i++) {
 +
const controller = controllers[i];
 +
const inputSource = inputSources[i];
 +
controller.update(inputSource, frame, referenceSpace);
 +
}
 +
 +
if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame);
 +
}
 +
 +
const animation = new WebGLAnimation();
 +
animation.setAnimationLoop(onAnimationFrame);
 +
 +
this.setAnimationLoop = function (callback) {
 +
onAnimationFrameCallback = callback;
 +
};
 +
 +
this.dispose = function () {};
 +
}
 +
 +
}
 +
 +
function WebGLMaterials(properties) {
 +
function refreshFogUniforms(uniforms, fog) {
 +
uniforms.fogColor.value.copy(fog.color);
 +
 +
if (fog.isFog) {
 +
uniforms.fogNear.value = fog.near;
 +
uniforms.fogFar.value = fog.far;
 +
} else if (fog.isFogExp2) {
 +
uniforms.fogDensity.value = fog.density;
 +
}
 +
}
 +
 +
function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) {
 +
if (material.isMeshBasicMaterial) {
 +
refreshUniformsCommon(uniforms, material);
 +
} else if (material.isMeshLambertMaterial) {
 +
refreshUniformsCommon(uniforms, material);
 +
refreshUniformsLambert(uniforms, material);
 +
} else if (material.isMeshToonMaterial) {
 +
refreshUniformsCommon(uniforms, material);
 +
refreshUniformsToon(uniforms, material);
 +
} else if (material.isMeshPhongMaterial) {
 +
refreshUniformsCommon(uniforms, material);
 +
refreshUniformsPhong(uniforms, material);
 +
} else if (material.isMeshStandardMaterial) {
 +
refreshUniformsCommon(uniforms, material);
 +
 +
if (material.isMeshPhysicalMaterial) {
 +
refreshUniformsPhysical(uniforms, material, transmissionRenderTarget);
 +
} else {
 +
refreshUniformsStandard(uniforms, material);
 +
}
 +
} else if (material.isMeshMatcapMaterial) {
 +
refreshUniformsCommon(uniforms, material);
 +
refreshUniformsMatcap(uniforms, material);
 +
} else if (material.isMeshDepthMaterial) {
 +
refreshUniformsCommon(uniforms, material);
 +
refreshUniformsDepth(uniforms, material);
 +
} else if (material.isMeshDistanceMaterial) {
 +
refreshUniformsCommon(uniforms, material);
 +
refreshUniformsDistance(uniforms, material);
 +
} else if (material.isMeshNormalMaterial) {
 +
refreshUniformsCommon(uniforms, material);
 +
refreshUniformsNormal(uniforms, material);
 +
} else if (material.isLineBasicMaterial) {
 +
refreshUniformsLine(uniforms, material);
 +
 +
if (material.isLineDashedMaterial) {
 +
refreshUniformsDash(uniforms, material);
 +
}
 +
} else if (material.isPointsMaterial) {
 +
refreshUniformsPoints(uniforms, material, pixelRatio, height);
 +
} else if (material.isSpriteMaterial) {
 +
refreshUniformsSprites(uniforms, material);
 +
} else if (material.isShadowMaterial) {
 +
uniforms.color.value.copy(material.color);
 +
uniforms.opacity.value = material.opacity;
 +
} else if (material.isShaderMaterial) {
 +
material.uniformsNeedUpdate = false; // #15581
 +
}
 +
}
 +
 +
function refreshUniformsCommon(uniforms, material) {
 +
uniforms.opacity.value = material.opacity;
 +
 +
if (material.color) {
 +
uniforms.diffuse.value.copy(material.color);
 +
}
 +
 +
if (material.emissive) {
 +
uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity);
 +
}
 +
 +
if (material.map) {
 +
uniforms.map.value = material.map;
 +
}
 +
 +
if (material.alphaMap) {
 +
uniforms.alphaMap.value = material.alphaMap;
 +
}
 +
 +
if (material.specularMap) {
 +
uniforms.specularMap.value = material.specularMap;
 +
}
 +
 +
const envMap = properties.get(material).envMap;
 +
 +
if (envMap) {
 +
uniforms.envMap.value = envMap;
 +
uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap._needsFlipEnvMap ? -1 : 1;
 +
uniforms.reflectivity.value = material.reflectivity;
 +
uniforms.refractionRatio.value = material.refractionRatio;
 +
 +
const maxMipLevel = properties.get(envMap).__maxMipLevel;
 +
 +
if (maxMipLevel !== undefined) {
 +
uniforms.maxMipLevel.value = maxMipLevel;
 +
}
 +
}
 +
 +
if (material.lightMap) {
 +
uniforms.lightMap.value = material.lightMap;
 +
uniforms.lightMapIntensity.value = material.lightMapIntensity;
 +
}
 +
 +
if (material.aoMap) {
 +
uniforms.aoMap.value = material.aoMap;
 +
uniforms.aoMapIntensity.value = material.aoMapIntensity;
 +
} // uv repeat and offset setting priorities
 +
// 1. color map
 +
// 2. specular map
 +
// 3. displacementMap map
 +
// 4. normal map
 +
// 5. bump map
 +
// 6. roughnessMap map
 +
// 7. metalnessMap map
 +
// 8. alphaMap map
 +
// 9. emissiveMap map
 +
// 10. clearcoat map
 +
// 11. clearcoat normal map
 +
// 12. clearcoat roughnessMap map
 +
 +
 +
let uvScaleMap;
 +
 +
if (material.map) {
 +
uvScaleMap = material.map;
 +
} else if (material.specularMap) {
 +
uvScaleMap = material.specularMap;
 +
} else if (material.displacementMap) {
 +
uvScaleMap = material.displacementMap;
 +
} else if (material.normalMap) {
 +
uvScaleMap = material.normalMap;
 +
} else if (material.bumpMap) {
 +
uvScaleMap = material.bumpMap;
 +
} else if (material.roughnessMap) {
 +
uvScaleMap = material.roughnessMap;
 +
} else if (material.metalnessMap) {
 +
uvScaleMap = material.metalnessMap;
 +
} else if (material.alphaMap) {
 +
uvScaleMap = material.alphaMap;
 +
} else if (material.emissiveMap) {
 +
uvScaleMap = material.emissiveMap;
 +
} else if (material.clearcoatMap) {
 +
uvScaleMap = material.clearcoatMap;
 +
} else if (material.clearcoatNormalMap) {
 +
uvScaleMap = material.clearcoatNormalMap;
 +
} else if (material.clearcoatRoughnessMap) {
 +
uvScaleMap = material.clearcoatRoughnessMap;
 +
}
 +
 +
if (uvScaleMap !== undefined) {
 +
// backwards compatibility
 +
if (uvScaleMap.isWebGLRenderTarget) {
 +
uvScaleMap = uvScaleMap.texture;
 +
}
 +
 +
if (uvScaleMap.matrixAutoUpdate === true) {
 +
uvScaleMap.updateMatrix();
 +
}
 +
 +
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
 +
} // uv repeat and offset setting priorities for uv2
 +
// 1. ao map
 +
// 2. light map
 +
 +
 +
let uv2ScaleMap;
 +
 +
if (material.aoMap) {
 +
uv2ScaleMap = material.aoMap;
 +
} else if (material.lightMap) {
 +
uv2ScaleMap = material.lightMap;
 +
}
 +
 +
if (uv2ScaleMap !== undefined) {
 +
// backwards compatibility
 +
if (uv2ScaleMap.isWebGLRenderTarget) {
 +
uv2ScaleMap = uv2ScaleMap.texture;
 +
}
 +
 +
if (uv2ScaleMap.matrixAutoUpdate === true) {
 +
uv2ScaleMap.updateMatrix();
 +
}
 +
 +
uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix);
 +
}
 +
}
 +
 +
function refreshUniformsLine(uniforms, material) {
 +
uniforms.diffuse.value.copy(material.color);
 +
uniforms.opacity.value = material.opacity;
 +
}
 +
 +
function refreshUniformsDash(uniforms, material) {
 +
uniforms.dashSize.value = material.dashSize;
 +
uniforms.totalSize.value = material.dashSize + material.gapSize;
 +
uniforms.scale.value = material.scale;
 +
}
 +
 +
function refreshUniformsPoints(uniforms, material, pixelRatio, height) {
 +
uniforms.diffuse.value.copy(material.color);
 +
uniforms.opacity.value = material.opacity;
 +
uniforms.size.value = material.size * pixelRatio;
 +
uniforms.scale.value = height * 0.5;
 +
 +
if (material.map) {
 +
uniforms.map.value = material.map;
 +
}
 +
 +
if (material.alphaMap) {
 +
uniforms.alphaMap.value = material.alphaMap;
 +
} // uv repeat and offset setting priorities
 +
// 1. color map
 +
// 2. alpha map
 +
 +
 +
let uvScaleMap;
 +
 +
if (material.map) {
 +
uvScaleMap = material.map;
 +
} else if (material.alphaMap) {
 +
uvScaleMap = material.alphaMap;
 +
}
 +
 +
if (uvScaleMap !== undefined) {
 +
if (uvScaleMap.matrixAutoUpdate === true) {
 +
uvScaleMap.updateMatrix();
 +
}
 +
 +
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
 +
}
 +
}
 +
 +
function refreshUniformsSprites(uniforms, material) {
 +
uniforms.diffuse.value.copy(material.color);
 +
uniforms.opacity.value = material.opacity;
 +
uniforms.rotation.value = material.rotation;
 +
 +
if (material.map) {
 +
uniforms.map.value = material.map;
 +
}
 +
 +
if (material.alphaMap) {
 +
uniforms.alphaMap.value = material.alphaMap;
 +
} // uv repeat and offset setting priorities
 +
// 1. color map
 +
// 2. alpha map
 +
 +
 +
let uvScaleMap;
 +
 +
if (material.map) {
 +
uvScaleMap = material.map;
 +
} else if (material.alphaMap) {
 +
uvScaleMap = material.alphaMap;
 +
}
 +
 +
if (uvScaleMap !== undefined) {
 +
if (uvScaleMap.matrixAutoUpdate === true) {
 +
uvScaleMap.updateMatrix();
 +
}
 +
 +
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
 +
}
 +
}
 +
 +
function refreshUniformsLambert(uniforms, material) {
 +
if (material.emissiveMap) {
 +
uniforms.emissiveMap.value = material.emissiveMap;
 +
}
 +
}
 +
 +
function refreshUniformsPhong(uniforms, material) {
 +
uniforms.specular.value.copy(material.specular);
 +
uniforms.shininess.value = Math.max(material.shininess, 1e-4); // to prevent pow( 0.0, 0.0 )
 +
 +
if (material.emissiveMap) {
 +
uniforms.emissiveMap.value = material.emissiveMap;
 +
}
 +
 +
if (material.bumpMap) {
 +
uniforms.bumpMap.value = material.bumpMap;
 +
uniforms.bumpScale.value = material.bumpScale;
 +
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
 +
}
 +
 +
if (material.normalMap) {
 +
uniforms.normalMap.value = material.normalMap;
 +
uniforms.normalScale.value.copy(material.normalScale);
 +
if (material.side === BackSide) uniforms.normalScale.value.negate();
 +
}
 +
 +
if (material.displacementMap) {
 +
uniforms.displacementMap.value = material.displacementMap;
 +
uniforms.displacementScale.value = material.displacementScale;
 +
uniforms.displacementBias.value = material.displacementBias;
 +
}
 +
}
 +
 +
function refreshUniformsToon(uniforms, material) {
 +
if (material.gradientMap) {
 +
uniforms.gradientMap.value = material.gradientMap;
 +
}
 +
 +
if (material.emissiveMap) {
 +
uniforms.emissiveMap.value = material.emissiveMap;
 +
}
 +
 +
if (material.bumpMap) {
 +
uniforms.bumpMap.value = material.bumpMap;
 +
uniforms.bumpScale.value = material.bumpScale;
 +
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
 +
}
 +
 +
if (material.normalMap) {
 +
uniforms.normalMap.value = material.normalMap;
 +
uniforms.normalScale.value.copy(material.normalScale);
 +
if (material.side === BackSide) uniforms.normalScale.value.negate();
 +
}
 +
 +
if (material.displacementMap) {
 +
uniforms.displacementMap.value = material.displacementMap;
 +
uniforms.displacementScale.value = material.displacementScale;
 +
uniforms.displacementBias.value = material.displacementBias;
 +
}
 +
}
 +
 +
function refreshUniformsStandard(uniforms, material) {
 +
uniforms.roughness.value = material.roughness;
 +
uniforms.metalness.value = material.metalness;
 +
 +
if (material.roughnessMap) {
 +
uniforms.roughnessMap.value = material.roughnessMap;
 +
}
 +
 +
if (material.metalnessMap) {
 +
uniforms.metalnessMap.value = material.metalnessMap;
 +
}
 +
 +
if (material.emissiveMap) {
 +
uniforms.emissiveMap.value = material.emissiveMap;
 +
}
 +
 +
if (material.bumpMap) {
 +
uniforms.bumpMap.value = material.bumpMap;
 +
uniforms.bumpScale.value = material.bumpScale;
 +
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
 +
}
 +
 +
if (material.normalMap) {
 +
uniforms.normalMap.value = material.normalMap;
 +
uniforms.normalScale.value.copy(material.normalScale);
 +
if (material.side === BackSide) uniforms.normalScale.value.negate();
 +
}
 +
 +
if (material.displacementMap) {
 +
uniforms.displacementMap.value = material.displacementMap;
 +
uniforms.displacementScale.value = material.displacementScale;
 +
uniforms.displacementBias.value = material.displacementBias;
 +
}
 +
 +
const envMap = properties.get(material).envMap;
 +
 +
if (envMap) {
 +
//uniforms.envMap.value = material.envMap; // part of uniforms common
 +
uniforms.envMapIntensity.value = material.envMapIntensity;
 +
}
 +
}
 +
 +
function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) {
 +
refreshUniformsStandard(uniforms, material);
 +
uniforms.reflectivity.value = material.reflectivity; // also part of uniforms common
 +
 +
uniforms.clearcoat.value = material.clearcoat;
 +
uniforms.clearcoatRoughness.value = material.clearcoatRoughness;
 +
if (material.sheen) uniforms.sheen.value.copy(material.sheen);
 +
 +
if (material.clearcoatMap) {
 +
uniforms.clearcoatMap.value = material.clearcoatMap;
 +
}
 +
 +
if (material.clearcoatRoughnessMap) {
 +
uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;
 +
}
 +
 +
if (material.clearcoatNormalMap) {
 +
uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale);
 +
uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;
 +
 +
if (material.side === BackSide) {
 +
uniforms.clearcoatNormalScale.value.negate();
 +
}
 +
}
 +
 +
uniforms.transmission.value = material.transmission;
 +
 +
if (material.transmissionMap) {
 +
uniforms.transmissionMap.value = material.transmissionMap;
 +
}
 +
 +
if (material.transmission > 0.0) {
 +
uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture;
 +
uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height);
 +
}
 +
 +
uniforms.thickness.value = material.thickness;
 +
 +
if (material.thicknessMap) {
 +
uniforms.thicknessMap.value = material.thicknessMap;
 +
}
 +
 +
uniforms.attenuationDistance.value = material.attenuationDistance;
 +
uniforms.attenuationColor.value.copy(material.attenuationColor);
 +
}
 +
 +
function refreshUniformsMatcap(uniforms, material) {
 +
if (material.matcap) {
 +
uniforms.matcap.value = material.matcap;
 +
}
 +
 +
if (material.bumpMap) {
 +
uniforms.bumpMap.value = material.bumpMap;
 +
uniforms.bumpScale.value = material.bumpScale;
 +
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
 +
}
 +
 +
if (material.normalMap) {
 +
uniforms.normalMap.value = material.normalMap;
 +
uniforms.normalScale.value.copy(material.normalScale);
 +
if (material.side === BackSide) uniforms.normalScale.value.negate();
 +
}
 +
 +
if (material.displacementMap) {
 +
uniforms.displacementMap.value = material.displacementMap;
 +
uniforms.displacementScale.value = material.displacementScale;
 +
uniforms.displacementBias.value = material.displacementBias;
 +
}
 +
}
 +
 +
function refreshUniformsDepth(uniforms, material) {
 +
if (material.displacementMap) {
 +
uniforms.displacementMap.value = material.displacementMap;
 +
uniforms.displacementScale.value = material.displacementScale;
 +
uniforms.displacementBias.value = material.displacementBias;
 +
}
 +
}
 +
 +
function refreshUniformsDistance(uniforms, material) {
 +
if (material.displacementMap) {
 +
uniforms.displacementMap.value = material.displacementMap;
 +
uniforms.displacementScale.value = material.displacementScale;
 +
uniforms.displacementBias.value = material.displacementBias;
 +
}
 +
 +
uniforms.referencePosition.value.copy(material.referencePosition);
 +
uniforms.nearDistance.value = material.nearDistance;
 +
uniforms.farDistance.value = material.farDistance;
 +
}
 +
 +
function refreshUniformsNormal(uniforms, material) {
 +
if (material.bumpMap) {
 +
uniforms.bumpMap.value = material.bumpMap;
 +
uniforms.bumpScale.value = material.bumpScale;
 +
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
 +
}
 +
 +
if (material.normalMap) {
 +
uniforms.normalMap.value = material.normalMap;
 +
uniforms.normalScale.value.copy(material.normalScale);
 +
if (material.side === BackSide) uniforms.normalScale.value.negate();
 +
}
 +
 +
if (material.displacementMap) {
 +
uniforms.displacementMap.value = material.displacementMap;
 +
uniforms.displacementScale.value = material.displacementScale;
 +
uniforms.displacementBias.value = material.displacementBias;
 +
}
 +
}
 +
 +
return {
 +
refreshFogUniforms: refreshFogUniforms,
 +
refreshMaterialUniforms: refreshMaterialUniforms
 +
};
 +
}
 +
 +
function createCanvasElement() {
 +
const canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
 +
canvas.style.display = 'block';
 +
return canvas;
 +
}
 +
 +
function WebGLRenderer(parameters = {}) {
 +
const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(),
 +
_context = parameters.context !== undefined ? parameters.context : null,
 +
_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
 +
_depth = parameters.depth !== undefined ? parameters.depth : true,
 +
_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
 +
_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
 +
_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
 +
_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
 +
_powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',
 +
_failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;
 +
 +
let currentRenderList = null;
 +
let currentRenderState = null; // render() can be called from within a callback triggered by another render.
 +
// We track this so that the nested render call gets its list and state isolated from the parent render call.
 +
 +
const renderListStack = [];
 +
const renderStateStack = []; // public properties
 +
 +
this.domElement = _canvas; // Debug configuration container
 +
 +
this.debug = {
 +
/**
 +
* Enables error checking and reporting when shader programs are being compiled
 +
* @type {boolean}
 +
*/
 +
checkShaderErrors: true
 +
}; // clearing
 +
 +
this.autoClear = true;
 +
this.autoClearColor = true;
 +
this.autoClearDepth = true;
 +
this.autoClearStencil = true; // scene graph
 +
 +
this.sortObjects = true; // user-defined clipping
 +
 +
this.clippingPlanes = [];
 +
this.localClippingEnabled = false; // physically based shading
 +
 +
this.gammaFactor = 2.0; // for backwards compatibility
 +
 +
this.outputEncoding = LinearEncoding; // physical lights
 +
 +
this.physicallyCorrectLights = false; // tone mapping
 +
 +
this.toneMapping = NoToneMapping;
 +
this.toneMappingExposure = 1.0; // internal properties
 +
 +
const _this = this;
 +
 +
let _isContextLost = false; // internal state cache
 +
 +
let _currentActiveCubeFace = 0;
 +
let _currentActiveMipmapLevel = 0;
 +
let _currentRenderTarget = null;
 +
 +
let _currentMaterialId = -1;
 +
 +
let _currentCamera = null;
 +
 +
const _currentViewport = new Vector4();
 +
 +
const _currentScissor = new Vector4();
 +
 +
let _currentScissorTest = null; //
 +
 +
let _width = _canvas.width;
 +
let _height = _canvas.height;
 +
let _pixelRatio = 1;
 +
let _opaqueSort = null;
 +
let _transparentSort = null;
 +
 +
const _viewport = new Vector4(0, 0, _width, _height);
 +
 +
const _scissor = new Vector4(0, 0, _width, _height);
 +
 +
let _scissorTest = false; //
 +
 +
const _currentDrawBuffers = []; // frustum
 +
 +
const _frustum = new Frustum(); // clipping
 +
 +
 +
let _clippingEnabled = false;
 +
let _localClippingEnabled = false; // transmission
 +
 +
let _transmissionRenderTarget = null; // camera matrices cache
 +
 +
const _projScreenMatrix = new Matrix4();
 +
 +
const _vector3 = new Vector3();
 +
 +
const _emptyScene = {
 +
background: null,
 +
fog: null,
 +
environment: null,
 +
overrideMaterial: null,
 +
isScene: true
 +
};
 +
 +
function getTargetPixelRatio() {
 +
return _currentRenderTarget === null ? _pixelRatio : 1;
 +
} // initialize
 +
 +
 +
let _gl = _context;
 +
 +
function getContext(contextNames, contextAttributes) {
 +
for (let i = 0; i < contextNames.length; i++) {
 +
const contextName = contextNames[i];
 +
 +
const context = _canvas.getContext(contextName, contextAttributes);
 +
 +
if (context !== null) return context;
 +
}
 +
 +
return null;
 +
}
 +
 +
try {
 +
const contextAttributes = {
 +
alpha: _alpha,
 +
depth: _depth,
 +
stencil: _stencil,
 +
antialias: _antialias,
 +
premultipliedAlpha: _premultipliedAlpha,
 +
preserveDrawingBuffer: _preserveDrawingBuffer,
 +
powerPreference: _powerPreference,
 +
failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat
 +
}; // event listeners must be registered before WebGL context is created, see #12753
 +
 +
_canvas.addEventListener('webglcontextlost', onContextLost, false);
 +
 +
_canvas.addEventListener('webglcontextrestored', onContextRestore, false);
 +
 +
if (_gl === null) {
 +
const contextNames = ['webgl2', 'webgl', 'experimental-webgl'];
 +
 +
if (_this.isWebGL1Renderer === true) {
 +
contextNames.shift();
 +
}
 +
 +
_gl = getContext(contextNames, contextAttributes);
 +
 +
if (_gl === null) {
 +
if (getContext(contextNames)) {
 +
throw new Error('Error creating WebGL context with your selected attributes.');
 +
} else {
 +
throw new Error('Error creating WebGL context.');
 +
}
 +
}
 +
} // Some experimental-webgl implementations do not have getShaderPrecisionFormat
 +
 +
 +
if (_gl.getShaderPrecisionFormat === undefined) {
 +
_gl.getShaderPrecisionFormat = function () {
 +
return {
 +
'rangeMin': 1,
 +
'rangeMax': 1,
 +
'precision': 1
 +
};
 +
};
 +
}
 +
} catch (error) {
 +
console.error('THREE.WebGLRenderer: ' + error.message);
 +
throw error;
 +
}
 +
 +
let extensions, capabilities, state, info;
 +
let properties, textures, cubemaps, attributes, geometries, objects;
 +
let programCache, materials, renderLists, renderStates, clipping, shadowMap;
 +
let background, morphtargets, bufferRenderer, indexedBufferRenderer;
 +
let utils, bindingStates;
 +
 +
function initGLContext() {
 +
extensions = new WebGLExtensions(_gl);
 +
capabilities = new WebGLCapabilities(_gl, extensions, parameters);
 +
extensions.init(capabilities);
 +
utils = new WebGLUtils(_gl, extensions, capabilities);
 +
state = new WebGLState(_gl, extensions, capabilities);
 +
_currentDrawBuffers[0] = _gl.BACK;
 +
info = new WebGLInfo(_gl);
 +
properties = new WebGLProperties();
 +
textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info);
 +
cubemaps = new WebGLCubeMaps(_this);
 +
attributes = new WebGLAttributes(_gl, capabilities);
 +
bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities);
 +
geometries = new WebGLGeometries(_gl, attributes, info, bindingStates);
 +
objects = new WebGLObjects(_gl, geometries, attributes, info);
 +
morphtargets = new WebGLMorphtargets(_gl);
 +
clipping = new WebGLClipping(properties);
 +
programCache = new WebGLPrograms(_this, cubemaps, extensions, capabilities, bindingStates, clipping);
 +
materials = new WebGLMaterials(properties);
 +
renderLists = new WebGLRenderLists(properties);
 +
renderStates = new WebGLRenderStates(extensions, capabilities);
 +
background = new WebGLBackground(_this, cubemaps, state, objects, _premultipliedAlpha);
 +
shadowMap = new WebGLShadowMap(_this, objects, capabilities);
 +
bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities);
 +
indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities);
 +
info.programs = programCache.programs;
 +
_this.capabilities = capabilities;
 +
_this.extensions = extensions;
 +
_this.properties = properties;
 +
_this.renderLists = renderLists;
 +
_this.shadowMap = shadowMap;
 +
_this.state = state;
 +
_this.info = info;
 +
}
 +
 +
initGLContext(); // xr
 +
 +
const xr = new WebXRManager(_this, _gl);
 +
this.xr = xr; // API
 +
 +
this.getContext = function () {
 +
return _gl;
 +
};
 +
 +
this.getContextAttributes = function () {
 +
return _gl.getContextAttributes();
 +
};
 +
 +
this.forceContextLoss = function () {
 +
const extension = extensions.get('WEBGL_lose_context');
 +
if (extension) extension.loseContext();
 +
};
 +
 +
this.forceContextRestore = function () {
 +
const extension = extensions.get('WEBGL_lose_context');
 +
if (extension) extension.restoreContext();
 +
};
 +
 +
this.getPixelRatio = function () {
 +
return _pixelRatio;
 +
};
 +
 +
this.setPixelRatio = function (value) {
 +
if (value === undefined) return;
 +
_pixelRatio = value;
 +
this.setSize(_width, _height, false);
 +
};
 +
 +
this.getSize = function (target) {
 +
return target.set(_width, _height);
 +
};
 +
 +
this.setSize = function (width, height, updateStyle) {
 +
if (xr.isPresenting) {
 +
console.warn('THREE.WebGLRenderer: Can\'t change size while VR device is presenting.');
 +
return;
 +
}
 +
 +
_width = width;
 +
_height = height;
 +
_canvas.width = Math.floor(width * _pixelRatio);
 +
_canvas.height = Math.floor(height * _pixelRatio);
 +
 +
if (updateStyle !== false) {
 +
_canvas.style.width = width + 'px';
 +
_canvas.style.height = height + 'px';
 +
}
 +
 +
this.setViewport(0, 0, width, height);
 +
};
 +
 +
this.getDrawingBufferSize = function (target) {
 +
return target.set(_width * _pixelRatio, _height * _pixelRatio).floor();
 +
};
 +
 +
this.setDrawingBufferSize = function (width, height, pixelRatio) {
 +
_width = width;
 +
_height = height;
 +
_pixelRatio = pixelRatio;
 +
_canvas.width = Math.floor(width * pixelRatio);
 +
_canvas.height = Math.floor(height * pixelRatio);
 +
this.setViewport(0, 0, width, height);
 +
};
 +
 +
this.getCurrentViewport = function (target) {
 +
return target.copy(_currentViewport);
 +
};
 +
 +
this.getViewport = function (target) {
 +
return target.copy(_viewport);
 +
};
 +
 +
this.setViewport = function (x, y, width, height) {
 +
if (x.isVector4) {
 +
_viewport.set(x.x, x.y, x.z, x.w);
 +
} else {
 +
_viewport.set(x, y, width, height);
 +
}
 +
 +
state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor());
 +
};
 +
 +
this.getScissor = function (target) {
 +
return target.copy(_scissor);
 +
};
 +
 +
this.setScissor = function (x, y, width, height) {
 +
if (x.isVector4) {
 +
_scissor.set(x.x, x.y, x.z, x.w);
 +
} else {
 +
_scissor.set(x, y, width, height);
 +
}
 +
 +
state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor());
 +
};
 +
 +
this.getScissorTest = function () {
 +
return _scissorTest;
 +
};
 +
 +
this.setScissorTest = function (boolean) {
 +
state.setScissorTest(_scissorTest = boolean);
 +
};
 +
 +
this.setOpaqueSort = function (method) {
 +
_opaqueSort = method;
 +
};
 +
 +
this.setTransparentSort = function (method) {
 +
_transparentSort = method;
 +
}; // Clearing
 +
 +
 +
this.getClearColor = function (target) {
 +
return target.copy(background.getClearColor());
 +
};
 +
 +
this.setClearColor = function () {
 +
background.setClearColor.apply(background, arguments);
 +
};
 +
 +
this.getClearAlpha = function () {
 +
return background.getClearAlpha();
 +
};
 +
 +
this.setClearAlpha = function () {
 +
background.setClearAlpha.apply(background, arguments);
 +
};
 +
 +
this.clear = function (color, depth, stencil) {
 +
let bits = 0;
 +
if (color === undefined || color) bits |= _gl.COLOR_BUFFER_BIT;
 +
if (depth === undefined || depth) bits |= _gl.DEPTH_BUFFER_BIT;
 +
if (stencil === undefined || stencil) bits |= _gl.STENCIL_BUFFER_BIT;
 +
 +
_gl.clear(bits);
 +
};
 +
 +
this.clearColor = function () {
 +
this.clear(true, false, false);
 +
};
 +
 +
this.clearDepth = function () {
 +
this.clear(false, true, false);
 +
};
 +
 +
this.clearStencil = function () {
 +
this.clear(false, false, true);
 +
}; //
 +
 +
 +
this.dispose = function () {
 +
_canvas.removeEventListener('webglcontextlost', onContextLost, false);
 +
 +
_canvas.removeEventListener('webglcontextrestored', onContextRestore, false);
 +
 +
renderLists.dispose();
 +
renderStates.dispose();
 +
properties.dispose();
 +
cubemaps.dispose();
 +
objects.dispose();
 +
bindingStates.dispose();
 +
xr.dispose();
 +
xr.removeEventListener('sessionstart', onXRSessionStart);
 +
xr.removeEventListener('sessionend', onXRSessionEnd);
 +
 +
if (_transmissionRenderTarget) {
 +
_transmissionRenderTarget.dispose();
 +
 +
_transmissionRenderTarget = null;
 +
}
 +
 +
animation.stop();
 +
}; // Events
 +
 +
 +
function onContextLost(event) {
 +
event.preventDefault();
 +
console.log('THREE.WebGLRenderer: Context Lost.');
 +
_isContextLost = true;
 +
}
 +
 +
function onContextRestore()
 +
/* event */
 +
{
 +
console.log('THREE.WebGLRenderer: Context Restored.');
 +
_isContextLost = false;
 +
const infoAutoReset = info.autoReset;
 +
const shadowMapEnabled = shadowMap.enabled;
 +
const shadowMapAutoUpdate = shadowMap.autoUpdate;
 +
const shadowMapNeedsUpdate = shadowMap.needsUpdate;
 +
const shadowMapType = shadowMap.type;
 +
initGLContext();
 +
info.autoReset = infoAutoReset;
 +
shadowMap.enabled = shadowMapEnabled;
 +
shadowMap.autoUpdate = shadowMapAutoUpdate;
 +
shadowMap.needsUpdate = shadowMapNeedsUpdate;
 +
shadowMap.type = shadowMapType;
 +
}
 +
 +
function onMaterialDispose(event) {
 +
const material = event.target;
 +
material.removeEventListener('dispose', onMaterialDispose);
 +
deallocateMaterial(material);
 +
} // Buffer deallocation
 +
 +
 +
function deallocateMaterial(material) {
 +
releaseMaterialProgramReferences(material);
 +
properties.remove(material);
 +
}
 +
 +
function releaseMaterialProgramReferences(material) {
 +
const programs = properties.get(material).programs;
 +
 +
if (programs !== undefined) {
 +
programs.forEach(function (program) {
 +
programCache.releaseProgram(program);
 +
});
 +
}
 +
} // Buffer rendering
 +
 +
 +
function renderObjectImmediate(object, program) {
 +
object.render(function (object) {
 +
_this.renderBufferImmediate(object, program);
 +
});
 +
}
 +
 +
this.renderBufferImmediate = function (object, program) {
 +
bindingStates.initAttributes();
 +
const buffers = properties.get(object);
 +
if (object.hasPositions && !buffers.position) buffers.position = _gl.createBuffer();
 +
if (object.hasNormals && !buffers.normal) buffers.normal = _gl.createBuffer();
 +
if (object.hasUvs && !buffers.uv) buffers.uv = _gl.createBuffer();
 +
if (object.hasColors && !buffers.color) buffers.color = _gl.createBuffer();
 +
const programAttributes = program.getAttributes();
 +
 +
if (object.hasPositions) {
 +
_gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.position);
 +
 +
_gl.bufferData(_gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW);
 +
 +
bindingStates.enableAttribute(programAttributes.position);
 +
 +
_gl.vertexAttribPointer(programAttributes.position, 3, _gl.FLOAT, false, 0, 0);
 +
}
 +
 +
if (object.hasNormals) {
 +
_gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.normal);
 +
 +
_gl.bufferData(_gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW);
 +
 +
bindingStates.enableAttribute(programAttributes.normal);
 +
 +
_gl.vertexAttribPointer(programAttributes.normal, 3, _gl.FLOAT, false, 0, 0);
 +
}
 +
 +
if (object.hasUvs) {
 +
_gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.uv);
 +
 +
_gl.bufferData(_gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW);
 +
 +
bindingStates.enableAttribute(programAttributes.uv);
 +
 +
_gl.vertexAttribPointer(programAttributes.uv, 2, _gl.FLOAT, false, 0, 0);
 +
}
 +
 +
if (object.hasColors) {
 +
_gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.color);
 +
 +
_gl.bufferData(_gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW);
 +
 +
bindingStates.enableAttribute(programAttributes.color);
 +
 +
_gl.vertexAttribPointer(programAttributes.color, 3, _gl.FLOAT, false, 0, 0);
 +
}
 +
 +
bindingStates.disableUnusedAttributes();
 +
 +
_gl.drawArrays(_gl.TRIANGLES, 0, object.count);
 +
 +
object.count = 0;
 +
};
 +
 +
this.renderBufferDirect = function (camera, scene, geometry, material, object, group) {
 +
if (scene === null) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null)
 +
 +
const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0;
 +
const program = setProgram(camera, scene, material, object);
 +
state.setMaterial(material, frontFaceCW); //
 +
 +
let index = geometry.index;
 +
const position = geometry.attributes.position; //
 +
 +
if (index === null) {
 +
if (position === undefined || position.count === 0) return;
 +
} else if (index.count === 0) {
 +
return;
 +
} //
 +
 +
 +
let rangeFactor = 1;
 +
 +
if (material.wireframe === true) {
 +
index = geometries.getWireframeAttribute(geometry);
 +
rangeFactor = 2;
 +
}
 +
 +
if (material.morphTargets || material.morphNormals) {
 +
morphtargets.update(object, geometry, material, program);
 +
}
 +
 +
bindingStates.setup(object, material, program, geometry, index);
 +
let attribute;
 +
let renderer = bufferRenderer;
 +
 +
if (index !== null) {
 +
attribute = attributes.get(index);
 +
renderer = indexedBufferRenderer;
 +
renderer.setIndex(attribute);
 +
} //
 +
 +
 +
const dataCount = index !== null ? index.count : position.count;
 +
const rangeStart = geometry.drawRange.start * rangeFactor;
 +
const rangeCount = geometry.drawRange.count * rangeFactor;
 +
const groupStart = group !== null ? group.start * rangeFactor : 0;
 +
const groupCount = group !== null ? group.count * rangeFactor : Infinity;
 +
const drawStart = Math.max(rangeStart, groupStart);
 +
const drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1;
 +
const drawCount = Math.max(0, drawEnd - drawStart + 1);
 +
if (drawCount === 0) return; //
 +
 +
if (object.isMesh) {
 +
if (material.wireframe === true) {
 +
state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio());
 +
renderer.setMode(_gl.LINES);
 +
} else {
 +
renderer.setMode(_gl.TRIANGLES);
 +
}
 +
} else if (object.isLine) {
 +
let lineWidth = material.linewidth;
 +
if (lineWidth === undefined) lineWidth = 1; // Not using Line*Material
 +
 +
state.setLineWidth(lineWidth * getTargetPixelRatio());
 +
 +
if (object.isLineSegments) {
 +
renderer.setMode(_gl.LINES);
 +
} else if (object.isLineLoop) {
 +
renderer.setMode(_gl.LINE_LOOP);
 +
} else {
 +
renderer.setMode(_gl.LINE_STRIP);
 +
}
 +
} else if (object.isPoints) {
 +
renderer.setMode(_gl.POINTS);
 +
} else if (object.isSprite) {
 +
renderer.setMode(_gl.TRIANGLES);
 +
}
 +
 +
if (object.isInstancedMesh) {
 +
renderer.renderInstances(drawStart, drawCount, object.count);
 +
} else if (geometry.isInstancedBufferGeometry) {
 +
const instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount);
 +
renderer.renderInstances(drawStart, drawCount, instanceCount);
 +
} else {
 +
renderer.render(drawStart, drawCount);
 +
}
 +
}; // Compile
 +
 +
 +
this.compile = function (scene, camera) {
 +
currentRenderState = renderStates.get(scene);
 +
currentRenderState.init();
 +
scene.traverseVisible(function (object) {
 +
if (object.isLight && object.layers.test(camera.layers)) {
 +
currentRenderState.pushLight(object);
 +
 +
if (object.castShadow) {
 +
currentRenderState.pushShadow(object);
 +
}
 +
}
 +
});
 +
currentRenderState.setupLights();
 +
scene.traverse(function (object) {
 +
const material = object.material;
 +
 +
if (material) {
 +
if (Array.isArray(material)) {
 +
for (let i = 0; i < material.length; i++) {
 +
const material2 = material[i];
 +
getProgram(material2, scene, object);
 +
}
 +
} else {
 +
getProgram(material, scene, object);
 +
}
 +
}
 +
});
 +
}; // Animation Loop
 +
 +
 +
let onAnimationFrameCallback = null;
 +
 +
function onAnimationFrame(time) {
 +
if (onAnimationFrameCallback) onAnimationFrameCallback(time);
 +
}
 +
 +
function onXRSessionStart() {
 +
animation.stop();
 +
}
 +
 +
function onXRSessionEnd() {
 +
animation.start();
 +
}
 +
 +
const animation = new WebGLAnimation();
 +
animation.setAnimationLoop(onAnimationFrame);
 +
if (typeof window !== 'undefined') animation.setContext(window);
 +
 +
this.setAnimationLoop = function (callback) {
 +
onAnimationFrameCallback = callback;
 +
xr.setAnimationLoop(callback);
 +
callback === null ? animation.stop() : animation.start();
 +
};
 +
 +
xr.addEventListener('sessionstart', onXRSessionStart);
 +
xr.addEventListener('sessionend', onXRSessionEnd); // Rendering
 +
 +
this.render = function (scene, camera) {
 +
if (camera !== undefined && camera.isCamera !== true) {
 +
console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.');
 +
return;
 +
}
 +
 +
if (_isContextLost === true) return; // update scene graph
 +
 +
if (scene.autoUpdate === true) scene.updateMatrixWorld(); // update camera matrices and frustum
 +
 +
if (camera.parent === null) camera.updateMatrixWorld();
 +
 +
if (xr.enabled === true && xr.isPresenting === true) {
 +
if (xr.cameraAutoUpdate === true) xr.updateCamera(camera);
 +
camera = xr.getCamera(); // use XR camera for rendering
 +
} //
 +
 +
 +
if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget);
 +
currentRenderState = renderStates.get(scene, renderStateStack.length);
 +
currentRenderState.init();
 +
renderStateStack.push(currentRenderState);
 +
 +
_projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
 +
 +
_frustum.setFromProjectionMatrix(_projScreenMatrix);
 +
 +
_localClippingEnabled = this.localClippingEnabled;
 +
_clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera);
 +
currentRenderList = renderLists.get(scene, renderListStack.length);
 +
currentRenderList.init();
 +
renderListStack.push(currentRenderList);
 +
projectObject(scene, camera, 0, _this.sortObjects);
 +
currentRenderList.finish();
 +
 +
if (_this.sortObjects === true) {
 +
currentRenderList.sort(_opaqueSort, _transparentSort);
 +
} //
 +
 +
 +
if (_clippingEnabled === true) clipping.beginShadows();
 +
const shadowsArray = currentRenderState.state.shadowsArray;
 +
shadowMap.render(shadowsArray, scene, camera);
 +
currentRenderState.setupLights();
 +
currentRenderState.setupLightsView(camera);
 +
if (_clippingEnabled === true) clipping.endShadows(); //
 +
 +
if (this.info.autoReset === true) this.info.reset(); //
 +
 +
background.render(currentRenderList, scene); // render scene
 +
 +
const opaqueObjects = currentRenderList.opaque;
 +
const transmissiveObjects = currentRenderList.transmissive;
 +
const transparentObjects = currentRenderList.transparent;
 +
if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera);
 +
if (transmissiveObjects.length > 0) renderTransmissiveObjects(opaqueObjects, transmissiveObjects, scene, camera);
 +
if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera); //
 +
 +
if (_currentRenderTarget !== null) {
 +
// resolve multisample renderbuffers to a single-sample texture if necessary
 +
textures.updateMultisampleRenderTarget(_currentRenderTarget); // Generate mipmap if we're using any kind of mipmap filtering
 +
 +
textures.updateRenderTargetMipmap(_currentRenderTarget);
 +
} //
 +
 +
 +
if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); // Ensure depth buffer writing is enabled so it can be cleared on next render
 +
 +
state.buffers.depth.setTest(true);
 +
state.buffers.depth.setMask(true);
 +
state.buffers.color.setMask(true);
 +
state.setPolygonOffset(false); // _gl.finish();
 +
 +
bindingStates.resetDefaultState();
 +
_currentMaterialId = -1;
 +
_currentCamera = null;
 +
renderStateStack.pop();
 +
 +
if (renderStateStack.length > 0) {
 +
currentRenderState = renderStateStack[renderStateStack.length - 1];
 +
} else {
 +
currentRenderState = null;
 +
}
 +
 +
renderListStack.pop();
 +
 +
if (renderListStack.length > 0) {
 +
currentRenderList = renderListStack[renderListStack.length - 1];
 +
} else {
 +
currentRenderList = null;
 +
}
 +
};
 +
 +
function projectObject(object, camera, groupOrder, sortObjects) {
 +
if (object.visible === false) return;
 +
const visible = object.layers.test(camera.layers);
 +
 +
if (visible) {
 +
if (object.isGroup) {
 +
groupOrder = object.renderOrder;
 +
} else if (object.isLOD) {
 +
if (object.autoUpdate === true) object.update(camera);
 +
} else if (object.isLight) {
 +
currentRenderState.pushLight(object);
 +
 +
if (object.castShadow) {
 +
currentRenderState.pushShadow(object);
 +
}
 +
} else if (object.isSprite) {
 +
if (!object.frustumCulled || _frustum.intersectsSprite(object)) {
 +
if (sortObjects) {
 +
_vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
 +
}
 +
 +
const geometry = objects.update(object);
 +
const material = object.material;
 +
 +
if (material.visible) {
 +
currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
 +
}
 +
}
 +
} else if (object.isImmediateRenderObject) {
 +
if (sortObjects) {
 +
_vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
 +
}
 +
 +
currentRenderList.push(object, null, object.material, groupOrder, _vector3.z, null);
 +
} else if (object.isMesh || object.isLine || object.isPoints) {
 +
if (object.isSkinnedMesh) {
 +
// update skeleton only once in a frame
 +
if (object.skeleton.frame !== info.render.frame) {
 +
object.skeleton.update();
 +
object.skeleton.frame = info.render.frame;
 +
}
 +
}
 +
 +
if (!object.frustumCulled || _frustum.intersectsObject(object)) {
 +
if (sortObjects) {
 +
_vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
 +
}
 +
 +
const geometry = objects.update(object);
 +
const material = object.material;
 +
 +
if (Array.isArray(material)) {
 +
const groups = geometry.groups;
 +
 +
for (let i = 0, l = groups.length; i < l; i++) {
 +
const group = groups[i];
 +
const groupMaterial = material[group.materialIndex];
 +
 +
if (groupMaterial && groupMaterial.visible) {
 +
currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector3.z, group);
 +
}
 +
}
 +
} else if (material.visible) {
 +
currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
 +
}
 +
}
 +
}
 +
}
 +
 +
const children = object.children;
 +
 +
for (let i = 0, l = children.length; i < l; i++) {
 +
projectObject(children[i], camera, groupOrder, sortObjects);
 +
}
 +
}
 +
 +
function renderTransmissiveObjects(opaqueObjects, transmissiveObjects, scene, camera) {
 +
if (_transmissionRenderTarget === null) {
 +
const needsAntialias = _antialias === true && capabilities.isWebGL2 === true;
 +
const renderTargetType = needsAntialias ? WebGLMultisampleRenderTarget : WebGLRenderTarget;
 +
_transmissionRenderTarget = new renderTargetType(1024, 1024, {
 +
generateMipmaps: true,
 +
type: utils.convert(HalfFloatType) !== null ? HalfFloatType : UnsignedByteType,
 +
minFilter: LinearMipmapLinearFilter,
 +
magFilter: NearestFilter,
 +
wrapS: ClampToEdgeWrapping,
 +
wrapT: ClampToEdgeWrapping
 +
});
 +
}
 +
 +
const currentRenderTarget = _this.getRenderTarget();
 +
 +
_this.setRenderTarget(_transmissionRenderTarget);
 +
 +
_this.clear(); // Turn off the features which can affect the frag color for opaque objects pass.
 +
// Otherwise they are applied twice in opaque objects pass and transmission objects pass.
 +
 +
 +
const currentToneMapping = _this.toneMapping;
 +
_this.toneMapping = NoToneMapping;
 +
renderObjects(opaqueObjects, scene, camera);
 +
_this.toneMapping = currentToneMapping;
 +
textures.updateMultisampleRenderTarget(_transmissionRenderTarget);
 +
textures.updateRenderTargetMipmap(_transmissionRenderTarget);
 +
 +
_this.setRenderTarget(currentRenderTarget);
 +
 +
renderObjects(transmissiveObjects, scene, camera);
 +
}
 +
 +
function renderObjects(renderList, scene, camera) {
 +
const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
 +
 +
for (let i = 0, l = renderList.length; i < l; i++) {
 +
const renderItem = renderList[i];
 +
const object = renderItem.object;
 +
const geometry = renderItem.geometry;
 +
const material = overrideMaterial === null ? renderItem.material : overrideMaterial;
 +
const group = renderItem.group;
 +
 +
if (camera.isArrayCamera) {
 +
const cameras = camera.cameras;
 +
 +
for (let j = 0, jl = cameras.length; j < jl; j++) {
 +
const camera2 = cameras[j];
 +
 +
if (object.layers.test(camera2.layers)) {
 +
state.viewport(_currentViewport.copy(camera2.viewport));
 +
currentRenderState.setupLightsView(camera2);
 +
renderObject(object, scene, camera2, geometry, material, group);
 +
}
 +
}
 +
} else {
 +
renderObject(object, scene, camera, geometry, material, group);
 +
}
 +
}
 +
}
 +
 +
function renderObject(object, scene, camera, geometry, material, group) {
 +
object.onBeforeRender(_this, scene, camera, geometry, material, group);
 +
object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld);
 +
object.normalMatrix.getNormalMatrix(object.modelViewMatrix);
 +
 +
if (object.isImmediateRenderObject) {
 +
const program = setProgram(camera, scene, material, object);
 +
state.setMaterial(material);
 +
bindingStates.reset();
 +
renderObjectImmediate(object, program);
 +
} else {
 +
if (material.transparent === true && material.side === DoubleSide) {
 +
material.side = BackSide;
 +
material.needsUpdate = true;
 +
 +
_this.renderBufferDirect(camera, scene, geometry, material, object, group);
 +
 +
material.side = FrontSide;
 +
material.needsUpdate = true;
 +
 +
_this.renderBufferDirect(camera, scene, geometry, material, object, group);
 +
 +
material.side = DoubleSide;
 +
} else {
 +
_this.renderBufferDirect(camera, scene, geometry, material, object, group);
 +
}
 +
}
 +
 +
object.onAfterRender(_this, scene, camera, geometry, material, group);
 +
}
 +
 +
function getProgram(material, scene, object) {
 +
if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
 +
 +
const materialProperties = properties.get(material);
 +
const lights = currentRenderState.state.lights;
 +
const shadowsArray = currentRenderState.state.shadowsArray;
 +
const lightsStateVersion = lights.state.version;
 +
const parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object);
 +
const programCacheKey = programCache.getProgramCacheKey(parameters);
 +
let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change
 +
 +
materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
 +
materialProperties.fog = scene.fog;
 +
materialProperties.envMap = cubemaps.get(material.envMap || materialProperties.environment);
 +
 +
if (programs === undefined) {
 +
// new material
 +
material.addEventListener('dispose', onMaterialDispose);
 +
programs = new Map();
 +
materialProperties.programs = programs;
 +
}
 +
 +
let program = programs.get(programCacheKey);
 +
 +
if (program !== undefined) {
 +
// early out if program and light state is identical
 +
if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) {
 +
updateCommonMaterialProperties(material, parameters);
 +
return program;
 +
}
 +
} else {
 +
parameters.uniforms = programCache.getUniforms(material);
 +
material.onBuild(parameters, _this);
 +
material.onBeforeCompile(parameters, _this);
 +
program = programCache.acquireProgram(parameters, programCacheKey);
 +
programs.set(programCacheKey, program);
 +
materialProperties.uniforms = parameters.uniforms;
 +
}
 +
 +
const uniforms = materialProperties.uniforms;
 +
 +
if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) {
 +
uniforms.clippingPlanes = clipping.uniform;
 +
}
 +
 +
updateCommonMaterialProperties(material, parameters); // store the light setup it was created for
 +
 +
materialProperties.needsLights = materialNeedsLights(material);
 +
materialProperties.lightsStateVersion = lightsStateVersion;
 +
 +
if (materialProperties.needsLights) {
 +
// wire up the material to this renderer's lighting state
 +
uniforms.ambientLightColor.value = lights.state.ambient;
 +
uniforms.lightProbe.value = lights.state.probe;
 +
uniforms.directionalLights.value = lights.state.directional;
 +
uniforms.directionalLightShadows.value = lights.state.directionalShadow;
 +
uniforms.spotLights.value = lights.state.spot;
 +
uniforms.spotLightShadows.value = lights.state.spotShadow;
 +
uniforms.rectAreaLights.value = lights.state.rectArea;
 +
uniforms.ltc_1.value = lights.state.rectAreaLTC1;
 +
uniforms.ltc_2.value = lights.state.rectAreaLTC2;
 +
uniforms.pointLights.value = lights.state.point;
 +
uniforms.pointLightShadows.value = lights.state.pointShadow;
 +
uniforms.hemisphereLights.value = lights.state.hemi;
 +
uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
 +
uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
 +
uniforms.spotShadowMap.value = lights.state.spotShadowMap;
 +
uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
 +
uniforms.pointShadowMap.value = lights.state.pointShadowMap;
 +
uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms
 +
}
 +
 +
const progUniforms = program.getUniforms();
 +
const uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms);
 +
materialProperties.currentProgram = program;
 +
materialProperties.uniformsList = uniformsList;
 +
return program;
 +
}
 +
 +
function updateCommonMaterialProperties(material, parameters) {
 +
const materialProperties = properties.get(material);
 +
materialProperties.outputEncoding = parameters.outputEncoding;
 +
materialProperties.instancing = parameters.instancing;
 +
materialProperties.skinning = parameters.skinning;
 +
materialProperties.numClippingPlanes = parameters.numClippingPlanes;
 +
materialProperties.numIntersection = parameters.numClipIntersection;
 +
materialProperties.vertexAlphas = parameters.vertexAlphas;
 +
}
 +
 +
function setProgram(camera, scene, material, object) {
 +
if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
 +
 +
textures.resetTextureUnits();
 +
const fog = scene.fog;
 +
const environment = material.isMeshStandardMaterial ? scene.environment : null;
 +
const encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.texture.encoding;
 +
const envMap = cubemaps.get(material.envMap || environment);
 +
const vertexAlphas = material.vertexColors === true && object.geometry && object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4;
 +
const materialProperties = properties.get(material);
 +
const lights = currentRenderState.state.lights;
 +
 +
if (_clippingEnabled === true) {
 +
if (_localClippingEnabled === true || camera !== _currentCamera) {
 +
const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup
 +
// object instead of the material, once it becomes feasible
 +
// (#8465, #8379)
 +
 +
clipping.setState(material, camera, useCache);
 +
}
 +
} //
 +
 +
 +
let needsProgramChange = false;
 +
 +
if (material.version === materialProperties.__version) {
 +
if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) {
 +
needsProgramChange = true;
 +
} else if (materialProperties.outputEncoding !== encoding) {
 +
needsProgramChange = true;
 +
} else if (object.isInstancedMesh && materialProperties.instancing === false) {
 +
needsProgramChange = true;
 +
} else if (!object.isInstancedMesh && materialProperties.instancing === true) {
 +
needsProgramChange = true;
 +
} else if (object.isSkinnedMesh && materialProperties.skinning === false) {
 +
needsProgramChange = true;
 +
} else if (!object.isSkinnedMesh && materialProperties.skinning === true) {
 +
needsProgramChange = true;
 +
} else if (materialProperties.envMap !== envMap) {
 +
needsProgramChange = true;
 +
} else if (material.fog && materialProperties.fog !== fog) {
 +
needsProgramChange = true;
 +
} else if (materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) {
 +
needsProgramChange = true;
 +
} else if (materialProperties.vertexAlphas !== vertexAlphas) {
 +
needsProgramChange = true;
 +
}
 +
} else {
 +
needsProgramChange = true;
 +
materialProperties.__version = material.version;
 +
} //
 +
 +
 +
let program = materialProperties.currentProgram;
 +
 +
if (needsProgramChange === true) {
 +
program = getProgram(material, scene, object);
 +
}
 +
 +
let refreshProgram = false;
 +
let refreshMaterial = false;
 +
let refreshLights = false;
 +
const p_uniforms = program.getUniforms(),
 +
m_uniforms = materialProperties.uniforms;
 +
 +
if (state.useProgram(program.program)) {
 +
refreshProgram = true;
 +
refreshMaterial = true;
 +
refreshLights = true;
 +
}
 +
 +
if (material.id !== _currentMaterialId) {
 +
_currentMaterialId = material.id;
 +
refreshMaterial = true;
 +
}
 +
 +
if (refreshProgram || _currentCamera !== camera) {
 +
p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix);
 +
 +
if (capabilities.logarithmicDepthBuffer) {
 +
p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2));
 +
}
 +
 +
if (_currentCamera !== camera) {
 +
_currentCamera = camera; // lighting uniforms depend on the camera so enforce an update
 +
// now, in case this material supports lights - or later, when
 +
// the next material that does gets activated:
 +
 +
refreshMaterial = true; // set to true on material change
 +
 +
refreshLights = true; // remains set until update done
 +
} // load material specific uniforms
 +
// (shader material also gets them for the sake of genericity)
 +
 +
 +
if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) {
 +
const uCamPos = p_uniforms.map.cameraPosition;
 +
 +
if (uCamPos !== undefined) {
 +
uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld));
 +
}
 +
}
 +
 +
if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) {
 +
p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true);
 +
}
 +
 +
if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh) {
 +
p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse);
 +
}
 +
} // skinning uniforms must be set even if material didn't change
 +
// auto-setting of texture unit for bone texture must go before other textures
 +
// otherwise textures used for skinning can take over texture units reserved for other material textures
 +
 +
 +
if (object.isSkinnedMesh) {
 +
p_uniforms.setOptional(_gl, object, 'bindMatrix');
 +
p_uniforms.setOptional(_gl, object, 'bindMatrixInverse');
 +
const skeleton = object.skeleton;
 +
 +
if (skeleton) {
 +
if (capabilities.floatVertexTextures) {
 +
if (skeleton.boneTexture === null) skeleton.computeBoneTexture();
 +
p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures);
 +
p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize);
 +
} else {
 +
p_uniforms.setOptional(_gl, skeleton, 'boneMatrices');
 +
}
 +
}
 +
}
 +
 +
if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) {
 +
materialProperties.receiveShadow = object.receiveShadow;
 +
p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow);
 +
}
 +
 +
if (refreshMaterial) {
 +
p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure);
 +
 +
if (materialProperties.needsLights) {
 +
// the current material requires lighting info
 +
// note: all lighting uniforms are always set correctly
 +
// they simply reference the renderer's state for their
 +
// values
 +
//
 +
// use the current material's .needsUpdate flags to set
 +
// the GL state when required
 +
markUniformsLightsNeedsUpdate(m_uniforms, refreshLights);
 +
} // refresh uniforms common to several materials
 +
 +
 +
if (fog && material.fog) {
 +
materials.refreshFogUniforms(m_uniforms, fog);
 +
}
 +
 +
materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget);
 +
WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
 +
}
 +
 +
if (material.isShaderMaterial && material.uniformsNeedUpdate === true) {
 +
WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
 +
material.uniformsNeedUpdate = false;
 +
}
 +
 +
if (material.isSpriteMaterial) {
 +
p_uniforms.setValue(_gl, 'center', object.center);
 +
} // common matrices
 +
 +
 +
p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix);
 +
p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix);
 +
p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld);
 +
return program;
 +
} // If uniforms are marked as clean, they don't need to be loaded to the GPU.
 +
 +
 +
function markUniformsLightsNeedsUpdate(uniforms, value) {
 +
uniforms.ambientLightColor.needsUpdate = value;
 +
uniforms.lightProbe.needsUpdate = value;
 +
uniforms.directionalLights.needsUpdate = value;
 +
uniforms.directionalLightShadows.needsUpdate = value;
 +
uniforms.pointLights.needsUpdate = value;
 +
uniforms.pointLightShadows.needsUpdate = value;
 +
uniforms.spotLights.needsUpdate = value;
 +
uniforms.spotLightShadows.needsUpdate = value;
 +
uniforms.rectAreaLights.needsUpdate = value;
 +
uniforms.hemisphereLights.needsUpdate = value;
 +
}
 +
 +
function materialNeedsLights(material) {
 +
return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true;
 +
}
 +
 +
this.getActiveCubeFace = function () {
 +
return _currentActiveCubeFace;
 +
};
 +
 +
this.getActiveMipmapLevel = function () {
 +
return _currentActiveMipmapLevel;
 +
};
 +
 +
this.getRenderTarget = function () {
 +
return _currentRenderTarget;
 +
};
 +
 +
this.setRenderTarget = function (renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) {
 +
_currentRenderTarget = renderTarget;
 +
_currentActiveCubeFace = activeCubeFace;
 +
_currentActiveMipmapLevel = activeMipmapLevel;
 +
 +
if (renderTarget && properties.get(renderTarget).__webglFramebuffer === undefined) {
 +
textures.setupRenderTarget(renderTarget);
 +
}
 +
 +
let framebuffer = null;
 +
let isCube = false;
 +
let isRenderTarget3D = false;
 +
 +
if (renderTarget) {
 +
const texture = renderTarget.texture;
 +
 +
if (texture.isDataTexture3D || texture.isDataTexture2DArray) {
 +
isRenderTarget3D = true;
 +
}
 +
 +
const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer;
 +
 +
if (renderTarget.isWebGLCubeRenderTarget) {
 +
framebuffer = __webglFramebuffer[activeCubeFace];
 +
isCube = true;
 +
} else if (renderTarget.isWebGLMultisampleRenderTarget) {
 +
framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer;
 +
} else {
 +
framebuffer = __webglFramebuffer;
 +
}
 +
 +
_currentViewport.copy(renderTarget.viewport);
 +
 +
_currentScissor.copy(renderTarget.scissor);
 +
 +
_currentScissorTest = renderTarget.scissorTest;
 +
} else {
 +
_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor();
 +
 +
_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor();
 +
 +
_currentScissorTest = _scissorTest;
 +
}
 +
 +
const framebufferBound = state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
 +
 +
if (framebufferBound && capabilities.drawBuffers) {
 +
let needsUpdate = false;
 +
 +
if (renderTarget) {
 +
if (renderTarget.isWebGLMultipleRenderTargets) {
 +
const textures = renderTarget.texture;
 +
 +
if (_currentDrawBuffers.length !== textures.length || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {
 +
for (let i = 0, il = textures.length; i < il; i++) {
 +
_currentDrawBuffers[i] = _gl.COLOR_ATTACHMENT0 + i;
 +
}
 +
 +
_currentDrawBuffers.length = textures.length;
 +
needsUpdate = true;
 +
}
 +
} else {
 +
if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {
 +
_currentDrawBuffers[0] = _gl.COLOR_ATTACHMENT0;
 +
_currentDrawBuffers.length = 1;
 +
needsUpdate = true;
 +
}
 +
}
 +
} else {
 +
if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.BACK) {
 +
_currentDrawBuffers[0] = _gl.BACK;
 +
_currentDrawBuffers.length = 1;
 +
needsUpdate = true;
 +
}
 +
}
 +
 +
if (needsUpdate) {
 +
if (capabilities.isWebGL2) {
 +
_gl.drawBuffers(_currentDrawBuffers);
 +
} else {
 +
extensions.get('WEBGL_draw_buffers').drawBuffersWEBGL(_currentDrawBuffers);
 +
}
 +
}
 +
}
 +
 +
state.viewport(_currentViewport);
 +
state.scissor(_currentScissor);
 +
state.setScissorTest(_currentScissorTest);
 +
 +
if (isCube) {
 +
const textureProperties = properties.get(renderTarget.texture);
 +
 +
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel);
 +
} else if (isRenderTarget3D) {
 +
const textureProperties = properties.get(renderTarget.texture);
 +
const layer = activeCubeFace || 0;
 +
 +
_gl.framebufferTextureLayer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer);
 +
}
 +
};
 +
 +
this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) {
 +
if (!(renderTarget && renderTarget.isWebGLRenderTarget)) {
 +
console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.');
 +
return;
 +
}
 +
 +
let framebuffer = properties.get(renderTarget).__webglFramebuffer;
 +
 +
if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) {
 +
framebuffer = framebuffer[activeCubeFaceIndex];
 +
}
 +
 +
if (framebuffer) {
 +
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
 +
 +
try {
 +
const texture = renderTarget.texture;
 +
const textureFormat = texture.format;
 +
const textureType = texture.type;
 +
 +
if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_FORMAT)) {
 +
console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.');
 +
return;
 +
}
 +
 +
const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float'));
 +
 +
if (textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_TYPE) && // Edge and Chrome Mac < 52 (#9513)
 +
!(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox
 +
!halfFloatSupportedByExt) {
 +
console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.');
 +
return;
 +
}
 +
 +
if (_gl.checkFramebufferStatus(_gl.FRAMEBUFFER) === _gl.FRAMEBUFFER_COMPLETE) {
 +
// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
 +
if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) {
 +
_gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer);
 +
}
 +
} else {
 +
console.error('THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.');
 +
}
 +
} finally {
 +
// restore framebuffer of current render target if necessary
 +
const framebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null;
 +
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
 +
}
 +
}
 +
};
 +
 +
this.copyFramebufferToTexture = function (position, texture, level = 0) {
 +
const levelScale = Math.pow(2, -level);
 +
const width = Math.floor(texture.image.width * levelScale);
 +
const height = Math.floor(texture.image.height * levelScale);
 +
let glFormat = utils.convert(texture.format);
 +
 +
if (capabilities.isWebGL2) {
 +
// Workaround for https://bugs.chromium.org/p/chromium/issues/detail?id=1120100
 +
// Not needed in Chrome 93+
 +
if (glFormat === _gl.RGB) glFormat = _gl.RGB8;
 +
if (glFormat === _gl.RGBA) glFormat = _gl.RGBA8;
 +
}
 +
 +
textures.setTexture2D(texture, 0);
 +
 +
_gl.copyTexImage2D(_gl.TEXTURE_2D, level, glFormat, position.x, position.y, width, height, 0);
 +
 +
state.unbindTexture();
 +
};
 +
 +
this.copyTextureToTexture = function (position, srcTexture, dstTexture, level = 0) {
 +
const width = srcTexture.image.width;
 +
const height = srcTexture.image.height;
 +
const glFormat = utils.convert(dstTexture.format);
 +
const glType = utils.convert(dstTexture.type);
 +
textures.setTexture2D(dstTexture, 0); // As another texture upload may have changed pixelStorei
 +
// parameters, make sure they are correct for the dstTexture
 +
 +
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);
 +
 +
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);
 +
 +
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);
 +
 +
if (srcTexture.isDataTexture) {
 +
_gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data);
 +
} else {
 +
if (srcTexture.isCompressedTexture) {
 +
_gl.compressedTexSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data);
 +
} else {
 +
_gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, glFormat, glType, srcTexture.image);
 +
}
 +
} // Generate mipmaps only when copying level 0
 +
 +
 +
if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(_gl.TEXTURE_2D);
 +
state.unbindTexture();
 +
};
 +
 +
this.copyTextureToTexture3D = function (sourceBox, position, srcTexture, dstTexture, level = 0) {
 +
if (_this.isWebGL1Renderer) {
 +
console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.');
 +
return;
 +
}
 +
 +
const width = sourceBox.max.x - sourceBox.min.x + 1;
 +
const height = sourceBox.max.y - sourceBox.min.y + 1;
 +
const depth = sourceBox.max.z - sourceBox.min.z + 1;
 +
const glFormat = utils.convert(dstTexture.format);
 +
const glType = utils.convert(dstTexture.type);
 +
let glTarget;
 +
 +
if (dstTexture.isDataTexture3D) {
 +
textures.setTexture3D(dstTexture, 0);
 +
glTarget = _gl.TEXTURE_3D;
 +
} else if (dstTexture.isDataTexture2DArray) {
 +
textures.setTexture2DArray(dstTexture, 0);
 +
glTarget = _gl.TEXTURE_2D_ARRAY;
 +
} else {
 +
console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.');
 +
return;
 +
}
 +
 +
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);
 +
 +
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);
 +
 +
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);
 +
 +
const unpackRowLen = _gl.getParameter(_gl.UNPACK_ROW_LENGTH);
 +
 +
const unpackImageHeight = _gl.getParameter(_gl.UNPACK_IMAGE_HEIGHT);
 +
 +
const unpackSkipPixels = _gl.getParameter(_gl.UNPACK_SKIP_PIXELS);
 +
 +
const unpackSkipRows = _gl.getParameter(_gl.UNPACK_SKIP_ROWS);
 +
 +
const unpackSkipImages = _gl.getParameter(_gl.UNPACK_SKIP_IMAGES);
 +
 +
const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[0] : srcTexture.image;
 +
 +
_gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, image.width);
 +
 +
_gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, image.height);
 +
 +
_gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, sourceBox.min.x);
 +
 +
_gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, sourceBox.min.y);
 +
 +
_gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, sourceBox.min.z);
 +
 +
if (srcTexture.isDataTexture || srcTexture.isDataTexture3D) {
 +
_gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data);
 +
} else {
 +
if (srcTexture.isCompressedTexture) {
 +
console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.');
 +
 +
_gl.compressedTexSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data);
 +
} else {
 +
_gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image);
 +
}
 +
}
 +
 +
_gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, unpackRowLen);
 +
 +
_gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, unpackImageHeight);
 +
 +
_gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, unpackSkipPixels);
 +
 +
_gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, unpackSkipRows);
 +
 +
_gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, unpackSkipImages); // Generate mipmaps only when copying level 0
 +
 +
 +
if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(glTarget);
 +
state.unbindTexture();
 +
};
 +
 +
this.initTexture = function (texture) {
 +
textures.setTexture2D(texture, 0);
 +
state.unbindTexture();
 +
};
 +
 +
this.resetState = function () {
 +
_currentActiveCubeFace = 0;
 +
_currentActiveMipmapLevel = 0;
 +
_currentRenderTarget = null;
 +
state.reset();
 +
bindingStates.reset();
 +
};
 +
 +
if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
 +
__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
 +
detail: this
 +
})); // eslint-disable-line no-undef
 +
 +
}
 +
}
 +
 +
class WebGL1Renderer extends WebGLRenderer {}
 +
 +
WebGL1Renderer.prototype.isWebGL1Renderer = true;
 +
 +
class FogExp2 {
 +
constructor(color, density = 0.00025) {
 +
this.name = '';
 +
this.color = new Color(color);
 +
this.density = density;
 +
}
 +
 +
clone() {
 +
return new FogExp2(this.color, this.density);
 +
}
 +
 +
toJSON()
 +
/* meta */
 +
{
 +
return {
 +
type: 'FogExp2',
 +
color: this.color.getHex(),
 +
density: this.density
 +
};
 +
}
 +
 +
}
 +
 +
FogExp2.prototype.isFogExp2 = true;
 +
 +
class Fog {
 +
constructor(color, near = 1, far = 1000) {
 +
this.name = '';
 +
this.color = new Color(color);
 +
this.near = near;
 +
this.far = far;
 +
}
 +
 +
clone() {
 +
return new Fog(this.color, this.near, this.far);
 +
}
 +
 +
toJSON()
 +
/* meta */
 +
{
 +
return {
 +
type: 'Fog',
 +
color: this.color.getHex(),
 +
near: this.near,
 +
far: this.far
 +
};
 +
}
 +
 +
}
 +
 +
Fog.prototype.isFog = true;
 +
 +
class Scene extends Object3D {
 +
constructor() {
 +
super();
 +
this.type = 'Scene';
 +
this.background = null;
 +
this.environment = null;
 +
this.fog = null;
 +
this.overrideMaterial = null;
 +
this.autoUpdate = true; // checked by the renderer
 +
 +
if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
 +
__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
 +
detail: this
 +
})); // eslint-disable-line no-undef
 +
 +
}
 +
}
 +
 +
copy(source, recursive) {
 +
super.copy(source, recursive);
 +
if (source.background !== null) this.background = source.background.clone();
 +
if (source.environment !== null) this.environment = source.environment.clone();
 +
if (source.fog !== null) this.fog = source.fog.clone();
 +
if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone();
 +
this.autoUpdate = source.autoUpdate;
 +
this.matrixAutoUpdate = source.matrixAutoUpdate;
 +
return this;
 +
}
 +
 +
toJSON(meta) {
 +
const data = super.toJSON(meta);
 +
if (this.fog !== null) data.object.fog = this.fog.toJSON();
 +
return data;
 +
}
 +
 +
}
 +
 +
Scene.prototype.isScene = true;
 +
 +
class InterleavedBuffer {
 +
constructor(array, stride) {
 +
this.array = array;
 +
this.stride = stride;
 +
this.count = array !== undefined ? array.length / stride : 0;
 +
this.usage = StaticDrawUsage;
 +
this.updateRange = {
 +
offset: 0,
 +
count: -1
 +
};
 +
this.version = 0;
 +
this.uuid = generateUUID();
 +
}
 +
 +
onUploadCallback() {}
 +
 +
set needsUpdate(value) {
 +
if (value === true) this.version++;
 +
}
 +
 +
setUsage(value) {
 +
this.usage = value;
 +
return this;
 +
}
 +
 +
copy(source) {
 +
this.array = new source.array.constructor(source.array);
 +
this.count = source.count;
 +
this.stride = source.stride;
 +
this.usage = source.usage;
 +
return this;
 +
}
 +
 +
copyAt(index1, attribute, index2) {
 +
index1 *= this.stride;
 +
index2 *= attribute.stride;
 +
 +
for (let i = 0, l = this.stride; i < l; i++) {
 +
this.array[index1 + i] = attribute.array[index2 + i];
 +
}
 +
 +
return this;
 +
}
 +
 +
set(value, offset = 0) {
 +
this.array.set(value, offset);
 +
return this;
 +
}
 +
 +
clone(data) {
 +
if (data.arrayBuffers === undefined) {
 +
data.arrayBuffers = {};
 +
}
 +
 +
if (this.array.buffer._uuid === undefined) {
 +
this.array.buffer._uuid = generateUUID();
 +
}
 +
 +
if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
 +
data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer;
 +
}
 +
 +
const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]);
 +
const ib = new this.constructor(array, this.stride);
 +
ib.setUsage(this.usage);
 +
return ib;
 +
}
 +
 +
onUpload(callback) {
 +
this.onUploadCallback = callback;
 +
return this;
 +
}
 +
 +
toJSON(data) {
 +
if (data.arrayBuffers === undefined) {
 +
data.arrayBuffers = {};
 +
} // generate UUID for array buffer if necessary
 +
 +
 +
if (this.array.buffer._uuid === undefined) {
 +
this.array.buffer._uuid = generateUUID();
 +
}
 +
 +
if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
 +
data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer));
 +
} //
 +
 +
 +
return {
 +
uuid: this.uuid,
 +
buffer: this.array.buffer._uuid,
 +
type: this.array.constructor.name,
 +
stride: this.stride
 +
};
 +
}
 +
 +
}
 +
 +
InterleavedBuffer.prototype.isInterleavedBuffer = true;
 +
 +
const _vector$6 = /*@__PURE__*/new Vector3();
 +
 +
class InterleavedBufferAttribute {
 +
constructor(interleavedBuffer, itemSize, offset, normalized = false) {
 +
this.name = '';
 +
this.data = interleavedBuffer;
 +
this.itemSize = itemSize;
 +
this.offset = offset;
 +
this.normalized = normalized === true;
 +
}
 +
 +
get count() {
 +
return this.data.count;
 +
}
 +
 +
get array() {
 +
return this.data.array;
 +
}
 +
 +
set needsUpdate(value) {
 +
this.data.needsUpdate = value;
 +
}
 +
 +
applyMatrix4(m) {
 +
for (let i = 0, l = this.data.count; i < l; i++) {
 +
_vector$6.x = this.getX(i);
 +
_vector$6.y = this.getY(i);
 +
_vector$6.z = this.getZ(i);
 +
 +
_vector$6.applyMatrix4(m);
 +
 +
this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
 +
}
 +
 +
return this;
 +
}
 +
 +
applyNormalMatrix(m) {
 +
for (let i = 0, l = this.count; i < l; i++) {
 +
_vector$6.x = this.getX(i);
 +
_vector$6.y = this.getY(i);
 +
_vector$6.z = this.getZ(i);
 +
 +
_vector$6.applyNormalMatrix(m);
 +
 +
this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
 +
}
 +
 +
return this;
 +
}
 +
 +
transformDirection(m) {
 +
for (let i = 0, l = this.count; i < l; i++) {
 +
_vector$6.x = this.getX(i);
 +
_vector$6.y = this.getY(i);
 +
_vector$6.z = this.getZ(i);
 +
 +
_vector$6.transformDirection(m);
 +
 +
this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
 +
}
 +
 +
return this;
 +
}
 +
 +
setX(index, x) {
 +
this.data.array[index * this.data.stride + this.offset] = x;
 +
return this;
 +
}
 +
 +
setY(index, y) {
 +
this.data.array[index * this.data.stride + this.offset + 1] = y;
 +
return this;
 +
}
 +
 +
setZ(index, z) {
 +
this.data.array[index * this.data.stride + this.offset + 2] = z;
 +
return this;
 +
}
 +
 +
setW(index, w) {
 +
this.data.array[index * this.data.stride + this.offset + 3] = w;
 +
return this;
 +
}
 +
 +
getX(index) {
 +
return this.data.array[index * this.data.stride + this.offset];
 +
}
 +
 +
getY(index) {
 +
return this.data.array[index * this.data.stride + this.offset + 1];
 +
}
 +
 +
getZ(index) {
 +
return this.data.array[index * this.data.stride + this.offset + 2];
 +
}
 +
 +
getW(index) {
 +
return this.data.array[index * this.data.stride + this.offset + 3];
 +
}
 +
 +
setXY(index, x, y) {
 +
index = index * this.data.stride + this.offset;
 +
this.data.array[index + 0] = x;
 +
this.data.array[index + 1] = y;
 +
return this;
 +
}
 +
 +
setXYZ(index, x, y, z) {
 +
index = index * this.data.stride + this.offset;
 +
this.data.array[index + 0] = x;
 +
this.data.array[index + 1] = y;
 +
this.data.array[index + 2] = z;
 +
return this;
 +
}
 +
 +
setXYZW(index, x, y, z, w) {
 +
index = index * this.data.stride + this.offset;
 +
this.data.array[index + 0] = x;
 +
this.data.array[index + 1] = y;
 +
this.data.array[index + 2] = z;
 +
this.data.array[index + 3] = w;
 +
return this;
 +
}
 +
 +
clone(data) {
 +
if (data === undefined) {
 +
console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.');
 +
const array = [];
 +
 +
for (let i = 0; i < this.count; i++) {
 +
const index = i * this.data.stride + this.offset;
 +
 +
for (let j = 0; j < this.itemSize; j++) {
 +
array.push(this.data.array[index + j]);
 +
}
 +
}
 +
 +
return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized);
 +
} else {
 +
if (data.interleavedBuffers === undefined) {
 +
data.interleavedBuffers = {};
 +
}
 +
 +
if (data.interleavedBuffers[this.data.uuid] === undefined) {
 +
data.interleavedBuffers[this.data.uuid] = this.data.clone(data);
 +
}
 +
 +
return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized);
 +
}
 +
}
 +
 +
toJSON(data) {
 +
if (data === undefined) {
 +
console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.');
 +
const array = [];
 +
 +
for (let i = 0; i < this.count; i++) {
 +
const index = i * this.data.stride + this.offset;
 +
 +
for (let j = 0; j < this.itemSize; j++) {
 +
array.push(this.data.array[index + j]);
 +
}
 +
} // deinterleave data and save it as an ordinary buffer attribute for now
 +
 +
 +
return {
 +
itemSize: this.itemSize,
 +
type: this.array.constructor.name,
 +
array: array,
 +
normalized: this.normalized
 +
};
 +
} else {
 +
// save as true interlaved attribtue
 +
if (data.interleavedBuffers === undefined) {
 +
data.interleavedBuffers = {};
 +
}
 +
 +
if (data.interleavedBuffers[this.data.uuid] === undefined) {
 +
data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data);
 +
}
 +
 +
return {
 +
isInterleavedBufferAttribute: true,
 +
itemSize: this.itemSize,
 +
data: this.data.uuid,
 +
offset: this.offset,
 +
normalized: this.normalized
 +
};
 +
}
 +
}
 +
 +
}
 +
 +
InterleavedBufferAttribute.prototype.isInterleavedBufferAttribute = true;
 +
 +
/**
 +
* parameters = {
 +
* color: <hex>,
 +
* map: new THREE.Texture( <Image> ),
 +
* alphaMap: new THREE.Texture( <Image> ),
 +
* rotation: <float>,
 +
* sizeAttenuation: <bool>
 +
* }
 +
*/
 +
 +
class SpriteMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'SpriteMaterial';
 +
this.color = new Color(0xffffff);
 +
this.map = null;
 +
this.alphaMap = null;
 +
this.rotation = 0;
 +
this.sizeAttenuation = true;
 +
this.transparent = true;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.color.copy(source.color);
 +
this.map = source.map;
 +
this.alphaMap = source.alphaMap;
 +
this.rotation = source.rotation;
 +
this.sizeAttenuation = source.sizeAttenuation;
 +
return this;
 +
}
 +
 +
}
 +
 +
SpriteMaterial.prototype.isSpriteMaterial = true;
 +
 +
let _geometry;
 +
 +
const _intersectPoint = /*@__PURE__*/new Vector3();
 +
 +
const _worldScale = /*@__PURE__*/new Vector3();
 +
 +
const _mvPosition = /*@__PURE__*/new Vector3();
 +
 +
const _alignedPosition = /*@__PURE__*/new Vector2();
 +
 +
const _rotatedPosition = /*@__PURE__*/new Vector2();
 +
 +
const _viewWorldMatrix = /*@__PURE__*/new Matrix4();
 +
 +
const _vA = /*@__PURE__*/new Vector3();
 +
 +
const _vB = /*@__PURE__*/new Vector3();
 +
 +
const _vC = /*@__PURE__*/new Vector3();
 +
 +
const _uvA = /*@__PURE__*/new Vector2();
 +
 +
const _uvB = /*@__PURE__*/new Vector2();
 +
 +
const _uvC = /*@__PURE__*/new Vector2();
 +
 +
class Sprite extends Object3D {
 +
constructor(material) {
 +
super();
 +
this.type = 'Sprite';
 +
 +
if (_geometry === undefined) {
 +
_geometry = new BufferGeometry();
 +
const float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]);
 +
const interleavedBuffer = new InterleavedBuffer(float32Array, 5);
 +
 +
_geometry.setIndex([0, 1, 2, 0, 2, 3]);
 +
 +
_geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false));
 +
 +
_geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false));
 +
}
 +
 +
this.geometry = _geometry;
 +
this.material = material !== undefined ? material : new SpriteMaterial();
 +
this.center = new Vector2(0.5, 0.5);
 +
}
 +
 +
raycast(raycaster, intersects) {
 +
if (raycaster.camera === null) {
 +
console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.');
 +
}
 +
 +
_worldScale.setFromMatrixScale(this.matrixWorld);
 +
 +
_viewWorldMatrix.copy(raycaster.camera.matrixWorld);
 +
 +
this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld);
 +
 +
_mvPosition.setFromMatrixPosition(this.modelViewMatrix);
 +
 +
if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) {
 +
_worldScale.multiplyScalar(-_mvPosition.z);
 +
}
 +
 +
const rotation = this.material.rotation;
 +
let sin, cos;
 +
 +
if (rotation !== 0) {
 +
cos = Math.cos(rotation);
 +
sin = Math.sin(rotation);
 +
}
 +
 +
const center = this.center;
 +
transformVertex(_vA.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
 +
transformVertex(_vB.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
 +
transformVertex(_vC.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
 +
 +
_uvA.set(0, 0);
 +
 +
_uvB.set(1, 0);
 +
 +
_uvC.set(1, 1); // check first triangle
 +
 +
 +
let intersect = raycaster.ray.intersectTriangle(_vA, _vB, _vC, false, _intersectPoint);
 +
 +
if (intersect === null) {
 +
// check second triangle
 +
transformVertex(_vB.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
 +
 +
_uvB.set(0, 1);
 +
 +
intersect = raycaster.ray.intersectTriangle(_vA, _vC, _vB, false, _intersectPoint);
 +
 +
if (intersect === null) {
 +
return;
 +
}
 +
}
 +
 +
const distance = raycaster.ray.origin.distanceTo(_intersectPoint);
 +
if (distance < raycaster.near || distance > raycaster.far) return;
 +
intersects.push({
 +
distance: distance,
 +
point: _intersectPoint.clone(),
 +
uv: Triangle.getUV(_intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2()),
 +
face: null,
 +
object: this
 +
});
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
if (source.center !== undefined) this.center.copy(source.center);
 +
this.material = source.material;
 +
return this;
 +
}
 +
 +
}
 +
 +
Sprite.prototype.isSprite = true;
 +
 +
function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) {
 +
// compute position in camera space
 +
_alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); // to check if rotation is not zero
 +
 +
 +
if (sin !== undefined) {
 +
_rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y;
 +
_rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y;
 +
} else {
 +
_rotatedPosition.copy(_alignedPosition);
 +
}
 +
 +
vertexPosition.copy(mvPosition);
 +
vertexPosition.x += _rotatedPosition.x;
 +
vertexPosition.y += _rotatedPosition.y; // transform to world space
 +
 +
vertexPosition.applyMatrix4(_viewWorldMatrix);
 +
}
 +
 +
const _v1$2 = /*@__PURE__*/new Vector3();
 +
 +
const _v2$1 = /*@__PURE__*/new Vector3();
 +
 +
class LOD extends Object3D {
 +
constructor() {
 +
super();
 +
this._currentLevel = 0;
 +
this.type = 'LOD';
 +
Object.defineProperties(this, {
 +
levels: {
 +
enumerable: true,
 +
value: []
 +
},
 +
isLOD: {
 +
value: true
 +
}
 +
});
 +
this.autoUpdate = true;
 +
}
 +
 +
copy(source) {
 +
super.copy(source, false);
 +
const levels = source.levels;
 +
 +
for (let i = 0, l = levels.length; i < l; i++) {
 +
const level = levels[i];
 +
this.addLevel(level.object.clone(), level.distance);
 +
}
 +
 +
this.autoUpdate = source.autoUpdate;
 +
return this;
 +
}
 +
 +
addLevel(object, distance = 0) {
 +
distance = Math.abs(distance);
 +
const levels = this.levels;
 +
let l;
 +
 +
for (l = 0; l < levels.length; l++) {
 +
if (distance < levels[l].distance) {
 +
break;
 +
}
 +
}
 +
 +
levels.splice(l, 0, {
 +
distance: distance,
 +
object: object
 +
});
 +
this.add(object);
 +
return this;
 +
}
 +
 +
getCurrentLevel() {
 +
return this._currentLevel;
 +
}
 +
 +
getObjectForDistance(distance) {
 +
const levels = this.levels;
 +
 +
if (levels.length > 0) {
 +
let i, l;
 +
 +
for (i = 1, l = levels.length; i < l; i++) {
 +
if (distance < levels[i].distance) {
 +
break;
 +
}
 +
}
 +
 +
return levels[i - 1].object;
 +
}
 +
 +
return null;
 +
}
 +
 +
raycast(raycaster, intersects) {
 +
const levels = this.levels;
 +
 +
if (levels.length > 0) {
 +
_v1$2.setFromMatrixPosition(this.matrixWorld);
 +
 +
const distance = raycaster.ray.origin.distanceTo(_v1$2);
 +
this.getObjectForDistance(distance).raycast(raycaster, intersects);
 +
}
 +
}
 +
 +
update(camera) {
 +
const levels = this.levels;
 +
 +
if (levels.length > 1) {
 +
_v1$2.setFromMatrixPosition(camera.matrixWorld);
 +
 +
_v2$1.setFromMatrixPosition(this.matrixWorld);
 +
 +
const distance = _v1$2.distanceTo(_v2$1) / camera.zoom;
 +
levels[0].object.visible = true;
 +
let i, l;
 +
 +
for (i = 1, l = levels.length; i < l; i++) {
 +
if (distance >= levels[i].distance) {
 +
levels[i - 1].object.visible = false;
 +
levels[i].object.visible = true;
 +
} else {
 +
break;
 +
}
 +
}
 +
 +
this._currentLevel = i - 1;
 +
 +
for (; i < l; i++) {
 +
levels[i].object.visible = false;
 +
}
 +
}
 +
}
 +
 +
toJSON(meta) {
 +
const data = super.toJSON(meta);
 +
if (this.autoUpdate === false) data.object.autoUpdate = false;
 +
data.object.levels = [];
 +
const levels = this.levels;
 +
 +
for (let i = 0, l = levels.length; i < l; i++) {
 +
const level = levels[i];
 +
data.object.levels.push({
 +
object: level.object.uuid,
 +
distance: level.distance
 +
});
 +
}
 +
 +
return data;
 +
}
 +
 +
}
 +
 +
const _basePosition = /*@__PURE__*/new Vector3();
 +
 +
const _skinIndex = /*@__PURE__*/new Vector4();
 +
 +
const _skinWeight = /*@__PURE__*/new Vector4();
 +
 +
const _vector$5 = /*@__PURE__*/new Vector3();
 +
 +
const _matrix = /*@__PURE__*/new Matrix4();
 +
 +
class SkinnedMesh extends Mesh {
 +
constructor(geometry, material) {
 +
super(geometry, material);
 +
this.type = 'SkinnedMesh';
 +
this.bindMode = 'attached';
 +
this.bindMatrix = new Matrix4();
 +
this.bindMatrixInverse = new Matrix4();
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.bindMode = source.bindMode;
 +
this.bindMatrix.copy(source.bindMatrix);
 +
this.bindMatrixInverse.copy(source.bindMatrixInverse);
 +
this.skeleton = source.skeleton;
 +
return this;
 +
}
 +
 +
bind(skeleton, bindMatrix) {
 +
this.skeleton = skeleton;
 +
 +
if (bindMatrix === undefined) {
 +
this.updateMatrixWorld(true);
 +
this.skeleton.calculateInverses();
 +
bindMatrix = this.matrixWorld;
 +
}
 +
 +
this.bindMatrix.copy(bindMatrix);
 +
this.bindMatrixInverse.copy(bindMatrix).invert();
 +
}
 +
 +
pose() {
 +
this.skeleton.pose();
 +
}
 +
 +
normalizeSkinWeights() {
 +
const vector = new Vector4();
 +
const skinWeight = this.geometry.attributes.skinWeight;
 +
 +
for (let i = 0, l = skinWeight.count; i < l; i++) {
 +
vector.x = skinWeight.getX(i);
 +
vector.y = skinWeight.getY(i);
 +
vector.z = skinWeight.getZ(i);
 +
vector.w = skinWeight.getW(i);
 +
const scale = 1.0 / vector.manhattanLength();
 +
 +
if (scale !== Infinity) {
 +
vector.multiplyScalar(scale);
 +
} else {
 +
vector.set(1, 0, 0, 0); // do something reasonable
 +
}
 +
 +
skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w);
 +
}
 +
}
 +
 +
updateMatrixWorld(force) {
 +
super.updateMatrixWorld(force);
 +
 +
if (this.bindMode === 'attached') {
 +
this.bindMatrixInverse.copy(this.matrixWorld).invert();
 +
} else if (this.bindMode === 'detached') {
 +
this.bindMatrixInverse.copy(this.bindMatrix).invert();
 +
} else {
 +
console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode);
 +
}
 +
}
 +
 +
boneTransform(index, target) {
 +
const skeleton = this.skeleton;
 +
const geometry = this.geometry;
 +
 +
_skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index);
 +
 +
_skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index);
 +
 +
_basePosition.fromBufferAttribute(geometry.attributes.position, index).applyMatrix4(this.bindMatrix);
 +
 +
target.set(0, 0, 0);
 +
 +
for (let i = 0; i < 4; i++) {
 +
const weight = _skinWeight.getComponent(i);
 +
 +
if (weight !== 0) {
 +
const boneIndex = _skinIndex.getComponent(i);
 +
 +
_matrix.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]);
 +
 +
target.addScaledVector(_vector$5.copy(_basePosition).applyMatrix4(_matrix), weight);
 +
}
 +
}
 +
 +
return target.applyMatrix4(this.bindMatrixInverse);
 +
}
 +
 +
}
 +
 +
SkinnedMesh.prototype.isSkinnedMesh = true;
 +
 +
class Bone extends Object3D {
 +
constructor() {
 +
super();
 +
this.type = 'Bone';
 +
}
 +
 +
}
 +
 +
Bone.prototype.isBone = true;
 +
 +
class DataTexture extends Texture {
 +
constructor(data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding) {
 +
super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
 +
this.image = {
 +
data: data,
 +
width: width,
 +
height: height
 +
};
 +
this.magFilter = magFilter;
 +
this.minFilter = minFilter;
 +
this.generateMipmaps = false;
 +
this.flipY = false;
 +
this.unpackAlignment = 1;
 +
this.needsUpdate = true;
 +
}
 +
 +
}
 +
 +
DataTexture.prototype.isDataTexture = true;
 +
 +
const _offsetMatrix = /*@__PURE__*/new Matrix4();
 +
 +
const _identityMatrix = /*@__PURE__*/new Matrix4();
 +
 +
class Skeleton {
 +
constructor(bones = [], boneInverses = []) {
 +
this.uuid = generateUUID();
 +
this.bones = bones.slice(0);
 +
this.boneInverses = boneInverses;
 +
this.boneMatrices = null;
 +
this.boneTexture = null;
 +
this.boneTextureSize = 0;
 +
this.frame = -1;
 +
this.init();
 +
}
 +
 +
init() {
 +
const bones = this.bones;
 +
const boneInverses = this.boneInverses;
 +
this.boneMatrices = new Float32Array(bones.length * 16); // calculate inverse bone matrices if necessary
 +
 +
if (boneInverses.length === 0) {
 +
this.calculateInverses();
 +
} else {
 +
// handle special case
 +
if (bones.length !== boneInverses.length) {
 +
console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.');
 +
this.boneInverses = [];
 +
 +
for (let i = 0, il = this.bones.length; i < il; i++) {
 +
this.boneInverses.push(new Matrix4());
 +
}
 +
}
 +
}
 +
}
 +
 +
calculateInverses() {
 +
this.boneInverses.length = 0;
 +
 +
for (let i = 0, il = this.bones.length; i < il; i++) {
 +
const inverse = new Matrix4();
 +
 +
if (this.bones[i]) {
 +
inverse.copy(this.bones[i].matrixWorld).invert();
 +
}
 +
 +
this.boneInverses.push(inverse);
 +
}
 +
}
 +
 +
pose() {
 +
// recover the bind-time world matrices
 +
for (let i = 0, il = this.bones.length; i < il; i++) {
 +
const bone = this.bones[i];
 +
 +
if (bone) {
 +
bone.matrixWorld.copy(this.boneInverses[i]).invert();
 +
}
 +
} // compute the local matrices, positions, rotations and scales
 +
 +
 +
for (let i = 0, il = this.bones.length; i < il; i++) {
 +
const bone = this.bones[i];
 +
 +
if (bone) {
 +
if (bone.parent && bone.parent.isBone) {
 +
bone.matrix.copy(bone.parent.matrixWorld).invert();
 +
bone.matrix.multiply(bone.matrixWorld);
 +
} else {
 +
bone.matrix.copy(bone.matrixWorld);
 +
}
 +
 +
bone.matrix.decompose(bone.position, bone.quaternion, bone.scale);
 +
}
 +
}
 +
}
 +
 +
update() {
 +
const bones = this.bones;
 +
const boneInverses = this.boneInverses;
 +
const boneMatrices = this.boneMatrices;
 +
const boneTexture = this.boneTexture; // flatten bone matrices to array
 +
 +
for (let i = 0, il = bones.length; i < il; i++) {
 +
// compute the offset between the current and the original transform
 +
const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix;
 +
 +
_offsetMatrix.multiplyMatrices(matrix, boneInverses[i]);
 +
 +
_offsetMatrix.toArray(boneMatrices, i * 16);
 +
}
 +
 +
if (boneTexture !== null) {
 +
boneTexture.needsUpdate = true;
 +
}
 +
}
 +
 +
clone() {
 +
return new Skeleton(this.bones, this.boneInverses);
 +
}
 +
 +
computeBoneTexture() {
 +
// layout (1 matrix = 4 pixels)
 +
// RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
 +
// with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
 +
// 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
 +
// 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
 +
// 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
 +
let size = Math.sqrt(this.bones.length * 4); // 4 pixels needed for 1 matrix
 +
 +
size = ceilPowerOfTwo(size);
 +
size = Math.max(size, 4);
 +
const boneMatrices = new Float32Array(size * size * 4); // 4 floats per RGBA pixel
 +
 +
boneMatrices.set(this.boneMatrices); // copy current values
 +
 +
const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType);
 +
this.boneMatrices = boneMatrices;
 +
this.boneTexture = boneTexture;
 +
this.boneTextureSize = size;
 +
return this;
 +
}
 +
 +
getBoneByName(name) {
 +
for (let i = 0, il = this.bones.length; i < il; i++) {
 +
const bone = this.bones[i];
 +
 +
if (bone.name === name) {
 +
return bone;
 +
}
 +
}
 +
 +
return undefined;
 +
}
 +
 +
dispose() {
 +
if (this.boneTexture !== null) {
 +
this.boneTexture.dispose();
 +
this.boneTexture = null;
 +
}
 +
}
 +
 +
fromJSON(json, bones) {
 +
this.uuid = json.uuid;
 +
 +
for (let i = 0, l = json.bones.length; i < l; i++) {
 +
const uuid = json.bones[i];
 +
let bone = bones[uuid];
 +
 +
if (bone === undefined) {
 +
console.warn('THREE.Skeleton: No bone found with UUID:', uuid);
 +
bone = new Bone();
 +
}
 +
 +
this.bones.push(bone);
 +
this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i]));
 +
}
 +
 +
this.init();
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = {
 +
metadata: {
 +
version: 4.5,
 +
type: 'Skeleton',
 +
generator: 'Skeleton.toJSON'
 +
},
 +
bones: [],
 +
boneInverses: []
 +
};
 +
data.uuid = this.uuid;
 +
const bones = this.bones;
 +
const boneInverses = this.boneInverses;
 +
 +
for (let i = 0, l = bones.length; i < l; i++) {
 +
const bone = bones[i];
 +
data.bones.push(bone.uuid);
 +
const boneInverse = boneInverses[i];
 +
data.boneInverses.push(boneInverse.toArray());
 +
}
 +
 +
return data;
 +
}
 +
 +
}
 +
 +
const _instanceLocalMatrix = /*@__PURE__*/new Matrix4();
 +
 +
const _instanceWorldMatrix = /*@__PURE__*/new Matrix4();
 +
 +
const _instanceIntersects = [];
 +
 +
const _mesh = /*@__PURE__*/new Mesh();
 +
 +
class InstancedMesh extends Mesh {
 +
constructor(geometry, material, count) {
 +
super(geometry, material);
 +
this.instanceMatrix = new BufferAttribute(new Float32Array(count * 16), 16);
 +
this.instanceColor = null;
 +
this.count = count;
 +
this.frustumCulled = false;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.instanceMatrix.copy(source.instanceMatrix);
 +
if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone();
 +
this.count = source.count;
 +
return this;
 +
}
 +
 +
getColorAt(index, color) {
 +
color.fromArray(this.instanceColor.array, index * 3);
 +
}
 +
 +
getMatrixAt(index, matrix) {
 +
matrix.fromArray(this.instanceMatrix.array, index * 16);
 +
}
 +
 +
raycast(raycaster, intersects) {
 +
const matrixWorld = this.matrixWorld;
 +
const raycastTimes = this.count;
 +
_mesh.geometry = this.geometry;
 +
_mesh.material = this.material;
 +
if (_mesh.material === undefined) return;
 +
 +
for (let instanceId = 0; instanceId < raycastTimes; instanceId++) {
 +
// calculate the world matrix for each instance
 +
this.getMatrixAt(instanceId, _instanceLocalMatrix);
 +
 +
_instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); // the mesh represents this single instance
 +
 +
 +
_mesh.matrixWorld = _instanceWorldMatrix;
 +
 +
_mesh.raycast(raycaster, _instanceIntersects); // process the result of raycast
 +
 +
 +
for (let i = 0, l = _instanceIntersects.length; i < l; i++) {
 +
const intersect = _instanceIntersects[i];
 +
intersect.instanceId = instanceId;
 +
intersect.object = this;
 +
intersects.push(intersect);
 +
}
 +
 +
_instanceIntersects.length = 0;
 +
}
 +
}
 +
 +
setColorAt(index, color) {
 +
if (this.instanceColor === null) {
 +
this.instanceColor = new BufferAttribute(new Float32Array(this.count * 3), 3);
 +
}
 +
 +
color.toArray(this.instanceColor.array, index * 3);
 +
}
 +
 +
setMatrixAt(index, matrix) {
 +
matrix.toArray(this.instanceMatrix.array, index * 16);
 +
}
 +
 +
updateMorphTargets() {}
 +
 +
dispose() {
 +
this.dispatchEvent({
 +
type: 'dispose'
 +
});
 +
}
 +
 +
}
 +
 +
InstancedMesh.prototype.isInstancedMesh = true;
 +
 +
/**
 +
* parameters = {
 +
* color: <hex>,
 +
* opacity: <float>,
 +
*
 +
* linewidth: <float>,
 +
* linecap: "round",
 +
* linejoin: "round"
 +
* }
 +
*/
 +
 +
class LineBasicMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'LineBasicMaterial';
 +
this.color = new Color(0xffffff);
 +
this.linewidth = 1;
 +
this.linecap = 'round';
 +
this.linejoin = 'round';
 +
this.morphTargets = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.color.copy(source.color);
 +
this.linewidth = source.linewidth;
 +
this.linecap = source.linecap;
 +
this.linejoin = source.linejoin;
 +
this.morphTargets = source.morphTargets;
 +
return this;
 +
}
 +
 +
}
 +
 +
LineBasicMaterial.prototype.isLineBasicMaterial = true;
 +
 +
const _start$1 = /*@__PURE__*/new Vector3();
 +
 +
const _end$1 = /*@__PURE__*/new Vector3();
 +
 +
const _inverseMatrix$1 = /*@__PURE__*/new Matrix4();
 +
 +
const _ray$1 = /*@__PURE__*/new Ray();
 +
 +
const _sphere$1 = /*@__PURE__*/new Sphere();
 +
 +
class Line extends Object3D {
 +
constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) {
 +
super();
 +
this.type = 'Line';
 +
this.geometry = geometry;
 +
this.material = material;
 +
this.updateMorphTargets();
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.material = source.material;
 +
this.geometry = source.geometry;
 +
return this;
 +
}
 +
 +
computeLineDistances() {
 +
const geometry = this.geometry;
 +
 +
if (geometry.isBufferGeometry) {
 +
// we assume non-indexed geometry
 +
if (geometry.index === null) {
 +
const positionAttribute = geometry.attributes.position;
 +
const lineDistances = [0];
 +
 +
for (let i = 1, l = positionAttribute.count; i < l; i++) {
 +
_start$1.fromBufferAttribute(positionAttribute, i - 1);
 +
 +
_end$1.fromBufferAttribute(positionAttribute, i);
 +
 +
lineDistances[i] = lineDistances[i - 1];
 +
lineDistances[i] += _start$1.distanceTo(_end$1);
 +
}
 +
 +
geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
 +
} else {
 +
console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
 +
}
 +
} else if (geometry.isGeometry) {
 +
console.error('THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
 +
}
 +
 +
return this;
 +
}
 +
 +
raycast(raycaster, intersects) {
 +
const geometry = this.geometry;
 +
const matrixWorld = this.matrixWorld;
 +
const threshold = raycaster.params.Line.threshold;
 +
const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray
 +
 +
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
 +
 +
_sphere$1.copy(geometry.boundingSphere);
 +
 +
_sphere$1.applyMatrix4(matrixWorld);
 +
 +
_sphere$1.radius += threshold;
 +
if (raycaster.ray.intersectsSphere(_sphere$1) === false) return; //
 +
 +
_inverseMatrix$1.copy(matrixWorld).invert();
 +
 +
_ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1);
 +
 +
const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
 +
const localThresholdSq = localThreshold * localThreshold;
 +
const vStart = new Vector3();
 +
const vEnd = new Vector3();
 +
const interSegment = new Vector3();
 +
const interRay = new Vector3();
 +
const step = this.isLineSegments ? 2 : 1;
 +
 +
if (geometry.isBufferGeometry) {
 +
const index = geometry.index;
 +
const attributes = geometry.attributes;
 +
const positionAttribute = attributes.position;
 +
 +
if (index !== null) {
 +
const start = Math.max(0, drawRange.start);
 +
const end = Math.min(index.count, drawRange.start + drawRange.count);
 +
 +
for (let i = start, l = end - 1; i < l; i += step) {
 +
const a = index.getX(i);
 +
const b = index.getX(i + 1);
 +
vStart.fromBufferAttribute(positionAttribute, a);
 +
vEnd.fromBufferAttribute(positionAttribute, b);
 +
 +
const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
 +
 +
if (distSq > localThresholdSq) continue;
 +
interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
 +
 +
const distance = raycaster.ray.origin.distanceTo(interRay);
 +
if (distance < raycaster.near || distance > raycaster.far) continue;
 +
intersects.push({
 +
distance: distance,
 +
// What do we want? intersection point on the ray or on the segment??
 +
// point: raycaster.ray.at( distance ),
 +
point: interSegment.clone().applyMatrix4(this.matrixWorld),
 +
index: i,
 +
face: null,
 +
faceIndex: null,
 +
object: this
 +
});
 +
}
 +
} else {
 +
const start = Math.max(0, drawRange.start);
 +
const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
 +
 +
for (let i = start, l = end - 1; i < l; i += step) {
 +
vStart.fromBufferAttribute(positionAttribute, i);
 +
vEnd.fromBufferAttribute(positionAttribute, i + 1);
 +
 +
const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
 +
 +
if (distSq > localThresholdSq) continue;
 +
interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
 +
 +
const distance = raycaster.ray.origin.distanceTo(interRay);
 +
if (distance < raycaster.near || distance > raycaster.far) continue;
 +
intersects.push({
 +
distance: distance,
 +
// What do we want? intersection point on the ray or on the segment??
 +
// point: raycaster.ray.at( distance ),
 +
point: interSegment.clone().applyMatrix4(this.matrixWorld),
 +
index: i,
 +
face: null,
 +
faceIndex: null,
 +
object: this
 +
});
 +
}
 +
}
 +
} else if (geometry.isGeometry) {
 +
console.error('THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
 +
}
 +
}
 +
 +
updateMorphTargets() {
 +
const geometry = this.geometry;
 +
 +
if (geometry.isBufferGeometry) {
 +
const morphAttributes = geometry.morphAttributes;
 +
const keys = Object.keys(morphAttributes);
 +
 +
if (keys.length > 0) {
 +
const morphAttribute = morphAttributes[keys[0]];
 +
 +
if (morphAttribute !== undefined) {
 +
this.morphTargetInfluences = [];
 +
this.morphTargetDictionary = {};
 +
 +
for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
 +
const name = morphAttribute[m].name || String(m);
 +
this.morphTargetInfluences.push(0);
 +
this.morphTargetDictionary[name] = m;
 +
}
 +
}
 +
}
 +
} else {
 +
const morphTargets = geometry.morphTargets;
 +
 +
if (morphTargets !== undefined && morphTargets.length > 0) {
 +
console.error('THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
 +
}
 +
}
 +
}
 +
 +
}
 +
 +
Line.prototype.isLine = true;
 +
 +
const _start = /*@__PURE__*/new Vector3();
 +
 +
const _end = /*@__PURE__*/new Vector3();
 +
 +
class LineSegments extends Line {
 +
constructor(geometry, material) {
 +
super(geometry, material);
 +
this.type = 'LineSegments';
 +
}
 +
 +
computeLineDistances() {
 +
const geometry = this.geometry;
 +
 +
if (geometry.isBufferGeometry) {
 +
// we assume non-indexed geometry
 +
if (geometry.index === null) {
 +
const positionAttribute = geometry.attributes.position;
 +
const lineDistances = [];
 +
 +
for (let i = 0, l = positionAttribute.count; i < l; i += 2) {
 +
_start.fromBufferAttribute(positionAttribute, i);
 +
 +
_end.fromBufferAttribute(positionAttribute, i + 1);
 +
 +
lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1];
 +
lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end);
 +
}
 +
 +
geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
 +
} else {
 +
console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
 +
}
 +
} else if (geometry.isGeometry) {
 +
console.error('THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
 +
}
 +
 +
return this;
 +
}
 +
 +
}
 +
 +
LineSegments.prototype.isLineSegments = true;
 +
 +
class LineLoop extends Line {
 +
constructor(geometry, material) {
 +
super(geometry, material);
 +
this.type = 'LineLoop';
 +
}
 +
 +
}
 +
 +
LineLoop.prototype.isLineLoop = true;
 +
 +
/**
 +
* parameters = {
 +
* color: <hex>,
 +
* opacity: <float>,
 +
* map: new THREE.Texture( <Image> ),
 +
* alphaMap: new THREE.Texture( <Image> ),
 +
*
 +
* size: <float>,
 +
* sizeAttenuation: <bool>
 +
*
 +
* morphTargets: <bool>
 +
* }
 +
*/
 +
 +
class PointsMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'PointsMaterial';
 +
this.color = new Color(0xffffff);
 +
this.map = null;
 +
this.alphaMap = null;
 +
this.size = 1;
 +
this.sizeAttenuation = true;
 +
this.morphTargets = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.color.copy(source.color);
 +
this.map = source.map;
 +
this.alphaMap = source.alphaMap;
 +
this.size = source.size;
 +
this.sizeAttenuation = source.sizeAttenuation;
 +
this.morphTargets = source.morphTargets;
 +
return this;
 +
}
 +
 +
}
 +
 +
PointsMaterial.prototype.isPointsMaterial = true;
 +
 +
const _inverseMatrix = /*@__PURE__*/new Matrix4();
 +
 +
const _ray = /*@__PURE__*/new Ray();
 +
 +
const _sphere = /*@__PURE__*/new Sphere();
 +
 +
const _position$2 = /*@__PURE__*/new Vector3();
 +
 +
class Points extends Object3D {
 +
constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) {
 +
super();
 +
this.type = 'Points';
 +
this.geometry = geometry;
 +
this.material = material;
 +
this.updateMorphTargets();
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.material = source.material;
 +
this.geometry = source.geometry;
 +
return this;
 +
}
 +
 +
raycast(raycaster, intersects) {
 +
const geometry = this.geometry;
 +
const matrixWorld = this.matrixWorld;
 +
const threshold = raycaster.params.Points.threshold;
 +
const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray
 +
 +
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
 +
 +
_sphere.copy(geometry.boundingSphere);
 +
 +
_sphere.applyMatrix4(matrixWorld);
 +
 +
_sphere.radius += threshold;
 +
if (raycaster.ray.intersectsSphere(_sphere) === false) return; //
 +
 +
_inverseMatrix.copy(matrixWorld).invert();
 +
 +
_ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix);
 +
 +
const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
 +
const localThresholdSq = localThreshold * localThreshold;
 +
 +
if (geometry.isBufferGeometry) {
 +
const index = geometry.index;
 +
const attributes = geometry.attributes;
 +
const positionAttribute = attributes.position;
 +
 +
if (index !== null) {
 +
const start = Math.max(0, drawRange.start);
 +
const end = Math.min(index.count, drawRange.start + drawRange.count);
 +
 +
for (let i = start, il = end; i < il; i++) {
 +
const a = index.getX(i);
 +
 +
_position$2.fromBufferAttribute(positionAttribute, a);
 +
 +
testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this);
 +
}
 +
} else {
 +
const start = Math.max(0, drawRange.start);
 +
const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
 +
 +
for (let i = start, l = end; i < l; i++) {
 +
_position$2.fromBufferAttribute(positionAttribute, i);
 +
 +
testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this);
 +
}
 +
}
 +
} else {
 +
console.error('THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
 +
}
 +
}
 +
 +
updateMorphTargets() {
 +
const geometry = this.geometry;
 +
 +
if (geometry.isBufferGeometry) {
 +
const morphAttributes = geometry.morphAttributes;
 +
const keys = Object.keys(morphAttributes);
 +
 +
if (keys.length > 0) {
 +
const morphAttribute = morphAttributes[keys[0]];
 +
 +
if (morphAttribute !== undefined) {
 +
this.morphTargetInfluences = [];
 +
this.morphTargetDictionary = {};
 +
 +
for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
 +
const name = morphAttribute[m].name || String(m);
 +
this.morphTargetInfluences.push(0);
 +
this.morphTargetDictionary[name] = m;
 +
}
 +
}
 +
}
 +
} else {
 +
const morphTargets = geometry.morphTargets;
 +
 +
if (morphTargets !== undefined && morphTargets.length > 0) {
 +
console.error('THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
 +
}
 +
}
 +
}
 +
 +
}
 +
 +
Points.prototype.isPoints = true;
 +
 +
function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) {
 +
const rayPointDistanceSq = _ray.distanceSqToPoint(point);
 +
 +
if (rayPointDistanceSq < localThresholdSq) {
 +
const intersectPoint = new Vector3();
 +
 +
_ray.closestPointToPoint(point, intersectPoint);
 +
 +
intersectPoint.applyMatrix4(matrixWorld);
 +
const distance = raycaster.ray.origin.distanceTo(intersectPoint);
 +
if (distance < raycaster.near || distance > raycaster.far) return;
 +
intersects.push({
 +
distance: distance,
 +
distanceToRay: Math.sqrt(rayPointDistanceSq),
 +
point: intersectPoint,
 +
index: index,
 +
face: null,
 +
object: object
 +
});
 +
}
 +
}
 +
 +
class VideoTexture extends Texture {
 +
constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
 +
super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
 +
this.format = format !== undefined ? format : RGBFormat;
 +
this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
 +
this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
 +
this.generateMipmaps = false;
 +
const scope = this;
 +
 +
function updateVideo() {
 +
scope.needsUpdate = true;
 +
video.requestVideoFrameCallback(updateVideo);
 +
}
 +
 +
if ('requestVideoFrameCallback' in video) {
 +
video.requestVideoFrameCallback(updateVideo);
 +
}
 +
}
 +
 +
clone() {
 +
return new this.constructor(this.image).copy(this);
 +
}
 +
 +
update() {
 +
const video = this.image;
 +
const hasVideoFrameCallback = ('requestVideoFrameCallback' in video);
 +
 +
if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) {
 +
this.needsUpdate = true;
 +
}
 +
}
 +
 +
}
 +
 +
VideoTexture.prototype.isVideoTexture = true;
 +
 +
class CompressedTexture extends Texture {
 +
constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) {
 +
super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
 +
this.image = {
 +
width: width,
 +
height: height
 +
};
 +
this.mipmaps = mipmaps; // no flipping for cube textures
 +
// (also flipping doesn't work for compressed textures )
 +
 +
this.flipY = false; // can't generate mipmaps for compressed textures
 +
// mips must be embedded in DDS files
 +
 +
this.generateMipmaps = false;
 +
}
 +
 +
}
 +
 +
CompressedTexture.prototype.isCompressedTexture = true;
 +
 +
class CanvasTexture extends Texture {
 +
constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
 +
super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
 +
this.needsUpdate = true;
 +
}
 +
 +
}
 +
 +
CanvasTexture.prototype.isCanvasTexture = true;
 +
 +
class DepthTexture extends Texture {
 +
constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) {
 +
format = format !== undefined ? format : DepthFormat;
 +
 +
if (format !== DepthFormat && format !== DepthStencilFormat) {
 +
throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat');
 +
}
 +
 +
if (type === undefined && format === DepthFormat) type = UnsignedShortType;
 +
if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type;
 +
super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
 +
this.image = {
 +
width: width,
 +
height: height
 +
};
 +
this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
 +
this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
 +
this.flipY = false;
 +
this.generateMipmaps = false;
 +
}
 +
 +
}
 +
 +
DepthTexture.prototype.isDepthTexture = true;
 +
 +
class CircleGeometry extends BufferGeometry {
 +
constructor(radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2) {
 +
super();
 +
this.type = 'CircleGeometry';
 +
this.parameters = {
 +
radius: radius,
 +
segments: segments,
 +
thetaStart: thetaStart,
 +
thetaLength: thetaLength
 +
};
 +
segments = Math.max(3, segments); // buffers
 +
 +
const indices = [];
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = []; // helper variables
 +
 +
const vertex = new Vector3();
 +
const uv = new Vector2(); // center point
 +
 +
vertices.push(0, 0, 0);
 +
normals.push(0, 0, 1);
 +
uvs.push(0.5, 0.5);
 +
 +
for (let s = 0, i = 3; s <= segments; s++, i += 3) {
 +
const segment = thetaStart + s / segments * thetaLength; // vertex
 +
 +
vertex.x = radius * Math.cos(segment);
 +
vertex.y = radius * Math.sin(segment);
 +
vertices.push(vertex.x, vertex.y, vertex.z); // normal
 +
 +
normals.push(0, 0, 1); // uvs
 +
 +
uv.x = (vertices[i] / radius + 1) / 2;
 +
uv.y = (vertices[i + 1] / radius + 1) / 2;
 +
uvs.push(uv.x, uv.y);
 +
} // indices
 +
 +
 +
for (let i = 1; i <= segments; i++) {
 +
indices.push(i, i + 1, 0);
 +
} // build geometry
 +
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
 +
}
 +
 +
static fromJSON(data) {
 +
return new CircleGeometry(data.radius, data.segments, data.thetaStart, data.thetaLength);
 +
}
 +
 +
}
 +
 +
class CylinderGeometry extends BufferGeometry {
 +
constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {
 +
super();
 +
this.type = 'CylinderGeometry';
 +
this.parameters = {
 +
radiusTop: radiusTop,
 +
radiusBottom: radiusBottom,
 +
height: height,
 +
radialSegments: radialSegments,
 +
heightSegments: heightSegments,
 +
openEnded: openEnded,
 +
thetaStart: thetaStart,
 +
thetaLength: thetaLength
 +
};
 +
const scope = this;
 +
radialSegments = Math.floor(radialSegments);
 +
heightSegments = Math.floor(heightSegments); // buffers
 +
 +
const indices = [];
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = []; // helper variables
 +
 +
let index = 0;
 +
const indexArray = [];
 +
const halfHeight = height / 2;
 +
let groupStart = 0; // generate geometry
 +
 +
generateTorso();
 +
 +
if (openEnded === false) {
 +
if (radiusTop > 0) generateCap(true);
 +
if (radiusBottom > 0) generateCap(false);
 +
} // build geometry
 +
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
 +
 +
function generateTorso() {
 +
const normal = new Vector3();
 +
const vertex = new Vector3();
 +
let groupCount = 0; // this will be used to calculate the normal
 +
 +
const slope = (radiusBottom - radiusTop) / height; // generate vertices, normals and uvs
 +
 +
for (let y = 0; y <= heightSegments; y++) {
 +
const indexRow = [];
 +
const v = y / heightSegments; // calculate the radius of the current row
 +
 +
const radius = v * (radiusBottom - radiusTop) + radiusTop;
 +
 +
for (let x = 0; x <= radialSegments; x++) {
 +
const u = x / radialSegments;
 +
const theta = u * thetaLength + thetaStart;
 +
const sinTheta = Math.sin(theta);
 +
const cosTheta = Math.cos(theta); // vertex
 +
 +
vertex.x = radius * sinTheta;
 +
vertex.y = -v * height + halfHeight;
 +
vertex.z = radius * cosTheta;
 +
vertices.push(vertex.x, vertex.y, vertex.z); // normal
 +
 +
normal.set(sinTheta, slope, cosTheta).normalize();
 +
normals.push(normal.x, normal.y, normal.z); // uv
 +
 +
uvs.push(u, 1 - v); // save index of vertex in respective row
 +
 +
indexRow.push(index++);
 +
} // now save vertices of the row in our index array
 +
 +
 +
indexArray.push(indexRow);
 +
} // generate indices
 +
 +
 +
for (let x = 0; x < radialSegments; x++) {
 +
for (let y = 0; y < heightSegments; y++) {
 +
// we use the index array to access the correct indices
 +
const a = indexArray[y][x];
 +
const b = indexArray[y + 1][x];
 +
const c = indexArray[y + 1][x + 1];
 +
const d = indexArray[y][x + 1]; // faces
 +
 +
indices.push(a, b, d);
 +
indices.push(b, c, d); // update group counter
 +
 +
groupCount += 6;
 +
}
 +
} // add a group to the geometry. this will ensure multi material support
 +
 +
 +
scope.addGroup(groupStart, groupCount, 0); // calculate new start value for groups
 +
 +
groupStart += groupCount;
 +
}
 +
 +
function generateCap(top) {
 +
// save the index of the first center vertex
 +
const centerIndexStart = index;
 +
const uv = new Vector2();
 +
const vertex = new Vector3();
 +
let groupCount = 0;
 +
const radius = top === true ? radiusTop : radiusBottom;
 +
const sign = top === true ? 1 : -1; // first we generate the center vertex data of the cap.
 +
// because the geometry needs one set of uvs per face,
 +
// we must generate a center vertex per face/segment
 +
 +
for (let x = 1; x <= radialSegments; x++) {
 +
// vertex
 +
vertices.push(0, halfHeight * sign, 0); // normal
 +
 +
normals.push(0, sign, 0); // uv
 +
 +
uvs.push(0.5, 0.5); // increase index
 +
 +
index++;
 +
} // save the index of the last center vertex
 +
 +
 +
const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs
 +
 +
for (let x = 0; x <= radialSegments; x++) {
 +
const u = x / radialSegments;
 +
const theta = u * thetaLength + thetaStart;
 +
const cosTheta = Math.cos(theta);
 +
const sinTheta = Math.sin(theta); // vertex
 +
 +
vertex.x = radius * sinTheta;
 +
vertex.y = halfHeight * sign;
 +
vertex.z = radius * cosTheta;
 +
vertices.push(vertex.x, vertex.y, vertex.z); // normal
 +
 +
normals.push(0, sign, 0); // uv
 +
 +
uv.x = cosTheta * 0.5 + 0.5;
 +
uv.y = sinTheta * 0.5 * sign + 0.5;
 +
uvs.push(uv.x, uv.y); // increase index
 +
 +
index++;
 +
} // generate indices
 +
 +
 +
for (let x = 0; x < radialSegments; x++) {
 +
const c = centerIndexStart + x;
 +
const i = centerIndexEnd + x;
 +
 +
if (top === true) {
 +
// face top
 +
indices.push(i, i + 1, c);
 +
} else {
 +
// face bottom
 +
indices.push(i + 1, i, c);
 +
}
 +
 +
groupCount += 3;
 +
} // add a group to the geometry. this will ensure multi material support
 +
 +
 +
scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); // calculate new start value for groups
 +
 +
groupStart += groupCount;
 +
}
 +
}
 +
 +
static fromJSON(data) {
 +
return new CylinderGeometry(data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
 +
}
 +
 +
}
 +
 +
class ConeGeometry extends CylinderGeometry {
 +
constructor(radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {
 +
super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength);
 +
this.type = 'ConeGeometry';
 +
this.parameters = {
 +
radius: radius,
 +
height: height,
 +
radialSegments: radialSegments,
 +
heightSegments: heightSegments,
 +
openEnded: openEnded,
 +
thetaStart: thetaStart,
 +
thetaLength: thetaLength
 +
};
 +
}
 +
 +
static fromJSON(data) {
 +
return new ConeGeometry(data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
 +
}
 +
 +
}
 +
 +
class PolyhedronGeometry extends BufferGeometry {
 +
constructor(vertices, indices, radius = 1, detail = 0) {
 +
super();
 +
this.type = 'PolyhedronGeometry';
 +
this.parameters = {
 +
vertices: vertices,
 +
indices: indices,
 +
radius: radius,
 +
detail: detail
 +
}; // default buffer data
 +
 +
const vertexBuffer = [];
 +
const uvBuffer = []; // the subdivision creates the vertex buffer data
 +
 +
subdivide(detail); // all vertices should lie on a conceptual sphere with a given radius
 +
 +
applyRadius(radius); // finally, create the uv data
 +
 +
generateUVs(); // build non-indexed geometry
 +
 +
this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2));
 +
 +
if (detail === 0) {
 +
this.computeVertexNormals(); // flat normals
 +
} else {
 +
this.normalizeNormals(); // smooth normals
 +
} // helper functions
 +
 +
 +
function subdivide(detail) {
 +
const a = new Vector3();
 +
const b = new Vector3();
 +
const c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value
 +
 +
for (let i = 0; i < indices.length; i += 3) {
 +
// get the vertices of the face
 +
getVertexByIndex(indices[i + 0], a);
 +
getVertexByIndex(indices[i + 1], b);
 +
getVertexByIndex(indices[i + 2], c); // perform subdivision
 +
 +
subdivideFace(a, b, c, detail);
 +
}
 +
}
 +
 +
function subdivideFace(a, b, c, detail) {
 +
const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision
 +
 +
const v = []; // construct all of the vertices for this subdivision
 +
 +
for (let i = 0; i <= cols; i++) {
 +
v[i] = [];
 +
const aj = a.clone().lerp(c, i / cols);
 +
const bj = b.clone().lerp(c, i / cols);
 +
const rows = cols - i;
 +
 +
for (let j = 0; j <= rows; j++) {
 +
if (j === 0 && i === cols) {
 +
v[i][j] = aj;
 +
} else {
 +
v[i][j] = aj.clone().lerp(bj, j / rows);
 +
}
 +
}
 +
} // construct all of the faces
 +
 +
 +
for (let i = 0; i < cols; i++) {
 +
for (let j = 0; j < 2 * (cols - i) - 1; j++) {
 +
const k = Math.floor(j / 2);
 +
 +
if (j % 2 === 0) {
 +
pushVertex(v[i][k + 1]);
 +
pushVertex(v[i + 1][k]);
 +
pushVertex(v[i][k]);
 +
} else {
 +
pushVertex(v[i][k + 1]);
 +
pushVertex(v[i + 1][k + 1]);
 +
pushVertex(v[i + 1][k]);
 +
}
 +
}
 +
}
 +
}
 +
 +
function applyRadius(radius) {
 +
const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex
 +
 +
for (let i = 0; i < vertexBuffer.length; i += 3) {
 +
vertex.x = vertexBuffer[i + 0];
 +
vertex.y = vertexBuffer[i + 1];
 +
vertex.z = vertexBuffer[i + 2];
 +
vertex.normalize().multiplyScalar(radius);
 +
vertexBuffer[i + 0] = vertex.x;
 +
vertexBuffer[i + 1] = vertex.y;
 +
vertexBuffer[i + 2] = vertex.z;
 +
}
 +
}
 +
 +
function generateUVs() {
 +
const vertex = new Vector3();
 +
 +
for (let i = 0; i < vertexBuffer.length; i += 3) {
 +
vertex.x = vertexBuffer[i + 0];
 +
vertex.y = vertexBuffer[i + 1];
 +
vertex.z = vertexBuffer[i + 2];
 +
const u = azimuth(vertex) / 2 / Math.PI + 0.5;
 +
const v = inclination(vertex) / Math.PI + 0.5;
 +
uvBuffer.push(u, 1 - v);
 +
}
 +
 +
correctUVs();
 +
correctSeam();
 +
}
 +
 +
function correctSeam() {
 +
// handle case when face straddles the seam, see #3269
 +
for (let i = 0; i < uvBuffer.length; i += 6) {
 +
// uv data of a single face
 +
const x0 = uvBuffer[i + 0];
 +
const x1 = uvBuffer[i + 2];
 +
const x2 = uvBuffer[i + 4];
 +
const max = Math.max(x0, x1, x2);
 +
const min = Math.min(x0, x1, x2); // 0.9 is somewhat arbitrary
 +
 +
if (max > 0.9 && min < 0.1) {
 +
if (x0 < 0.2) uvBuffer[i + 0] += 1;
 +
if (x1 < 0.2) uvBuffer[i + 2] += 1;
 +
if (x2 < 0.2) uvBuffer[i + 4] += 1;
 +
}
 +
}
 +
}
 +
 +
function pushVertex(vertex) {
 +
vertexBuffer.push(vertex.x, vertex.y, vertex.z);
 +
}
 +
 +
function getVertexByIndex(index, vertex) {
 +
const stride = index * 3;
 +
vertex.x = vertices[stride + 0];
 +
vertex.y = vertices[stride + 1];
 +
vertex.z = vertices[stride + 2];
 +
}
 +
 +
function correctUVs() {
 +
const a = new Vector3();
 +
const b = new Vector3();
 +
const c = new Vector3();
 +
const centroid = new Vector3();
 +
const uvA = new Vector2();
 +
const uvB = new Vector2();
 +
const uvC = new Vector2();
 +
 +
for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) {
 +
a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]);
 +
b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]);
 +
c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]);
 +
uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]);
 +
uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]);
 +
uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]);
 +
centroid.copy(a).add(b).add(c).divideScalar(3);
 +
const azi = azimuth(centroid);
 +
correctUV(uvA, j + 0, a, azi);
 +
correctUV(uvB, j + 2, b, azi);
 +
correctUV(uvC, j + 4, c, azi);
 +
}
 +
}
 +
 +
function correctUV(uv, stride, vector, azimuth) {
 +
if (azimuth < 0 && uv.x === 1) {
 +
uvBuffer[stride] = uv.x - 1;
 +
}
 +
 +
if (vector.x === 0 && vector.z === 0) {
 +
uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5;
 +
}
 +
} // Angle around the Y axis, counter-clockwise when looking from above.
 +
 +
 +
function azimuth(vector) {
 +
return Math.atan2(vector.z, -vector.x);
 +
} // Angle above the XZ plane.
 +
 +
 +
function inclination(vector) {
 +
return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z));
 +
}
 +
}
 +
 +
static fromJSON(data) {
 +
return new PolyhedronGeometry(data.vertices, data.indices, data.radius, data.details);
 +
}
 +
 +
}
 +
 +
class DodecahedronGeometry extends PolyhedronGeometry {
 +
constructor(radius = 1, detail = 0) {
 +
const t = (1 + Math.sqrt(5)) / 2;
 +
const r = 1 / t;
 +
const vertices = [// (±1, ±1, ±1)
 +
-1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ)
 +
0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0)
 +
-r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ)
 +
-t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r];
 +
const indices = [3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9];
 +
super(vertices, indices, radius, detail);
 +
this.type = 'DodecahedronGeometry';
 +
this.parameters = {
 +
radius: radius,
 +
detail: detail
 +
};
 +
}
 +
 +
static fromJSON(data) {
 +
return new DodecahedronGeometry(data.radius, data.detail);
 +
}
 +
 +
}
 +
 +
const _v0 = new Vector3();
 +
 +
const _v1$1 = new Vector3();
 +
 +
const _normal = new Vector3();
 +
 +
const _triangle = new Triangle();
 +
 +
class EdgesGeometry extends BufferGeometry {
 +
constructor(geometry, thresholdAngle) {
 +
super();
 +
this.type = 'EdgesGeometry';
 +
this.parameters = {
 +
thresholdAngle: thresholdAngle
 +
};
 +
thresholdAngle = thresholdAngle !== undefined ? thresholdAngle : 1;
 +
 +
if (geometry.isGeometry === true) {
 +
console.error('THREE.EdgesGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
 +
return;
 +
}
 +
 +
const precisionPoints = 4;
 +
const precision = Math.pow(10, precisionPoints);
 +
const thresholdDot = Math.cos(DEG2RAD * thresholdAngle);
 +
const indexAttr = geometry.getIndex();
 +
const positionAttr = geometry.getAttribute('position');
 +
const indexCount = indexAttr ? indexAttr.count : positionAttr.count;
 +
const indexArr = [0, 0, 0];
 +
const vertKeys = ['a', 'b', 'c'];
 +
const hashes = new Array(3);
 +
const edgeData = {};
 +
const vertices = [];
 +
 +
for (let i = 0; i < indexCount; i += 3) {
 +
if (indexAttr) {
 +
indexArr[0] = indexAttr.getX(i);
 +
indexArr[1] = indexAttr.getX(i + 1);
 +
indexArr[2] = indexAttr.getX(i + 2);
 +
} else {
 +
indexArr[0] = i;
 +
indexArr[1] = i + 1;
 +
indexArr[2] = i + 2;
 +
}
 +
 +
const {
 +
a,
 +
b,
 +
c
 +
} = _triangle;
 +
a.fromBufferAttribute(positionAttr, indexArr[0]);
 +
b.fromBufferAttribute(positionAttr, indexArr[1]);
 +
c.fromBufferAttribute(positionAttr, indexArr[2]);
 +
 +
_triangle.getNormal(_normal); // create hashes for the edge from the vertices
 +
 +
 +
hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}`;
 +
hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}`;
 +
hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}`; // skip degenerate triangles
 +
 +
if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) {
 +
continue;
 +
} // iterate over every edge
 +
 +
 +
for (let j = 0; j < 3; j++) {
 +
// get the first and next vertex making up the edge
 +
const jNext = (j + 1) % 3;
 +
const vecHash0 = hashes[j];
 +
const vecHash1 = hashes[jNext];
 +
const v0 = _triangle[vertKeys[j]];
 +
const v1 = _triangle[vertKeys[jNext]];
 +
const hash = `${vecHash0}_${vecHash1}`;
 +
const reverseHash = `${vecHash1}_${vecHash0}`;
 +
 +
if (reverseHash in edgeData && edgeData[reverseHash]) {
 +
// if we found a sibling edge add it into the vertex array if
 +
// it meets the angle threshold and delete the edge from the map.
 +
if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) {
 +
vertices.push(v0.x, v0.y, v0.z);
 +
vertices.push(v1.x, v1.y, v1.z);
 +
}
 +
 +
edgeData[reverseHash] = null;
 +
} else if (!(hash in edgeData)) {
 +
// if we've already got an edge here then skip adding a new one
 +
edgeData[hash] = {
 +
index0: indexArr[j],
 +
index1: indexArr[jNext],
 +
normal: _normal.clone()
 +
};
 +
}
 +
}
 +
} // iterate over all remaining, unmatched edges and add them to the vertex array
 +
 +
 +
for (const key in edgeData) {
 +
if (edgeData[key]) {
 +
const {
 +
index0,
 +
index1
 +
} = edgeData[key];
 +
 +
_v0.fromBufferAttribute(positionAttr, index0);
 +
 +
_v1$1.fromBufferAttribute(positionAttr, index1);
 +
 +
vertices.push(_v0.x, _v0.y, _v0.z);
 +
vertices.push(_v1$1.x, _v1$1.y, _v1$1.z);
 +
}
 +
}
 +
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
}
 +
 +
}
 +
 +
/**
 +
* Extensible curve object.
 +
*
 +
* Some common of curve methods:
 +
* .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
 +
* .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
 +
* .getPoints(), .getSpacedPoints()
 +
* .getLength()
 +
* .updateArcLengths()
 +
*
 +
* This following curves inherit from THREE.Curve:
 +
*
 +
* -- 2D curves --
 +
* THREE.ArcCurve
 +
* THREE.CubicBezierCurve
 +
* THREE.EllipseCurve
 +
* THREE.LineCurve
 +
* THREE.QuadraticBezierCurve
 +
* THREE.SplineCurve
 +
*
 +
* -- 3D curves --
 +
* THREE.CatmullRomCurve3
 +
* THREE.CubicBezierCurve3
 +
* THREE.LineCurve3
 +
* THREE.QuadraticBezierCurve3
 +
*
 +
* A series of curves can be represented as a THREE.CurvePath.
 +
*
 +
**/
 +
 +
class Curve {
 +
constructor() {
 +
this.type = 'Curve';
 +
this.arcLengthDivisions = 200;
 +
} // Virtual base class method to overwrite and implement in subclasses
 +
// - t [0 .. 1]
 +
 +
 +
getPoint()
 +
/* t, optionalTarget */
 +
{
 +
console.warn('THREE.Curve: .getPoint() not implemented.');
 +
return null;
 +
} // Get point at relative position in curve according to arc length
 +
// - u [0 .. 1]
 +
 +
 +
getPointAt(u, optionalTarget) {
 +
const t = this.getUtoTmapping(u);
 +
return this.getPoint(t, optionalTarget);
 +
} // Get sequence of points using getPoint( t )
 +
 +
 +
getPoints(divisions = 5) {
 +
const points = [];
 +
 +
for (let d = 0; d <= divisions; d++) {
 +
points.push(this.getPoint(d / divisions));
 +
}
 +
 +
return points;
 +
} // Get sequence of points using getPointAt( u )
 +
 +
 +
getSpacedPoints(divisions = 5) {
 +
const points = [];
 +
 +
for (let d = 0; d <= divisions; d++) {
 +
points.push(this.getPointAt(d / divisions));
 +
}
 +
 +
return points;
 +
} // Get total curve arc length
 +
 +
 +
getLength() {
 +
const lengths = this.getLengths();
 +
return lengths[lengths.length - 1];
 +
} // Get list of cumulative segment lengths
 +
 +
 +
getLengths(divisions = this.arcLengthDivisions) {
 +
if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) {
 +
return this.cacheArcLengths;
 +
}
 +
 +
this.needsUpdate = false;
 +
const cache = [];
 +
let current,
 +
last = this.getPoint(0);
 +
let sum = 0;
 +
cache.push(0);
 +
 +
for (let p = 1; p <= divisions; p++) {
 +
current = this.getPoint(p / divisions);
 +
sum += current.distanceTo(last);
 +
cache.push(sum);
 +
last = current;
 +
}
 +
 +
this.cacheArcLengths = cache;
 +
return cache; // { sums: cache, sum: sum }; Sum is in the last element.
 +
}
 +
 +
updateArcLengths() {
 +
this.needsUpdate = true;
 +
this.getLengths();
 +
} // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
 +
 +
 +
getUtoTmapping(u, distance) {
 +
const arcLengths = this.getLengths();
 +
let i = 0;
 +
const il = arcLengths.length;
 +
let targetArcLength; // The targeted u distance value to get
 +
 +
if (distance) {
 +
targetArcLength = distance;
 +
} else {
 +
targetArcLength = u * arcLengths[il - 1];
 +
} // binary search for the index with largest value smaller than target u distance
 +
 +
 +
let low = 0,
 +
high = il - 1,
 +
comparison;
 +
 +
while (low <= high) {
 +
i = Math.floor(low + (high - low) / 2); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
 +
 +
comparison = arcLengths[i] - targetArcLength;
 +
 +
if (comparison < 0) {
 +
low = i + 1;
 +
} else if (comparison > 0) {
 +
high = i - 1;
 +
} else {
 +
high = i;
 +
break; // DONE
 +
}
 +
}
 +
 +
i = high;
 +
 +
if (arcLengths[i] === targetArcLength) {
 +
return i / (il - 1);
 +
} // we could get finer grain at lengths, or use simple interpolation between two points
 +
 +
 +
const lengthBefore = arcLengths[i];
 +
const lengthAfter = arcLengths[i + 1];
 +
const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points
 +
 +
const segmentFraction = (targetArcLength - lengthBefore) / segmentLength; // add that fractional amount to t
 +
 +
const t = (i + segmentFraction) / (il - 1);
 +
return t;
 +
} // Returns a unit vector tangent at t
 +
// In case any sub curve does not implement its tangent derivation,
 +
// 2 points a small delta apart will be used to find its gradient
 +
// which seems to give a reasonable approximation
 +
 +
 +
getTangent(t, optionalTarget) {
 +
const delta = 0.0001;
 +
let t1 = t - delta;
 +
let t2 = t + delta; // Capping in case of danger
 +
 +
if (t1 < 0) t1 = 0;
 +
if (t2 > 1) t2 = 1;
 +
const pt1 = this.getPoint(t1);
 +
const pt2 = this.getPoint(t2);
 +
const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3());
 +
tangent.copy(pt2).sub(pt1).normalize();
 +
return tangent;
 +
}
 +
 +
getTangentAt(u, optionalTarget) {
 +
const t = this.getUtoTmapping(u);
 +
return this.getTangent(t, optionalTarget);
 +
}
 +
 +
computeFrenetFrames(segments, closed) {
 +
// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
 +
const normal = new Vector3();
 +
const tangents = [];
 +
const normals = [];
 +
const binormals = [];
 +
const vec = new Vector3();
 +
const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve
 +
 +
for (let i = 0; i <= segments; i++) {
 +
const u = i / segments;
 +
tangents[i] = this.getTangentAt(u, new Vector3());
 +
tangents[i].normalize();
 +
} // select an initial normal vector perpendicular to the first tangent vector,
 +
// and in the direction of the minimum tangent xyz component
 +
 +
 +
normals[0] = new Vector3();
 +
binormals[0] = new Vector3();
 +
let min = Number.MAX_VALUE;
 +
const tx = Math.abs(tangents[0].x);
 +
const ty = Math.abs(tangents[0].y);
 +
const tz = Math.abs(tangents[0].z);
 +
 +
if (tx <= min) {
 +
min = tx;
 +
normal.set(1, 0, 0);
 +
}
 +
 +
if (ty <= min) {
 +
min = ty;
 +
normal.set(0, 1, 0);
 +
}
 +
 +
if (tz <= min) {
 +
normal.set(0, 0, 1);
 +
}
 +
 +
vec.crossVectors(tangents[0], normal).normalize();
 +
normals[0].crossVectors(tangents[0], vec);
 +
binormals[0].crossVectors(tangents[0], normals[0]); // compute the slowly-varying normal and binormal vectors for each segment on the curve
 +
 +
for (let i = 1; i <= segments; i++) {
 +
normals[i] = normals[i - 1].clone();
 +
binormals[i] = binormals[i - 1].clone();
 +
vec.crossVectors(tangents[i - 1], tangents[i]);
 +
 +
if (vec.length() > Number.EPSILON) {
 +
vec.normalize();
 +
const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)); // clamp for floating pt errors
 +
 +
normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta));
 +
}
 +
 +
binormals[i].crossVectors(tangents[i], normals[i]);
 +
} // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
 +
 +
 +
if (closed === true) {
 +
let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1));
 +
theta /= segments;
 +
 +
if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) {
 +
theta = -theta;
 +
}
 +
 +
for (let i = 1; i <= segments; i++) {
 +
// twist a little...
 +
normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i));
 +
binormals[i].crossVectors(tangents[i], normals[i]);
 +
}
 +
}
 +
 +
return {
 +
tangents: tangents,
 +
normals: normals,
 +
binormals: binormals
 +
};
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
copy(source) {
 +
this.arcLengthDivisions = source.arcLengthDivisions;
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = {
 +
metadata: {
 +
version: 4.5,
 +
type: 'Curve',
 +
generator: 'Curve.toJSON'
 +
}
 +
};
 +
data.arcLengthDivisions = this.arcLengthDivisions;
 +
data.type = this.type;
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
this.arcLengthDivisions = json.arcLengthDivisions;
 +
return this;
 +
}
 +
 +
}
 +
 +
class EllipseCurve extends Curve {
 +
constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) {
 +
super();
 +
this.type = 'EllipseCurve';
 +
this.aX = aX;
 +
this.aY = aY;
 +
this.xRadius = xRadius;
 +
this.yRadius = yRadius;
 +
this.aStartAngle = aStartAngle;
 +
this.aEndAngle = aEndAngle;
 +
this.aClockwise = aClockwise;
 +
this.aRotation = aRotation;
 +
}
 +
 +
getPoint(t, optionalTarget) {
 +
const point = optionalTarget || new Vector2();
 +
const twoPi = Math.PI * 2;
 +
let deltaAngle = this.aEndAngle - this.aStartAngle;
 +
const samePoints = Math.abs(deltaAngle) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI
 +
 +
while (deltaAngle < 0) deltaAngle += twoPi;
 +
 +
while (deltaAngle > twoPi) deltaAngle -= twoPi;
 +
 +
if (deltaAngle < Number.EPSILON) {
 +
if (samePoints) {
 +
deltaAngle = 0;
 +
} else {
 +
deltaAngle = twoPi;
 +
}
 +
}
 +
 +
if (this.aClockwise === true && !samePoints) {
 +
if (deltaAngle === twoPi) {
 +
deltaAngle = -twoPi;
 +
} else {
 +
deltaAngle = deltaAngle - twoPi;
 +
}
 +
}
 +
 +
const angle = this.aStartAngle + t * deltaAngle;
 +
let x = this.aX + this.xRadius * Math.cos(angle);
 +
let y = this.aY + this.yRadius * Math.sin(angle);
 +
 +
if (this.aRotation !== 0) {
 +
const cos = Math.cos(this.aRotation);
 +
const sin = Math.sin(this.aRotation);
 +
const tx = x - this.aX;
 +
const ty = y - this.aY; // Rotate the point about the center of the ellipse.
 +
 +
x = tx * cos - ty * sin + this.aX;
 +
y = tx * sin + ty * cos + this.aY;
 +
}
 +
 +
return point.set(x, y);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.aX = source.aX;
 +
this.aY = source.aY;
 +
this.xRadius = source.xRadius;
 +
this.yRadius = source.yRadius;
 +
this.aStartAngle = source.aStartAngle;
 +
this.aEndAngle = source.aEndAngle;
 +
this.aClockwise = source.aClockwise;
 +
this.aRotation = source.aRotation;
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.aX = this.aX;
 +
data.aY = this.aY;
 +
data.xRadius = this.xRadius;
 +
data.yRadius = this.yRadius;
 +
data.aStartAngle = this.aStartAngle;
 +
data.aEndAngle = this.aEndAngle;
 +
data.aClockwise = this.aClockwise;
 +
data.aRotation = this.aRotation;
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.aX = json.aX;
 +
this.aY = json.aY;
 +
this.xRadius = json.xRadius;
 +
this.yRadius = json.yRadius;
 +
this.aStartAngle = json.aStartAngle;
 +
this.aEndAngle = json.aEndAngle;
 +
this.aClockwise = json.aClockwise;
 +
this.aRotation = json.aRotation;
 +
return this;
 +
}
 +
 +
}
 +
 +
EllipseCurve.prototype.isEllipseCurve = true;
 +
 +
class ArcCurve extends EllipseCurve {
 +
constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
 +
super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
 +
this.type = 'ArcCurve';
 +
}
 +
 +
}
 +
 +
ArcCurve.prototype.isArcCurve = true;
 +
 +
/**
 +
* Centripetal CatmullRom Curve - which is useful for avoiding
 +
* cusps and self-intersections in non-uniform catmull rom curves.
 +
* http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
 +
*
 +
* curve.type accepts centripetal(default), chordal and catmullrom
 +
* curve.tension is used for catmullrom which defaults to 0.5
 +
*/
 +
 +
/*
 +
Based on an optimized c++ solution in
 +
- http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
 +
- http://ideone.com/NoEbVM
 +
 +
This CubicPoly class could be used for reusing some variables and calculations,
 +
but for three.js curve use, it could be possible inlined and flatten into a single function call
 +
which can be placed in CurveUtils.
 +
*/
 +
 +
function CubicPoly() {
 +
let c0 = 0,
 +
c1 = 0,
 +
c2 = 0,
 +
c3 = 0;
 +
/*
 +
* Compute coefficients for a cubic polynomial
 +
* p(s) = c0 + c1*s + c2*s^2 + c3*s^3
 +
* such that
 +
* p(0) = x0, p(1) = x1
 +
* and
 +
* p'(0) = t0, p'(1) = t1.
 +
*/
 +
 +
function init(x0, x1, t0, t1) {
 +
c0 = x0;
 +
c1 = t0;
 +
c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1;
 +
c3 = 2 * x0 - 2 * x1 + t0 + t1;
 +
}
 +
 +
return {
 +
initCatmullRom: function (x0, x1, x2, x3, tension) {
 +
init(x1, x2, tension * (x2 - x0), tension * (x3 - x1));
 +
},
 +
initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) {
 +
// compute tangents when parameterized in [t1,t2]
 +
let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
 +
let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; // rescale tangents for parametrization in [0,1]
 +
 +
t1 *= dt1;
 +
t2 *= dt1;
 +
init(x1, x2, t1, t2);
 +
},
 +
calc: function (t) {
 +
const t2 = t * t;
 +
const t3 = t2 * t;
 +
return c0 + c1 * t + c2 * t2 + c3 * t3;
 +
}
 +
};
 +
} //
 +
 +
 +
const tmp = new Vector3();
 +
const px = new CubicPoly(),
 +
py = new CubicPoly(),
 +
pz = new CubicPoly();
 +
 +
class CatmullRomCurve3 extends Curve {
 +
constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) {
 +
super();
 +
this.type = 'CatmullRomCurve3';
 +
this.points = points;
 +
this.closed = closed;
 +
this.curveType = curveType;
 +
this.tension = tension;
 +
}
 +
 +
getPoint(t, optionalTarget = new Vector3()) {
 +
const point = optionalTarget;
 +
const points = this.points;
 +
const l = points.length;
 +
const p = (l - (this.closed ? 0 : 1)) * t;
 +
let intPoint = Math.floor(p);
 +
let weight = p - intPoint;
 +
 +
if (this.closed) {
 +
intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l;
 +
} else if (weight === 0 && intPoint === l - 1) {
 +
intPoint = l - 2;
 +
weight = 1;
 +
}
 +
 +
let p0, p3; // 4 points (p1 & p2 defined below)
 +
 +
if (this.closed || intPoint > 0) {
 +
p0 = points[(intPoint - 1) % l];
 +
} else {
 +
// extrapolate first point
 +
tmp.subVectors(points[0], points[1]).add(points[0]);
 +
p0 = tmp;
 +
}
 +
 +
const p1 = points[intPoint % l];
 +
const p2 = points[(intPoint + 1) % l];
 +
 +
if (this.closed || intPoint + 2 < l) {
 +
p3 = points[(intPoint + 2) % l];
 +
} else {
 +
// extrapolate last point
 +
tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]);
 +
p3 = tmp;
 +
}
 +
 +
if (this.curveType === 'centripetal' || this.curveType === 'chordal') {
 +
// init Centripetal / Chordal Catmull-Rom
 +
const pow = this.curveType === 'chordal' ? 0.5 : 0.25;
 +
let dt0 = Math.pow(p0.distanceToSquared(p1), pow);
 +
let dt1 = Math.pow(p1.distanceToSquared(p2), pow);
 +
let dt2 = Math.pow(p2.distanceToSquared(p3), pow); // safety check for repeated points
 +
 +
if (dt1 < 1e-4) dt1 = 1.0;
 +
if (dt0 < 1e-4) dt0 = dt1;
 +
if (dt2 < 1e-4) dt2 = dt1;
 +
px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2);
 +
py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2);
 +
pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2);
 +
} else if (this.curveType === 'catmullrom') {
 +
px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension);
 +
py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension);
 +
pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension);
 +
}
 +
 +
point.set(px.calc(weight), py.calc(weight), pz.calc(weight));
 +
return point;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.points = [];
 +
 +
for (let i = 0, l = source.points.length; i < l; i++) {
 +
const point = source.points[i];
 +
this.points.push(point.clone());
 +
}
 +
 +
this.closed = source.closed;
 +
this.curveType = source.curveType;
 +
this.tension = source.tension;
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.points = [];
 +
 +
for (let i = 0, l = this.points.length; i < l; i++) {
 +
const point = this.points[i];
 +
data.points.push(point.toArray());
 +
}
 +
 +
data.closed = this.closed;
 +
data.curveType = this.curveType;
 +
data.tension = this.tension;
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.points = [];
 +
 +
for (let i = 0, l = json.points.length; i < l; i++) {
 +
const point = json.points[i];
 +
this.points.push(new Vector3().fromArray(point));
 +
}
 +
 +
this.closed = json.closed;
 +
this.curveType = json.curveType;
 +
this.tension = json.tension;
 +
return this;
 +
}
 +
 +
}
 +
 +
CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;
 +
 +
/**
 +
* Bezier Curves formulas obtained from
 +
* http://en.wikipedia.org/wiki/Bézier_curve
 +
*/
 +
function CatmullRom(t, p0, p1, p2, p3) {
 +
const v0 = (p2 - p0) * 0.5;
 +
const v1 = (p3 - p1) * 0.5;
 +
const t2 = t * t;
 +
const t3 = t * t2;
 +
return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
 +
} //
 +
 +
 +
function QuadraticBezierP0(t, p) {
 +
const k = 1 - t;
 +
return k * k * p;
 +
}
 +
 +
function QuadraticBezierP1(t, p) {
 +
return 2 * (1 - t) * t * p;
 +
}
 +
 +
function QuadraticBezierP2(t, p) {
 +
return t * t * p;
 +
}
 +
 +
function QuadraticBezier(t, p0, p1, p2) {
 +
return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2);
 +
} //
 +
 +
 +
function CubicBezierP0(t, p) {
 +
const k = 1 - t;
 +
return k * k * k * p;
 +
}
 +
 +
function CubicBezierP1(t, p) {
 +
const k = 1 - t;
 +
return 3 * k * k * t * p;
 +
}
 +
 +
function CubicBezierP2(t, p) {
 +
return 3 * (1 - t) * t * t * p;
 +
}
 +
 +
function CubicBezierP3(t, p) {
 +
return t * t * t * p;
 +
}
 +
 +
function CubicBezier(t, p0, p1, p2, p3) {
 +
return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3);
 +
}
 +
 +
class CubicBezierCurve extends Curve {
 +
constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) {
 +
super();
 +
this.type = 'CubicBezierCurve';
 +
this.v0 = v0;
 +
this.v1 = v1;
 +
this.v2 = v2;
 +
this.v3 = v3;
 +
}
 +
 +
getPoint(t, optionalTarget = new Vector2()) {
 +
const point = optionalTarget;
 +
const v0 = this.v0,
 +
v1 = this.v1,
 +
v2 = this.v2,
 +
v3 = this.v3;
 +
point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y));
 +
return point;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.v0.copy(source.v0);
 +
this.v1.copy(source.v1);
 +
this.v2.copy(source.v2);
 +
this.v3.copy(source.v3);
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.v0 = this.v0.toArray();
 +
data.v1 = this.v1.toArray();
 +
data.v2 = this.v2.toArray();
 +
data.v3 = this.v3.toArray();
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.v0.fromArray(json.v0);
 +
this.v1.fromArray(json.v1);
 +
this.v2.fromArray(json.v2);
 +
this.v3.fromArray(json.v3);
 +
return this;
 +
}
 +
 +
}
 +
 +
CubicBezierCurve.prototype.isCubicBezierCurve = true;
 +
 +
class CubicBezierCurve3 extends Curve {
 +
constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) {
 +
super();
 +
this.type = 'CubicBezierCurve3';
 +
this.v0 = v0;
 +
this.v1 = v1;
 +
this.v2 = v2;
 +
this.v3 = v3;
 +
}
 +
 +
getPoint(t, optionalTarget = new Vector3()) {
 +
const point = optionalTarget;
 +
const v0 = this.v0,
 +
v1 = this.v1,
 +
v2 = this.v2,
 +
v3 = this.v3;
 +
point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z));
 +
return point;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.v0.copy(source.v0);
 +
this.v1.copy(source.v1);
 +
this.v2.copy(source.v2);
 +
this.v3.copy(source.v3);
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.v0 = this.v0.toArray();
 +
data.v1 = this.v1.toArray();
 +
data.v2 = this.v2.toArray();
 +
data.v3 = this.v3.toArray();
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.v0.fromArray(json.v0);
 +
this.v1.fromArray(json.v1);
 +
this.v2.fromArray(json.v2);
 +
this.v3.fromArray(json.v3);
 +
return this;
 +
}
 +
 +
}
 +
 +
CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;
 +
 +
class LineCurve extends Curve {
 +
constructor(v1 = new Vector2(), v2 = new Vector2()) {
 +
super();
 +
this.type = 'LineCurve';
 +
this.v1 = v1;
 +
this.v2 = v2;
 +
}
 +
 +
getPoint(t, optionalTarget = new Vector2()) {
 +
const point = optionalTarget;
 +
 +
if (t === 1) {
 +
point.copy(this.v2);
 +
} else {
 +
point.copy(this.v2).sub(this.v1);
 +
point.multiplyScalar(t).add(this.v1);
 +
}
 +
 +
return point;
 +
} // Line curve is linear, so we can overwrite default getPointAt
 +
 +
 +
getPointAt(u, optionalTarget) {
 +
return this.getPoint(u, optionalTarget);
 +
}
 +
 +
getTangent(t, optionalTarget) {
 +
const tangent = optionalTarget || new Vector2();
 +
tangent.copy(this.v2).sub(this.v1).normalize();
 +
return tangent;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.v1.copy(source.v1);
 +
this.v2.copy(source.v2);
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.v1 = this.v1.toArray();
 +
data.v2 = this.v2.toArray();
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.v1.fromArray(json.v1);
 +
this.v2.fromArray(json.v2);
 +
return this;
 +
}
 +
 +
}
 +
 +
LineCurve.prototype.isLineCurve = true;
 +
 +
class LineCurve3 extends Curve {
 +
constructor(v1 = new Vector3(), v2 = new Vector3()) {
 +
super();
 +
this.type = 'LineCurve3';
 +
this.isLineCurve3 = true;
 +
this.v1 = v1;
 +
this.v2 = v2;
 +
}
 +
 +
getPoint(t, optionalTarget = new Vector3()) {
 +
const point = optionalTarget;
 +
 +
if (t === 1) {
 +
point.copy(this.v2);
 +
} else {
 +
point.copy(this.v2).sub(this.v1);
 +
point.multiplyScalar(t).add(this.v1);
 +
}
 +
 +
return point;
 +
} // Line curve is linear, so we can overwrite default getPointAt
 +
 +
 +
getPointAt(u, optionalTarget) {
 +
return this.getPoint(u, optionalTarget);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.v1.copy(source.v1);
 +
this.v2.copy(source.v2);
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.v1 = this.v1.toArray();
 +
data.v2 = this.v2.toArray();
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.v1.fromArray(json.v1);
 +
this.v2.fromArray(json.v2);
 +
return this;
 +
}
 +
 +
}
 +
 +
class QuadraticBezierCurve extends Curve {
 +
constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) {
 +
super();
 +
this.type = 'QuadraticBezierCurve';
 +
this.v0 = v0;
 +
this.v1 = v1;
 +
this.v2 = v2;
 +
}
 +
 +
getPoint(t, optionalTarget = new Vector2()) {
 +
const point = optionalTarget;
 +
const v0 = this.v0,
 +
v1 = this.v1,
 +
v2 = this.v2;
 +
point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y));
 +
return point;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.v0.copy(source.v0);
 +
this.v1.copy(source.v1);
 +
this.v2.copy(source.v2);
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.v0 = this.v0.toArray();
 +
data.v1 = this.v1.toArray();
 +
data.v2 = this.v2.toArray();
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.v0.fromArray(json.v0);
 +
this.v1.fromArray(json.v1);
 +
this.v2.fromArray(json.v2);
 +
return this;
 +
}
 +
 +
}
 +
 +
QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;
 +
 +
class QuadraticBezierCurve3 extends Curve {
 +
constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) {
 +
super();
 +
this.type = 'QuadraticBezierCurve3';
 +
this.v0 = v0;
 +
this.v1 = v1;
 +
this.v2 = v2;
 +
}
 +
 +
getPoint(t, optionalTarget = new Vector3()) {
 +
const point = optionalTarget;
 +
const v0 = this.v0,
 +
v1 = this.v1,
 +
v2 = this.v2;
 +
point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z));
 +
return point;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.v0.copy(source.v0);
 +
this.v1.copy(source.v1);
 +
this.v2.copy(source.v2);
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.v0 = this.v0.toArray();
 +
data.v1 = this.v1.toArray();
 +
data.v2 = this.v2.toArray();
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.v0.fromArray(json.v0);
 +
this.v1.fromArray(json.v1);
 +
this.v2.fromArray(json.v2);
 +
return this;
 +
}
 +
 +
}
 +
 +
QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;
 +
 +
class SplineCurve extends Curve {
 +
constructor(points = []) {
 +
super();
 +
this.type = 'SplineCurve';
 +
this.points = points;
 +
}
 +
 +
getPoint(t, optionalTarget = new Vector2()) {
 +
const point = optionalTarget;
 +
const points = this.points;
 +
const p = (points.length - 1) * t;
 +
const intPoint = Math.floor(p);
 +
const weight = p - intPoint;
 +
const p0 = points[intPoint === 0 ? intPoint : intPoint - 1];
 +
const p1 = points[intPoint];
 +
const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1];
 +
const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2];
 +
point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y));
 +
return point;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.points = [];
 +
 +
for (let i = 0, l = source.points.length; i < l; i++) {
 +
const point = source.points[i];
 +
this.points.push(point.clone());
 +
}
 +
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.points = [];
 +
 +
for (let i = 0, l = this.points.length; i < l; i++) {
 +
const point = this.points[i];
 +
data.points.push(point.toArray());
 +
}
 +
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.points = [];
 +
 +
for (let i = 0, l = json.points.length; i < l; i++) {
 +
const point = json.points[i];
 +
this.points.push(new Vector2().fromArray(point));
 +
}
 +
 +
return this;
 +
}
 +
 +
}
 +
 +
SplineCurve.prototype.isSplineCurve = true;
 +
 +
var Curves = /*#__PURE__*/Object.freeze({
 +
__proto__: null,
 +
ArcCurve: ArcCurve,
 +
CatmullRomCurve3: CatmullRomCurve3,
 +
CubicBezierCurve: CubicBezierCurve,
 +
CubicBezierCurve3: CubicBezierCurve3,
 +
EllipseCurve: EllipseCurve,
 +
LineCurve: LineCurve,
 +
LineCurve3: LineCurve3,
 +
QuadraticBezierCurve: QuadraticBezierCurve,
 +
QuadraticBezierCurve3: QuadraticBezierCurve3,
 +
SplineCurve: SplineCurve
 +
});
 +
 +
/**
 +
* Port from https://github.com/mapbox/earcut (v2.2.2)
 +
*/
 +
const Earcut = {
 +
triangulate: function (data, holeIndices, dim = 2) {
 +
const hasHoles = holeIndices && holeIndices.length;
 +
const outerLen = hasHoles ? holeIndices[0] * dim : data.length;
 +
let outerNode = linkedList(data, 0, outerLen, dim, true);
 +
const triangles = [];
 +
if (!outerNode || outerNode.next === outerNode.prev) return triangles;
 +
let minX, minY, maxX, maxY, x, y, invSize;
 +
if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
 +
 +
if (data.length > 80 * dim) {
 +
minX = maxX = data[0];
 +
minY = maxY = data[1];
 +
 +
for (let i = dim; i < outerLen; i += dim) {
 +
x = data[i];
 +
y = data[i + 1];
 +
if (x < minX) minX = x;
 +
if (y < minY) minY = y;
 +
if (x > maxX) maxX = x;
 +
if (y > maxY) maxY = y;
 +
} // minX, minY and invSize are later used to transform coords into integers for z-order calculation
 +
 +
 +
invSize = Math.max(maxX - minX, maxY - minY);
 +
invSize = invSize !== 0 ? 1 / invSize : 0;
 +
}
 +
 +
earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
 +
return triangles;
 +
}
 +
}; // create a circular doubly linked list from polygon points in the specified winding order
 +
 +
function linkedList(data, start, end, dim, clockwise) {
 +
let i, last;
 +
 +
if (clockwise === signedArea(data, start, end, dim) > 0) {
 +
for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last);
 +
} else {
 +
for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last);
 +
}
 +
 +
if (last && equals(last, last.next)) {
 +
removeNode(last);
 +
last = last.next;
 +
}
 +
 +
return last;
 +
} // eliminate colinear or duplicate points
 +
 +
 +
function filterPoints(start, end) {
 +
if (!start) return start;
 +
if (!end) end = start;
 +
let p = start,
 +
again;
 +
 +
do {
 +
again = false;
 +
 +
if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
 +
removeNode(p);
 +
p = end = p.prev;
 +
if (p === p.next) break;
 +
again = true;
 +
} else {
 +
p = p.next;
 +
}
 +
} while (again || p !== end);
 +
 +
return end;
 +
} // main ear slicing loop which triangulates a polygon (given as a linked list)
 +
 +
 +
function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
 +
if (!ear) return; // interlink polygon nodes in z-order
 +
 +
if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
 +
let stop = ear,
 +
prev,
 +
next; // iterate through ears, slicing them one by one
 +
 +
while (ear.prev !== ear.next) {
 +
prev = ear.prev;
 +
next = ear.next;
 +
 +
if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
 +
// cut off the triangle
 +
triangles.push(prev.i / dim);
 +
triangles.push(ear.i / dim);
 +
triangles.push(next.i / dim);
 +
removeNode(ear); // skipping the next vertex leads to less sliver triangles
 +
 +
ear = next.next;
 +
stop = next.next;
 +
continue;
 +
}
 +
 +
ear = next; // if we looped through the whole remaining polygon and can't find any more ears
 +
 +
if (ear === stop) {
 +
// try filtering points and slicing again
 +
if (!pass) {
 +
earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally
 +
} else if (pass === 1) {
 +
ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
 +
earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two
 +
} else if (pass === 2) {
 +
splitEarcut(ear, triangles, dim, minX, minY, invSize);
 +
}
 +
 +
break;
 +
}
 +
}
 +
} // check whether a polygon node forms a valid ear with adjacent nodes
 +
 +
 +
function isEar(ear) {
 +
const a = ear.prev,
 +
b = ear,
 +
c = ear.next;
 +
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
 +
// now make sure we don't have other points inside the potential ear
 +
 +
let p = ear.next.next;
 +
 +
while (p !== ear.prev) {
 +
if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
 +
p = p.next;
 +
}
 +
 +
return true;
 +
}
 +
 +
function isEarHashed(ear, minX, minY, invSize) {
 +
const a = ear.prev,
 +
b = ear,
 +
c = ear.next;
 +
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
 +
// triangle bbox; min & max are calculated like this for speed
 +
 +
const minTX = a.x < b.x ? a.x < c.x ? a.x : c.x : b.x < c.x ? b.x : c.x,
 +
minTY = a.y < b.y ? a.y < c.y ? a.y : c.y : b.y < c.y ? b.y : c.y,
 +
maxTX = a.x > b.x ? a.x > c.x ? a.x : c.x : b.x > c.x ? b.x : c.x,
 +
maxTY = a.y > b.y ? a.y > c.y ? a.y : c.y : b.y > c.y ? b.y : c.y; // z-order range for the current triangle bbox;
 +
 +
const minZ = zOrder(minTX, minTY, minX, minY, invSize),
 +
maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);
 +
let p = ear.prevZ,
 +
n = ear.nextZ; // look for points inside the triangle in both directions
 +
 +
while (p && p.z >= minZ && n && n.z <= maxZ) {
 +
if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
 +
p = p.prevZ;
 +
if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
 +
n = n.nextZ;
 +
} // look for remaining points in decreasing z-order
 +
 +
 +
while (p && p.z >= minZ) {
 +
if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
 +
p = p.prevZ;
 +
} // look for remaining points in increasing z-order
 +
 +
 +
while (n && n.z <= maxZ) {
 +
if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
 +
n = n.nextZ;
 +
}
 +
 +
return true;
 +
} // go through all polygon nodes and cure small local self-intersections
 +
 +
 +
function cureLocalIntersections(start, triangles, dim) {
 +
let p = start;
 +
 +
do {
 +
const a = p.prev,
 +
b = p.next.next;
 +
 +
if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
 +
triangles.push(a.i / dim);
 +
triangles.push(p.i / dim);
 +
triangles.push(b.i / dim); // remove two nodes involved
 +
 +
removeNode(p);
 +
removeNode(p.next);
 +
p = start = b;
 +
}
 +
 +
p = p.next;
 +
} while (p !== start);
 +
 +
return filterPoints(p);
 +
} // try splitting polygon into two and triangulate them independently
 +
 +
 +
function splitEarcut(start, triangles, dim, minX, minY, invSize) {
 +
// look for a valid diagonal that divides the polygon into two
 +
let a = start;
 +
 +
do {
 +
let b = a.next.next;
 +
 +
while (b !== a.prev) {
 +
if (a.i !== b.i && isValidDiagonal(a, b)) {
 +
// split the polygon in two by the diagonal
 +
let c = splitPolygon(a, b); // filter colinear points around the cuts
 +
 +
a = filterPoints(a, a.next);
 +
c = filterPoints(c, c.next); // run earcut on each half
 +
 +
earcutLinked(a, triangles, dim, minX, minY, invSize);
 +
earcutLinked(c, triangles, dim, minX, minY, invSize);
 +
return;
 +
}
 +
 +
b = b.next;
 +
}
 +
 +
a = a.next;
 +
} while (a !== start);
 +
} // link every hole into the outer loop, producing a single-ring polygon without holes
 +
 +
 +
function eliminateHoles(data, holeIndices, outerNode, dim) {
 +
const queue = [];
 +
let i, len, start, end, list;
 +
 +
for (i = 0, len = holeIndices.length; i < len; i++) {
 +
start = holeIndices[i] * dim;
 +
end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
 +
list = linkedList(data, start, end, dim, false);
 +
if (list === list.next) list.steiner = true;
 +
queue.push(getLeftmost(list));
 +
}
 +
 +
queue.sort(compareX); // process holes from left to right
 +
 +
for (i = 0; i < queue.length; i++) {
 +
eliminateHole(queue[i], outerNode);
 +
outerNode = filterPoints(outerNode, outerNode.next);
 +
}
 +
 +
return outerNode;
 +
}
 +
 +
function compareX(a, b) {
 +
return a.x - b.x;
 +
} // find a bridge between vertices that connects hole with an outer ring and and link it
 +
 +
 +
function eliminateHole(hole, outerNode) {
 +
outerNode = findHoleBridge(hole, outerNode);
 +
 +
if (outerNode) {
 +
const b = splitPolygon(outerNode, hole); // filter collinear points around the cuts
 +
 +
filterPoints(outerNode, outerNode.next);
 +
filterPoints(b, b.next);
 +
}
 +
} // David Eberly's algorithm for finding a bridge between hole and outer polygon
 +
 +
 +
function findHoleBridge(hole, outerNode) {
 +
let p = outerNode;
 +
const hx = hole.x;
 +
const hy = hole.y;
 +
let qx = -Infinity,
 +
m; // find a segment intersected by a ray from the hole's leftmost point to the left;
 +
// segment's endpoint with lesser x will be potential connection point
 +
 +
do {
 +
if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
 +
const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
 +
 +
if (x <= hx && x > qx) {
 +
qx = x;
 +
 +
if (x === hx) {
 +
if (hy === p.y) return p;
 +
if (hy === p.next.y) return p.next;
 +
}
 +
 +
m = p.x < p.next.x ? p : p.next;
 +
}
 +
}
 +
 +
p = p.next;
 +
} while (p !== outerNode);
 +
 +
if (!m) return null;
 +
if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint
 +
// look for points inside the triangle of hole point, segment intersection and endpoint;
 +
// if there are no points found, we have a valid connection;
 +
// otherwise choose the point of the minimum angle with the ray as connection point
 +
 +
const stop = m,
 +
mx = m.x,
 +
my = m.y;
 +
let tanMin = Infinity,
 +
tan;
 +
p = m;
 +
 +
do {
 +
if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
 +
tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
 +
 +
if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) {
 +
m = p;
 +
tanMin = tan;
 +
}
 +
}
 +
 +
p = p.next;
 +
} while (p !== stop);
 +
 +
return m;
 +
} // whether sector in vertex m contains sector in vertex p in the same coordinates
 +
 +
 +
function sectorContainsSector(m, p) {
 +
return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
 +
} // interlink polygon nodes in z-order
 +
 +
 +
function indexCurve(start, minX, minY, invSize) {
 +
let p = start;
 +
 +
do {
 +
if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);
 +
p.prevZ = p.prev;
 +
p.nextZ = p.next;
 +
p = p.next;
 +
} while (p !== start);
 +
 +
p.prevZ.nextZ = null;
 +
p.prevZ = null;
 +
sortLinked(p);
 +
} // Simon Tatham's linked list merge sort algorithm
 +
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
 +
 +
 +
function sortLinked(list) {
 +
let i,
 +
p,
 +
q,
 +
e,
 +
tail,
 +
numMerges,
 +
pSize,
 +
qSize,
 +
inSize = 1;
 +
 +
do {
 +
p = list;
 +
list = null;
 +
tail = null;
 +
numMerges = 0;
 +
 +
while (p) {
 +
numMerges++;
 +
q = p;
 +
pSize = 0;
 +
 +
for (i = 0; i < inSize; i++) {
 +
pSize++;
 +
q = q.nextZ;
 +
if (!q) break;
 +
}
 +
 +
qSize = inSize;
 +
 +
while (pSize > 0 || qSize > 0 && q) {
 +
if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
 +
e = p;
 +
p = p.nextZ;
 +
pSize--;
 +
} else {
 +
e = q;
 +
q = q.nextZ;
 +
qSize--;
 +
}
 +
 +
if (tail) tail.nextZ = e;else list = e;
 +
e.prevZ = tail;
 +
tail = e;
 +
}
 +
 +
p = q;
 +
}
 +
 +
tail.nextZ = null;
 +
inSize *= 2;
 +
} while (numMerges > 1);
 +
 +
return list;
 +
} // z-order of a point given coords and inverse of the longer side of data bbox
 +
 +
 +
function zOrder(x, y, minX, minY, invSize) {
 +
// coords are transformed into non-negative 15-bit integer range
 +
x = 32767 * (x - minX) * invSize;
 +
y = 32767 * (y - minY) * invSize;
 +
x = (x | x << 8) & 0x00FF00FF;
 +
x = (x | x << 4) & 0x0F0F0F0F;
 +
x = (x | x << 2) & 0x33333333;
 +
x = (x | x << 1) & 0x55555555;
 +
y = (y | y << 8) & 0x00FF00FF;
 +
y = (y | y << 4) & 0x0F0F0F0F;
 +
y = (y | y << 2) & 0x33333333;
 +
y = (y | y << 1) & 0x55555555;
 +
return x | y << 1;
 +
} // find the leftmost node of a polygon ring
 +
 +
 +
function getLeftmost(start) {
 +
let p = start,
 +
leftmost = start;
 +
 +
do {
 +
if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p;
 +
p = p.next;
 +
} while (p !== start);
 +
 +
return leftmost;
 +
} // check if a point lies within a convex triangle
 +
 +
 +
function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
 +
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
 +
} // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
 +
 +
 +
function isValidDiagonal(a, b) {
 +
return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && ( // dones't intersect other edges
 +
locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && ( // locally visible
 +
area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
 +
equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
 +
} // signed area of a triangle
 +
 +
 +
function area(p, q, r) {
 +
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
 +
} // check if two points are equal
 +
 +
 +
function equals(p1, p2) {
 +
return p1.x === p2.x && p1.y === p2.y;
 +
} // check if two segments intersect
 +
 +
 +
function intersects(p1, q1, p2, q2) {
 +
const o1 = sign(area(p1, q1, p2));
 +
const o2 = sign(area(p1, q1, q2));
 +
const o3 = sign(area(p2, q2, p1));
 +
const o4 = sign(area(p2, q2, q1));
 +
if (o1 !== o2 && o3 !== o4) return true; // general case
 +
 +
if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
 +
 +
if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
 +
 +
if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
 +
 +
if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
 +
 +
return false;
 +
} // for collinear points p, q, r, check if point q lies on segment pr
 +
 +
 +
function onSegment(p, q, r) {
 +
return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
 +
}
 +
 +
function sign(num) {
 +
return num > 0 ? 1 : num < 0 ? -1 : 0;
 +
} // check if a polygon diagonal intersects any polygon segments
 +
 +
 +
function intersectsPolygon(a, b) {
 +
let p = a;
 +
 +
do {
 +
if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true;
 +
p = p.next;
 +
} while (p !== a);
 +
 +
return false;
 +
} // check if a polygon diagonal is locally inside the polygon
 +
 +
 +
function locallyInside(a, b) {
 +
return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
 +
} // check if the middle point of a polygon diagonal is inside the polygon
 +
 +
 +
function middleInside(a, b) {
 +
let p = a,
 +
inside = false;
 +
const px = (a.x + b.x) / 2,
 +
py = (a.y + b.y) / 2;
 +
 +
do {
 +
if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) inside = !inside;
 +
p = p.next;
 +
} while (p !== a);
 +
 +
return inside;
 +
} // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
 +
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
 +
 +
 +
function splitPolygon(a, b) {
 +
const a2 = new Node(a.i, a.x, a.y),
 +
b2 = new Node(b.i, b.x, b.y),
 +
an = a.next,
 +
bp = b.prev;
 +
a.next = b;
 +
b.prev = a;
 +
a2.next = an;
 +
an.prev = a2;
 +
b2.next = a2;
 +
a2.prev = b2;
 +
bp.next = b2;
 +
b2.prev = bp;
 +
return b2;
 +
} // create a node and optionally link it with previous one (in a circular doubly linked list)
 +
 +
 +
function insertNode(i, x, y, last) {
 +
const p = new Node(i, x, y);
 +
 +
if (!last) {
 +
p.prev = p;
 +
p.next = p;
 +
} else {
 +
p.next = last.next;
 +
p.prev = last;
 +
last.next.prev = p;
 +
last.next = p;
 +
}
 +
 +
return p;
 +
}
 +
 +
function removeNode(p) {
 +
p.next.prev = p.prev;
 +
p.prev.next = p.next;
 +
if (p.prevZ) p.prevZ.nextZ = p.nextZ;
 +
if (p.nextZ) p.nextZ.prevZ = p.prevZ;
 +
}
 +
 +
function Node(i, x, y) {
 +
// vertex index in coordinates array
 +
this.i = i; // vertex coordinates
 +
 +
this.x = x;
 +
this.y = y; // previous and next vertex nodes in a polygon ring
 +
 +
this.prev = null;
 +
this.next = null; // z-order curve value
 +
 +
this.z = null; // previous and next nodes in z-order
 +
 +
this.prevZ = null;
 +
this.nextZ = null; // indicates whether this is a steiner point
 +
 +
this.steiner = false;
 +
}
 +
 +
function signedArea(data, start, end, dim) {
 +
let sum = 0;
 +
 +
for (let i = start, j = end - dim; i < end; i += dim) {
 +
sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
 +
j = i;
 +
}
 +
 +
return sum;
 +
}
 +
 +
class ShapeUtils {
 +
// calculate area of the contour polygon
 +
static area(contour) {
 +
const n = contour.length;
 +
let a = 0.0;
 +
 +
for (let p = n - 1, q = 0; q < n; p = q++) {
 +
a += contour[p].x * contour[q].y - contour[q].x * contour[p].y;
 +
}
 +
 +
return a * 0.5;
 +
}
 +
 +
static isClockWise(pts) {
 +
return ShapeUtils.area(pts) < 0;
 +
}
 +
 +
static triangulateShape(contour, holes) {
 +
const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
 +
 +
const holeIndices = []; // array of hole indices
 +
 +
const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]
 +
 +
removeDupEndPts(contour);
 +
addContour(vertices, contour); //
 +
 +
let holeIndex = contour.length;
 +
holes.forEach(removeDupEndPts);
 +
 +
for (let i = 0; i < holes.length; i++) {
 +
holeIndices.push(holeIndex);
 +
holeIndex += holes[i].length;
 +
addContour(vertices, holes[i]);
 +
} //
 +
 +
 +
const triangles = Earcut.triangulate(vertices, holeIndices); //
 +
 +
for (let i = 0; i < triangles.length; i += 3) {
 +
faces.push(triangles.slice(i, i + 3));
 +
}
 +
 +
return faces;
 +
}
 +
 +
}
 +
 +
function removeDupEndPts(points) {
 +
const l = points.length;
 +
 +
if (l > 2 && points[l - 1].equals(points[0])) {
 +
points.pop();
 +
}
 +
}
 +
 +
function addContour(vertices, contour) {
 +
for (let i = 0; i < contour.length; i++) {
 +
vertices.push(contour[i].x);
 +
vertices.push(contour[i].y);
 +
}
 +
}
 +
 +
/**
 +
* Creates extruded geometry from a path shape.
 +
*
 +
* parameters = {
 +
*
 +
* curveSegments: <int>, // number of points on the curves
 +
* steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
 +
* depth: <float>, // Depth to extrude the shape
 +
*
 +
* bevelEnabled: <bool>, // turn on bevel
 +
* bevelThickness: <float>, // how deep into the original shape bevel goes
 +
* bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel
 +
* bevelOffset: <float>, // how far from shape outline does bevel start
 +
* bevelSegments: <int>, // number of bevel layers
 +
*
 +
* extrudePath: <THREE.Curve> // curve to extrude shape along
 +
*
 +
* UVGenerator: <Object> // object that provides UV generator functions
 +
*
 +
* }
 +
*/
 +
 +
class ExtrudeGeometry extends BufferGeometry {
 +
constructor(shapes, options) {
 +
super();
 +
this.type = 'ExtrudeGeometry';
 +
this.parameters = {
 +
shapes: shapes,
 +
options: options
 +
};
 +
shapes = Array.isArray(shapes) ? shapes : [shapes];
 +
const scope = this;
 +
const verticesArray = [];
 +
const uvArray = [];
 +
 +
for (let i = 0, l = shapes.length; i < l; i++) {
 +
const shape = shapes[i];
 +
addShape(shape);
 +
} // build geometry
 +
 +
 +
this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2));
 +
this.computeVertexNormals(); // functions
 +
 +
function addShape(shape) {
 +
const placeholder = []; // options
 +
 +
const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
 +
const steps = options.steps !== undefined ? options.steps : 1;
 +
let depth = options.depth !== undefined ? options.depth : 100;
 +
let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
 +
let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6;
 +
let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2;
 +
let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
 +
let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
 +
const extrudePath = options.extrudePath;
 +
const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options
 +
 +
if (options.amount !== undefined) {
 +
console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.');
 +
depth = options.amount;
 +
} //
 +
 +
 +
let extrudePts,
 +
extrudeByPath = false;
 +
let splineTube, binormal, normal, position2;
 +
 +
if (extrudePath) {
 +
extrudePts = extrudePath.getSpacedPoints(steps);
 +
extrudeByPath = true;
 +
bevelEnabled = false; // bevels not supported for path extrusion
 +
// SETUP TNB variables
 +
// TODO1 - have a .isClosed in spline?
 +
 +
splineTube = extrudePath.computeFrenetFrames(steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
 +
 +
binormal = new Vector3();
 +
normal = new Vector3();
 +
position2 = new Vector3();
 +
} // Safeguards if bevels are not enabled
 +
 +
 +
if (!bevelEnabled) {
 +
bevelSegments = 0;
 +
bevelThickness = 0;
 +
bevelSize = 0;
 +
bevelOffset = 0;
 +
} // Variables initialization
 +
 +
 +
const shapePoints = shape.extractPoints(curveSegments);
 +
let vertices = shapePoints.shape;
 +
const holes = shapePoints.holes;
 +
const reverse = !ShapeUtils.isClockWise(vertices);
 +
 +
if (reverse) {
 +
vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ...
 +
 +
for (let h = 0, hl = holes.length; h < hl; h++) {
 +
const ahole = holes[h];
 +
 +
if (ShapeUtils.isClockWise(ahole)) {
 +
holes[h] = ahole.reverse();
 +
}
 +
}
 +
}
 +
 +
const faces = ShapeUtils.triangulateShape(vertices, holes);
 +
/* Vertices */
 +
 +
const contour = vertices; // vertices has all points but contour has only points of circumference
 +
 +
for (let h = 0, hl = holes.length; h < hl; h++) {
 +
const ahole = holes[h];
 +
vertices = vertices.concat(ahole);
 +
}
 +
 +
function scalePt2(pt, vec, size) {
 +
if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist');
 +
return vec.clone().multiplyScalar(size).add(pt);
 +
}
 +
 +
const vlen = vertices.length,
 +
flen = faces.length; // Find directions for point movement
 +
 +
function getBevelVec(inPt, inPrev, inNext) {
 +
// computes for inPt the corresponding point inPt' on a new contour
 +
// shifted by 1 unit (length of normalized vector) to the left
 +
// if we walk along contour clockwise, this new contour is outside the old one
 +
//
 +
// inPt' is the intersection of the two lines parallel to the two
 +
// adjacent edges of inPt at a distance of 1 unit on the left side.
 +
let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt
 +
// good reading for geometry algorithms (here: line-line intersection)
 +
// http://geomalgorithms.com/a05-_intersect-1.html
 +
 +
const v_prev_x = inPt.x - inPrev.x,
 +
v_prev_y = inPt.y - inPrev.y;
 +
const v_next_x = inNext.x - inPt.x,
 +
v_next_y = inNext.y - inPt.y;
 +
const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; // check for collinear edges
 +
 +
const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x;
 +
 +
if (Math.abs(collinear0) > Number.EPSILON) {
 +
// not collinear
 +
// length of vectors for normalizing
 +
const v_prev_len = Math.sqrt(v_prev_lensq);
 +
const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); // shift adjacent points by unit vectors to the left
 +
 +
const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len;
 +
const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len;
 +
const ptNextShift_x = inNext.x - v_next_y / v_next_len;
 +
const ptNextShift_y = inNext.y + v_next_x / v_next_len; // scaling factor for v_prev to intersection point
 +
 +
const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); // vector from inPt to intersection point
 +
 +
v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x;
 +
v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; // Don't normalize!, otherwise sharp corners become ugly
 +
// but prevent crazy spikes
 +
 +
const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y;
 +
 +
if (v_trans_lensq <= 2) {
 +
return new Vector2(v_trans_x, v_trans_y);
 +
} else {
 +
shrink_by = Math.sqrt(v_trans_lensq / 2);
 +
}
 +
} else {
 +
// handle special case of collinear edges
 +
let direction_eq = false; // assumes: opposite
 +
 +
if (v_prev_x > Number.EPSILON) {
 +
if (v_next_x > Number.EPSILON) {
 +
direction_eq = true;
 +
}
 +
} else {
 +
if (v_prev_x < -Number.EPSILON) {
 +
if (v_next_x < -Number.EPSILON) {
 +
direction_eq = true;
 +
}
 +
} else {
 +
if (Math.sign(v_prev_y) === Math.sign(v_next_y)) {
 +
direction_eq = true;
 +
}
 +
}
 +
}
 +
 +
if (direction_eq) {
 +
// console.log("Warning: lines are a straight sequence");
 +
v_trans_x = -v_prev_y;
 +
v_trans_y = v_prev_x;
 +
shrink_by = Math.sqrt(v_prev_lensq);
 +
} else {
 +
// console.log("Warning: lines are a straight spike");
 +
v_trans_x = v_prev_x;
 +
v_trans_y = v_prev_y;
 +
shrink_by = Math.sqrt(v_prev_lensq / 2);
 +
}
 +
}
 +
 +
return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by);
 +
}
 +
 +
const contourMovements = [];
 +
 +
for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {
 +
if (j === il) j = 0;
 +
if (k === il) k = 0; // (j)---(i)---(k)
 +
// console.log('i,j,k', i, j , k)
 +
 +
contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]);
 +
}
 +
 +
const holesMovements = [];
 +
let oneHoleMovements,
 +
verticesMovements = contourMovements.concat();
 +
 +
for (let h = 0, hl = holes.length; h < hl; h++) {
 +
const ahole = holes[h];
 +
oneHoleMovements = [];
 +
 +
for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {
 +
if (j === il) j = 0;
 +
if (k === il) k = 0; // (j)---(i)---(k)
 +
 +
oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]);
 +
}
 +
 +
holesMovements.push(oneHoleMovements);
 +
verticesMovements = verticesMovements.concat(oneHoleMovements);
 +
} // Loop bevelSegments, 1 for the front, 1 for the back
 +
 +
 +
for (let b = 0; b < bevelSegments; b++) {
 +
//for ( b = bevelSegments; b > 0; b -- ) {
 +
const t = b / bevelSegments;
 +
const z = bevelThickness * Math.cos(t * Math.PI / 2);
 +
const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
 +
 +
for (let i = 0, il = contour.length; i < il; i++) {
 +
const vert = scalePt2(contour[i], contourMovements[i], bs);
 +
v(vert.x, vert.y, -z);
 +
} // expand holes
 +
 +
 +
for (let h = 0, hl = holes.length; h < hl; h++) {
 +
const ahole = holes[h];
 +
oneHoleMovements = holesMovements[h];
 +
 +
for (let i = 0, il = ahole.length; i < il; i++) {
 +
const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);
 +
v(vert.x, vert.y, -z);
 +
}
 +
}
 +
}
 +
 +
const bs = bevelSize + bevelOffset; // Back facing vertices
 +
 +
for (let i = 0; i < vlen; i++) {
 +
const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];
 +
 +
if (!extrudeByPath) {
 +
v(vert.x, vert.y, 0);
 +
} else {
 +
// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
 +
normal.copy(splineTube.normals[0]).multiplyScalar(vert.x);
 +
binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y);
 +
position2.copy(extrudePts[0]).add(normal).add(binormal);
 +
v(position2.x, position2.y, position2.z);
 +
}
 +
} // Add stepped vertices...
 +
// Including front facing vertices
 +
 +
 +
for (let s = 1; s <= steps; s++) {
 +
for (let i = 0; i < vlen; i++) {
 +
const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];
 +
 +
if (!extrudeByPath) {
 +
v(vert.x, vert.y, depth / steps * s);
 +
} else {
 +
// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
 +
normal.copy(splineTube.normals[s]).multiplyScalar(vert.x);
 +
binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y);
 +
position2.copy(extrudePts[s]).add(normal).add(binormal);
 +
v(position2.x, position2.y, position2.z);
 +
}
 +
}
 +
} // Add bevel segments planes
 +
//for ( b = 1; b <= bevelSegments; b ++ ) {
 +
 +
 +
for (let b = bevelSegments - 1; b >= 0; b--) {
 +
const t = b / bevelSegments;
 +
const z = bevelThickness * Math.cos(t * Math.PI / 2);
 +
const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
 +
 +
for (let i = 0, il = contour.length; i < il; i++) {
 +
const vert = scalePt2(contour[i], contourMovements[i], bs);
 +
v(vert.x, vert.y, depth + z);
 +
} // expand holes
 +
 +
 +
for (let h = 0, hl = holes.length; h < hl; h++) {
 +
const ahole = holes[h];
 +
oneHoleMovements = holesMovements[h];
 +
 +
for (let i = 0, il = ahole.length; i < il; i++) {
 +
const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);
 +
 +
if (!extrudeByPath) {
 +
v(vert.x, vert.y, depth + z);
 +
} else {
 +
v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z);
 +
}
 +
}
 +
}
 +
}
 +
/* Faces */
 +
// Top and bottom faces
 +
 +
 +
buildLidFaces(); // Sides faces
 +
 +
buildSideFaces(); ///// Internal functions
 +
 +
function buildLidFaces() {
 +
const start = verticesArray.length / 3;
 +
 +
if (bevelEnabled) {
 +
let layer = 0; // steps + 1
 +
 +
let offset = vlen * layer; // Bottom faces
 +
 +
for (let i = 0; i < flen; i++) {
 +
const face = faces[i];
 +
f3(face[2] + offset, face[1] + offset, face[0] + offset);
 +
}
 +
 +
layer = steps + bevelSegments * 2;
 +
offset = vlen * layer; // Top faces
 +
 +
for (let i = 0; i < flen; i++) {
 +
const face = faces[i];
 +
f3(face[0] + offset, face[1] + offset, face[2] + offset);
 +
}
 +
} else {
 +
// Bottom faces
 +
for (let i = 0; i < flen; i++) {
 +
const face = faces[i];
 +
f3(face[2], face[1], face[0]);
 +
} // Top faces
 +
 +
 +
for (let i = 0; i < flen; i++) {
 +
const face = faces[i];
 +
f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps);
 +
}
 +
}
 +
 +
scope.addGroup(start, verticesArray.length / 3 - start, 0);
 +
} // Create faces for the z-sides of the shape
 +
 +
 +
function buildSideFaces() {
 +
const start = verticesArray.length / 3;
 +
let layeroffset = 0;
 +
sidewalls(contour, layeroffset);
 +
layeroffset += contour.length;
 +
 +
for (let h = 0, hl = holes.length; h < hl; h++) {
 +
const ahole = holes[h];
 +
sidewalls(ahole, layeroffset); //, true
 +
 +
layeroffset += ahole.length;
 +
}
 +
 +
scope.addGroup(start, verticesArray.length / 3 - start, 1);
 +
}
 +
 +
function sidewalls(contour, layeroffset) {
 +
let i = contour.length;
 +
 +
while (--i >= 0) {
 +
const j = i;
 +
let k = i - 1;
 +
if (k < 0) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length);
 +
 +
for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) {
 +
const slen1 = vlen * s;
 +
const slen2 = vlen * (s + 1);
 +
const a = layeroffset + j + slen1,
 +
b = layeroffset + k + slen1,
 +
c = layeroffset + k + slen2,
 +
d = layeroffset + j + slen2;
 +
f4(a, b, c, d);
 +
}
 +
}
 +
}
 +
 +
function v(x, y, z) {
 +
placeholder.push(x);
 +
placeholder.push(y);
 +
placeholder.push(z);
 +
}
 +
 +
function f3(a, b, c) {
 +
addVertex(a);
 +
addVertex(b);
 +
addVertex(c);
 +
const nextIndex = verticesArray.length / 3;
 +
const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1);
 +
addUV(uvs[0]);
 +
addUV(uvs[1]);
 +
addUV(uvs[2]);
 +
}
 +
 +
function f4(a, b, c, d) {
 +
addVertex(a);
 +
addVertex(b);
 +
addVertex(d);
 +
addVertex(b);
 +
addVertex(c);
 +
addVertex(d);
 +
const nextIndex = verticesArray.length / 3;
 +
const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1);
 +
addUV(uvs[0]);
 +
addUV(uvs[1]);
 +
addUV(uvs[3]);
 +
addUV(uvs[1]);
 +
addUV(uvs[2]);
 +
addUV(uvs[3]);
 +
}
 +
 +
function addVertex(index) {
 +
verticesArray.push(placeholder[index * 3 + 0]);
 +
verticesArray.push(placeholder[index * 3 + 1]);
 +
verticesArray.push(placeholder[index * 3 + 2]);
 +
}
 +
 +
function addUV(vector2) {
 +
uvArray.push(vector2.x);
 +
uvArray.push(vector2.y);
 +
}
 +
}
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
const shapes = this.parameters.shapes;
 +
const options = this.parameters.options;
 +
return toJSON$1(shapes, options, data);
 +
}
 +
 +
static fromJSON(data, shapes) {
 +
const geometryShapes = [];
 +
 +
for (let j = 0, jl = data.shapes.length; j < jl; j++) {
 +
const shape = shapes[data.shapes[j]];
 +
geometryShapes.push(shape);
 +
}
 +
 +
const extrudePath = data.options.extrudePath;
 +
 +
if (extrudePath !== undefined) {
 +
data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath);
 +
}
 +
 +
return new ExtrudeGeometry(geometryShapes, data.options);
 +
}
 +
 +
}
 +
 +
const WorldUVGenerator = {
 +
generateTopUV: function (geometry, vertices, indexA, indexB, indexC) {
 +
const a_x = vertices[indexA * 3];
 +
const a_y = vertices[indexA * 3 + 1];
 +
const b_x = vertices[indexB * 3];
 +
const b_y = vertices[indexB * 3 + 1];
 +
const c_x = vertices[indexC * 3];
 +
const c_y = vertices[indexC * 3 + 1];
 +
return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)];
 +
},
 +
generateSideWallUV: function (geometry, vertices, indexA, indexB, indexC, indexD) {
 +
const a_x = vertices[indexA * 3];
 +
const a_y = vertices[indexA * 3 + 1];
 +
const a_z = vertices[indexA * 3 + 2];
 +
const b_x = vertices[indexB * 3];
 +
const b_y = vertices[indexB * 3 + 1];
 +
const b_z = vertices[indexB * 3 + 2];
 +
const c_x = vertices[indexC * 3];
 +
const c_y = vertices[indexC * 3 + 1];
 +
const c_z = vertices[indexC * 3 + 2];
 +
const d_x = vertices[indexD * 3];
 +
const d_y = vertices[indexD * 3 + 1];
 +
const d_z = vertices[indexD * 3 + 2];
 +
 +
if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) {
 +
return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)];
 +
} else {
 +
return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)];
 +
}
 +
}
 +
};
 +
 +
function toJSON$1(shapes, options, data) {
 +
data.shapes = [];
 +
 +
if (Array.isArray(shapes)) {
 +
for (let i = 0, l = shapes.length; i < l; i++) {
 +
const shape = shapes[i];
 +
data.shapes.push(shape.uuid);
 +
}
 +
} else {
 +
data.shapes.push(shapes.uuid);
 +
}
 +
 +
if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON();
 +
return data;
 +
}
 +
 +
class IcosahedronGeometry extends PolyhedronGeometry {
 +
constructor(radius = 1, detail = 0) {
 +
const t = (1 + Math.sqrt(5)) / 2;
 +
const vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1];
 +
const indices = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1];
 +
super(vertices, indices, radius, detail);
 +
this.type = 'IcosahedronGeometry';
 +
this.parameters = {
 +
radius: radius,
 +
detail: detail
 +
};
 +
}
 +
 +
static fromJSON(data) {
 +
return new IcosahedronGeometry(data.radius, data.detail);
 +
}
 +
 +
}
 +
 +
class LatheGeometry extends BufferGeometry {
 +
constructor(points, segments = 12, phiStart = 0, phiLength = Math.PI * 2) {
 +
super();
 +
this.type = 'LatheGeometry';
 +
this.parameters = {
 +
points: points,
 +
segments: segments,
 +
phiStart: phiStart,
 +
phiLength: phiLength
 +
};
 +
segments = Math.floor(segments); // clamp phiLength so it's in range of [ 0, 2PI ]
 +
 +
phiLength = clamp(phiLength, 0, Math.PI * 2); // buffers
 +
 +
const indices = [];
 +
const vertices = [];
 +
const uvs = []; // helper variables
 +
 +
const inverseSegments = 1.0 / segments;
 +
const vertex = new Vector3();
 +
const uv = new Vector2(); // generate vertices and uvs
 +
 +
for (let i = 0; i <= segments; i++) {
 +
const phi = phiStart + i * inverseSegments * phiLength;
 +
const sin = Math.sin(phi);
 +
const cos = Math.cos(phi);
 +
 +
for (let j = 0; j <= points.length - 1; j++) {
 +
// vertex
 +
vertex.x = points[j].x * sin;
 +
vertex.y = points[j].y;
 +
vertex.z = points[j].x * cos;
 +
vertices.push(vertex.x, vertex.y, vertex.z); // uv
 +
 +
uv.x = i / segments;
 +
uv.y = j / (points.length - 1);
 +
uvs.push(uv.x, uv.y);
 +
}
 +
} // indices
 +
 +
 +
for (let i = 0; i < segments; i++) {
 +
for (let j = 0; j < points.length - 1; j++) {
 +
const base = j + i * points.length;
 +
const a = base;
 +
const b = base + points.length;
 +
const c = base + points.length + 1;
 +
const d = base + 1; // faces
 +
 +
indices.push(a, b, d);
 +
indices.push(b, c, d);
 +
}
 +
} // build geometry
 +
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // generate normals
 +
 +
this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam.
 +
// because the corresponding vertices are identical (but still have different UVs).
 +
 +
if (phiLength === Math.PI * 2) {
 +
const normals = this.attributes.normal.array;
 +
const n1 = new Vector3();
 +
const n2 = new Vector3();
 +
const n = new Vector3(); // this is the buffer offset for the last line of vertices
 +
 +
const base = segments * points.length * 3;
 +
 +
for (let i = 0, j = 0; i < points.length; i++, j += 3) {
 +
// select the normal of the vertex in the first line
 +
n1.x = normals[j + 0];
 +
n1.y = normals[j + 1];
 +
n1.z = normals[j + 2]; // select the normal of the vertex in the last line
 +
 +
n2.x = normals[base + j + 0];
 +
n2.y = normals[base + j + 1];
 +
n2.z = normals[base + j + 2]; // average normals
 +
 +
n.addVectors(n1, n2).normalize(); // assign the new values to both normals
 +
 +
normals[j + 0] = normals[base + j + 0] = n.x;
 +
normals[j + 1] = normals[base + j + 1] = n.y;
 +
normals[j + 2] = normals[base + j + 2] = n.z;
 +
}
 +
}
 +
}
 +
 +
static fromJSON(data) {
 +
return new LatheGeometry(data.points, data.segments, data.phiStart, data.phiLength);
 +
}
 +
 +
}
 +
 +
class OctahedronGeometry extends PolyhedronGeometry {
 +
constructor(radius = 1, detail = 0) {
 +
const vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1];
 +
const indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2];
 +
super(vertices, indices, radius, detail);
 +
this.type = 'OctahedronGeometry';
 +
this.parameters = {
 +
radius: radius,
 +
detail: detail
 +
};
 +
}
 +
 +
static fromJSON(data) {
 +
return new OctahedronGeometry(data.radius, data.detail);
 +
}
 +
 +
}
 +
 +
/**
 +
* Parametric Surfaces Geometry
 +
* based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html
 +
*/
 +
 +
class ParametricGeometry extends BufferGeometry {
 +
constructor(func, slices, stacks) {
 +
super();
 +
this.type = 'ParametricGeometry';
 +
this.parameters = {
 +
func: func,
 +
slices: slices,
 +
stacks: stacks
 +
}; // buffers
 +
 +
const indices = [];
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = [];
 +
const EPS = 0.00001;
 +
const normal = new Vector3();
 +
const p0 = new Vector3(),
 +
p1 = new Vector3();
 +
const pu = new Vector3(),
 +
pv = new Vector3();
 +
 +
if (func.length < 3) {
 +
console.error('THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.');
 +
} // generate vertices, normals and uvs
 +
 +
 +
const sliceCount = slices + 1;
 +
 +
for (let i = 0; i <= stacks; i++) {
 +
const v = i / stacks;
 +
 +
for (let j = 0; j <= slices; j++) {
 +
const u = j / slices; // vertex
 +
 +
func(u, v, p0);
 +
vertices.push(p0.x, p0.y, p0.z); // normal
 +
// approximate tangent vectors via finite differences
 +
 +
if (u - EPS >= 0) {
 +
func(u - EPS, v, p1);
 +
pu.subVectors(p0, p1);
 +
} else {
 +
func(u + EPS, v, p1);
 +
pu.subVectors(p1, p0);
 +
}
 +
 +
if (v - EPS >= 0) {
 +
func(u, v - EPS, p1);
 +
pv.subVectors(p0, p1);
 +
} else {
 +
func(u, v + EPS, p1);
 +
pv.subVectors(p1, p0);
 +
} // cross product of tangent vectors returns surface normal
 +
 +
 +
normal.crossVectors(pu, pv).normalize();
 +
normals.push(normal.x, normal.y, normal.z); // uv
 +
 +
uvs.push(u, v);
 +
}
 +
} // generate indices
 +
 +
 +
for (let i = 0; i < stacks; i++) {
 +
for (let j = 0; j < slices; j++) {
 +
const a = i * sliceCount + j;
 +
const b = i * sliceCount + j + 1;
 +
const c = (i + 1) * sliceCount + j + 1;
 +
const d = (i + 1) * sliceCount + j; // faces one and two
 +
 +
indices.push(a, b, d);
 +
indices.push(b, c, d);
 +
}
 +
} // build geometry
 +
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
 +
}
 +
 +
}
 +
 +
class RingGeometry extends BufferGeometry {
 +
constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) {
 +
super();
 +
this.type = 'RingGeometry';
 +
this.parameters = {
 +
innerRadius: innerRadius,
 +
outerRadius: outerRadius,
 +
thetaSegments: thetaSegments,
 +
phiSegments: phiSegments,
 +
thetaStart: thetaStart,
 +
thetaLength: thetaLength
 +
};
 +
thetaSegments = Math.max(3, thetaSegments);
 +
phiSegments = Math.max(1, phiSegments); // buffers
 +
 +
const indices = [];
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = []; // some helper variables
 +
 +
let radius = innerRadius;
 +
const radiusStep = (outerRadius - innerRadius) / phiSegments;
 +
const vertex = new Vector3();
 +
const uv = new Vector2(); // generate vertices, normals and uvs
 +
 +
for (let j = 0; j <= phiSegments; j++) {
 +
for (let i = 0; i <= thetaSegments; i++) {
 +
// values are generate from the inside of the ring to the outside
 +
const segment = thetaStart + i / thetaSegments * thetaLength; // vertex
 +
 +
vertex.x = radius * Math.cos(segment);
 +
vertex.y = radius * Math.sin(segment);
 +
vertices.push(vertex.x, vertex.y, vertex.z); // normal
 +
 +
normals.push(0, 0, 1); // uv
 +
 +
uv.x = (vertex.x / outerRadius + 1) / 2;
 +
uv.y = (vertex.y / outerRadius + 1) / 2;
 +
uvs.push(uv.x, uv.y);
 +
} // increase the radius for next row of vertices
 +
 +
 +
radius += radiusStep;
 +
} // indices
 +
 +
 +
for (let j = 0; j < phiSegments; j++) {
 +
const thetaSegmentLevel = j * (thetaSegments + 1);
 +
 +
for (let i = 0; i < thetaSegments; i++) {
 +
const segment = i + thetaSegmentLevel;
 +
const a = segment;
 +
const b = segment + thetaSegments + 1;
 +
const c = segment + thetaSegments + 2;
 +
const d = segment + 1; // faces
 +
 +
indices.push(a, b, d);
 +
indices.push(b, c, d);
 +
}
 +
} // build geometry
 +
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
 +
}
 +
 +
static fromJSON(data) {
 +
return new RingGeometry(data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength);
 +
}
 +
 +
}
 +
 +
class ShapeGeometry extends BufferGeometry {
 +
constructor(shapes, curveSegments = 12) {
 +
super();
 +
this.type = 'ShapeGeometry';
 +
this.parameters = {
 +
shapes: shapes,
 +
curveSegments: curveSegments
 +
}; // buffers
 +
 +
const indices = [];
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = []; // helper variables
 +
 +
let groupStart = 0;
 +
let groupCount = 0; // allow single and array values for "shapes" parameter
 +
 +
if (Array.isArray(shapes) === false) {
 +
addShape(shapes);
 +
} else {
 +
for (let i = 0; i < shapes.length; i++) {
 +
addShape(shapes[i]);
 +
this.addGroup(groupStart, groupCount, i); // enables MultiMaterial support
 +
 +
groupStart += groupCount;
 +
groupCount = 0;
 +
}
 +
} // build geometry
 +
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // helper functions
 +
 +
function addShape(shape) {
 +
const indexOffset = vertices.length / 3;
 +
const points = shape.extractPoints(curveSegments);
 +
let shapeVertices = points.shape;
 +
const shapeHoles = points.holes; // check direction of vertices
 +
 +
if (ShapeUtils.isClockWise(shapeVertices) === false) {
 +
shapeVertices = shapeVertices.reverse();
 +
}
 +
 +
for (let i = 0, l = shapeHoles.length; i < l; i++) {
 +
const shapeHole = shapeHoles[i];
 +
 +
if (ShapeUtils.isClockWise(shapeHole) === true) {
 +
shapeHoles[i] = shapeHole.reverse();
 +
}
 +
}
 +
 +
const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); // join vertices of inner and outer paths to a single array
 +
 +
for (let i = 0, l = shapeHoles.length; i < l; i++) {
 +
const shapeHole = shapeHoles[i];
 +
shapeVertices = shapeVertices.concat(shapeHole);
 +
} // vertices, normals, uvs
 +
 +
 +
for (let i = 0, l = shapeVertices.length; i < l; i++) {
 +
const vertex = shapeVertices[i];
 +
vertices.push(vertex.x, vertex.y, 0);
 +
normals.push(0, 0, 1);
 +
uvs.push(vertex.x, vertex.y); // world uvs
 +
} // incides
 +
 +
 +
for (let i = 0, l = faces.length; i < l; i++) {
 +
const face = faces[i];
 +
const a = face[0] + indexOffset;
 +
const b = face[1] + indexOffset;
 +
const c = face[2] + indexOffset;
 +
indices.push(a, b, c);
 +
groupCount += 3;
 +
}
 +
}
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
const shapes = this.parameters.shapes;
 +
return toJSON(shapes, data);
 +
}
 +
 +
static fromJSON(data, shapes) {
 +
const geometryShapes = [];
 +
 +
for (let j = 0, jl = data.shapes.length; j < jl; j++) {
 +
const shape = shapes[data.shapes[j]];
 +
geometryShapes.push(shape);
 +
}
 +
 +
return new ShapeGeometry(geometryShapes, data.curveSegments);
 +
}
 +
 +
}
 +
 +
function toJSON(shapes, data) {
 +
data.shapes = [];
 +
 +
if (Array.isArray(shapes)) {
 +
for (let i = 0, l = shapes.length; i < l; i++) {
 +
const shape = shapes[i];
 +
data.shapes.push(shape.uuid);
 +
}
 +
} else {
 +
data.shapes.push(shapes.uuid);
 +
}
 +
 +
return data;
 +
}
 +
 +
class SphereGeometry extends BufferGeometry {
 +
constructor(radius = 1, widthSegments = 8, heightSegments = 6, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) {
 +
super();
 +
this.type = 'SphereGeometry';
 +
this.parameters = {
 +
radius: radius,
 +
widthSegments: widthSegments,
 +
heightSegments: heightSegments,
 +
phiStart: phiStart,
 +
phiLength: phiLength,
 +
thetaStart: thetaStart,
 +
thetaLength: thetaLength
 +
};
 +
widthSegments = Math.max(3, Math.floor(widthSegments));
 +
heightSegments = Math.max(2, Math.floor(heightSegments));
 +
const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI);
 +
let index = 0;
 +
const grid = [];
 +
const vertex = new Vector3();
 +
const normal = new Vector3(); // buffers
 +
 +
const indices = [];
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = []; // generate vertices, normals and uvs
 +
 +
for (let iy = 0; iy <= heightSegments; iy++) {
 +
const verticesRow = [];
 +
const v = iy / heightSegments; // special case for the poles
 +
 +
let uOffset = 0;
 +
 +
if (iy == 0 && thetaStart == 0) {
 +
uOffset = 0.5 / widthSegments;
 +
} else if (iy == heightSegments && thetaEnd == Math.PI) {
 +
uOffset = -0.5 / widthSegments;
 +
}
 +
 +
for (let ix = 0; ix <= widthSegments; ix++) {
 +
const u = ix / widthSegments; // vertex
 +
 +
vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
 +
vertex.y = radius * Math.cos(thetaStart + v * thetaLength);
 +
vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
 +
vertices.push(vertex.x, vertex.y, vertex.z); // normal
 +
 +
normal.copy(vertex).normalize();
 +
normals.push(normal.x, normal.y, normal.z); // uv
 +
 +
uvs.push(u + uOffset, 1 - v);
 +
verticesRow.push(index++);
 +
}
 +
 +
grid.push(verticesRow);
 +
} // indices
 +
 +
 +
for (let iy = 0; iy < heightSegments; iy++) {
 +
for (let ix = 0; ix < widthSegments; ix++) {
 +
const a = grid[iy][ix + 1];
 +
const b = grid[iy][ix];
 +
const c = grid[iy + 1][ix];
 +
const d = grid[iy + 1][ix + 1];
 +
if (iy !== 0 || thetaStart > 0) indices.push(a, b, d);
 +
if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d);
 +
}
 +
} // build geometry
 +
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
 +
}
 +
 +
static fromJSON(data) {
 +
return new SphereGeometry(data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength);
 +
}
 +
 +
}
 +
 +
class TetrahedronGeometry extends PolyhedronGeometry {
 +
constructor(radius = 1, detail = 0) {
 +
const vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1];
 +
const indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1];
 +
super(vertices, indices, radius, detail);
 +
this.type = 'TetrahedronGeometry';
 +
this.parameters = {
 +
radius: radius,
 +
detail: detail
 +
};
 +
}
 +
 +
static fromJSON(data) {
 +
return new TetrahedronGeometry(data.radius, data.detail);
 +
}
 +
 +
}
 +
 +
/**
 +
* Text = 3D Text
 +
*
 +
* parameters = {
 +
* font: <THREE.Font>, // font
 +
*
 +
* size: <float>, // size of the text
 +
* height: <float>, // thickness to extrude text
 +
* curveSegments: <int>, // number of points on the curves
 +
*
 +
* bevelEnabled: <bool>, // turn on bevel
 +
* bevelThickness: <float>, // how deep into text bevel goes
 +
* bevelSize: <float>, // how far from text outline (including bevelOffset) is bevel
 +
* bevelOffset: <float> // how far from text outline does bevel start
 +
* }
 +
*/
 +
 +
class TextGeometry extends ExtrudeGeometry {
 +
constructor(text, parameters = {}) {
 +
const font = parameters.font;
 +
 +
if (!(font && font.isFont)) {
 +
console.error('THREE.TextGeometry: font parameter is not an instance of THREE.Font.');
 +
return new BufferGeometry();
 +
}
 +
 +
const shapes = font.generateShapes(text, parameters.size); // translate parameters to ExtrudeGeometry API
 +
 +
parameters.depth = parameters.height !== undefined ? parameters.height : 50; // defaults
 +
 +
if (parameters.bevelThickness === undefined) parameters.bevelThickness = 10;
 +
if (parameters.bevelSize === undefined) parameters.bevelSize = 8;
 +
if (parameters.bevelEnabled === undefined) parameters.bevelEnabled = false;
 +
super(shapes, parameters);
 +
this.type = 'TextGeometry';
 +
}
 +
 +
}
 +
 +
class TorusGeometry extends BufferGeometry {
 +
constructor(radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2) {
 +
super();
 +
this.type = 'TorusGeometry';
 +
this.parameters = {
 +
radius: radius,
 +
tube: tube,
 +
radialSegments: radialSegments,
 +
tubularSegments: tubularSegments,
 +
arc: arc
 +
};
 +
radialSegments = Math.floor(radialSegments);
 +
tubularSegments = Math.floor(tubularSegments); // buffers
 +
 +
const indices = [];
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = []; // helper variables
 +
 +
const center = new Vector3();
 +
const vertex = new Vector3();
 +
const normal = new Vector3(); // generate vertices, normals and uvs
 +
 +
for (let j = 0; j <= radialSegments; j++) {
 +
for (let i = 0; i <= tubularSegments; i++) {
 +
const u = i / tubularSegments * arc;
 +
const v = j / radialSegments * Math.PI * 2; // vertex
 +
 +
vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u);
 +
vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u);
 +
vertex.z = tube * Math.sin(v);
 +
vertices.push(vertex.x, vertex.y, vertex.z); // normal
 +
 +
center.x = radius * Math.cos(u);
 +
center.y = radius * Math.sin(u);
 +
normal.subVectors(vertex, center).normalize();
 +
normals.push(normal.x, normal.y, normal.z); // uv
 +
 +
uvs.push(i / tubularSegments);
 +
uvs.push(j / radialSegments);
 +
}
 +
} // generate indices
 +
 +
 +
for (let j = 1; j <= radialSegments; j++) {
 +
for (let i = 1; i <= tubularSegments; i++) {
 +
// indices
 +
const a = (tubularSegments + 1) * j + i - 1;
 +
const b = (tubularSegments + 1) * (j - 1) + i - 1;
 +
const c = (tubularSegments + 1) * (j - 1) + i;
 +
const d = (tubularSegments + 1) * j + i; // faces
 +
 +
indices.push(a, b, d);
 +
indices.push(b, c, d);
 +
}
 +
} // build geometry
 +
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
 +
}
 +
 +
static fromJSON(data) {
 +
return new TorusGeometry(data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc);
 +
}
 +
 +
}
 +
 +
class TorusKnotGeometry extends BufferGeometry {
 +
constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) {
 +
super();
 +
this.type = 'TorusKnotGeometry';
 +
this.parameters = {
 +
radius: radius,
 +
tube: tube,
 +
tubularSegments: tubularSegments,
 +
radialSegments: radialSegments,
 +
p: p,
 +
q: q
 +
};
 +
tubularSegments = Math.floor(tubularSegments);
 +
radialSegments = Math.floor(radialSegments); // buffers
 +
 +
const indices = [];
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = []; // helper variables
 +
 +
const vertex = new Vector3();
 +
const normal = new Vector3();
 +
const P1 = new Vector3();
 +
const P2 = new Vector3();
 +
const B = new Vector3();
 +
const T = new Vector3();
 +
const N = new Vector3(); // generate vertices, normals and uvs
 +
 +
for (let i = 0; i <= tubularSegments; ++i) {
 +
// the radian "u" is used to calculate the position on the torus curve of the current tubular segement
 +
const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
 +
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
 +
 +
calculatePositionOnCurve(u, p, q, radius, P1);
 +
calculatePositionOnCurve(u + 0.01, p, q, radius, P2); // calculate orthonormal basis
 +
 +
T.subVectors(P2, P1);
 +
N.addVectors(P2, P1);
 +
B.crossVectors(T, N);
 +
N.crossVectors(B, T); // normalize B, N. T can be ignored, we don't use it
 +
 +
B.normalize();
 +
N.normalize();
 +
 +
for (let j = 0; j <= radialSegments; ++j) {
 +
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
 +
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
 +
const v = j / radialSegments * Math.PI * 2;
 +
const cx = -tube * Math.cos(v);
 +
const cy = tube * Math.sin(v); // now calculate the final vertex position.
 +
// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
 +
 +
vertex.x = P1.x + (cx * N.x + cy * B.x);
 +
vertex.y = P1.y + (cx * N.y + cy * B.y);
 +
vertex.z = P1.z + (cx * N.z + cy * B.z);
 +
vertices.push(vertex.x, vertex.y, vertex.z); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
 +
 +
normal.subVectors(vertex, P1).normalize();
 +
normals.push(normal.x, normal.y, normal.z); // uv
 +
 +
uvs.push(i / tubularSegments);
 +
uvs.push(j / radialSegments);
 +
}
 +
} // generate indices
 +
 +
 +
for (let j = 1; j <= tubularSegments; j++) {
 +
for (let i = 1; i <= radialSegments; i++) {
 +
// indices
 +
const a = (radialSegments + 1) * (j - 1) + (i - 1);
 +
const b = (radialSegments + 1) * j + (i - 1);
 +
const c = (radialSegments + 1) * j + i;
 +
const d = (radialSegments + 1) * (j - 1) + i; // faces
 +
 +
indices.push(a, b, d);
 +
indices.push(b, c, d);
 +
}
 +
} // build geometry
 +
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // this function calculates the current position on the torus curve
 +
 +
function calculatePositionOnCurve(u, p, q, radius, position) {
 +
const cu = Math.cos(u);
 +
const su = Math.sin(u);
 +
const quOverP = q / p * u;
 +
const cs = Math.cos(quOverP);
 +
position.x = radius * (2 + cs) * 0.5 * cu;
 +
position.y = radius * (2 + cs) * su * 0.5;
 +
position.z = radius * Math.sin(quOverP) * 0.5;
 +
}
 +
}
 +
 +
static fromJSON(data) {
 +
return new TorusKnotGeometry(data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q);
 +
}
 +
 +
}
 +
 +
class TubeGeometry extends BufferGeometry {
 +
constructor(path, tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) {
 +
super();
 +
this.type = 'TubeGeometry';
 +
this.parameters = {
 +
path: path,
 +
tubularSegments: tubularSegments,
 +
radius: radius,
 +
radialSegments: radialSegments,
 +
closed: closed
 +
};
 +
const frames = path.computeFrenetFrames(tubularSegments, closed); // expose internals
 +
 +
this.tangents = frames.tangents;
 +
this.normals = frames.normals;
 +
this.binormals = frames.binormals; // helper variables
 +
 +
const vertex = new Vector3();
 +
const normal = new Vector3();
 +
const uv = new Vector2();
 +
let P = new Vector3(); // buffer
 +
 +
const vertices = [];
 +
const normals = [];
 +
const uvs = [];
 +
const indices = []; // create buffer data
 +
 +
generateBufferData(); // build geometry
 +
 +
this.setIndex(indices);
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
 +
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // functions
 +
 +
function generateBufferData() {
 +
for (let i = 0; i < tubularSegments; i++) {
 +
generateSegment(i);
 +
} // if the geometry is not closed, generate the last row of vertices and normals
 +
// at the regular position on the given path
 +
//
 +
// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
 +
 +
 +
generateSegment(closed === false ? tubularSegments : 0); // uvs are generated in a separate function.
 +
// this makes it easy compute correct values for closed geometries
 +
 +
generateUVs(); // finally create faces
 +
 +
generateIndices();
 +
}
 +
 +
function generateSegment(i) {
 +
// we use getPointAt to sample evenly distributed points from the given path
 +
P = path.getPointAt(i / tubularSegments, P); // retrieve corresponding normal and binormal
 +
 +
const N = frames.normals[i];
 +
const B = frames.binormals[i]; // generate normals and vertices for the current segment
 +
 +
for (let j = 0; j <= radialSegments; j++) {
 +
const v = j / radialSegments * Math.PI * 2;
 +
const sin = Math.sin(v);
 +
const cos = -Math.cos(v); // normal
 +
 +
normal.x = cos * N.x + sin * B.x;
 +
normal.y = cos * N.y + sin * B.y;
 +
normal.z = cos * N.z + sin * B.z;
 +
normal.normalize();
 +
normals.push(normal.x, normal.y, normal.z); // vertex
 +
 +
vertex.x = P.x + radius * normal.x;
 +
vertex.y = P.y + radius * normal.y;
 +
vertex.z = P.z + radius * normal.z;
 +
vertices.push(vertex.x, vertex.y, vertex.z);
 +
}
 +
}
 +
 +
function generateIndices() {
 +
for (let j = 1; j <= tubularSegments; j++) {
 +
for (let i = 1; i <= radialSegments; i++) {
 +
const a = (radialSegments + 1) * (j - 1) + (i - 1);
 +
const b = (radialSegments + 1) * j + (i - 1);
 +
const c = (radialSegments + 1) * j + i;
 +
const d = (radialSegments + 1) * (j - 1) + i; // faces
 +
 +
indices.push(a, b, d);
 +
indices.push(b, c, d);
 +
}
 +
}
 +
}
 +
 +
function generateUVs() {
 +
for (let i = 0; i <= tubularSegments; i++) {
 +
for (let j = 0; j <= radialSegments; j++) {
 +
uv.x = i / tubularSegments;
 +
uv.y = j / radialSegments;
 +
uvs.push(uv.x, uv.y);
 +
}
 +
}
 +
}
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.path = this.parameters.path.toJSON();
 +
return data;
 +
}
 +
 +
static fromJSON(data) {
 +
// This only works for built-in curves (e.g. CatmullRomCurve3).
 +
// User defined curves or instances of CurvePath will not be deserialized.
 +
return new TubeGeometry(new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed);
 +
}
 +
 +
}
 +
 +
class WireframeGeometry extends BufferGeometry {
 +
constructor(geometry) {
 +
super();
 +
this.type = 'WireframeGeometry';
 +
 +
if (geometry.isGeometry === true) {
 +
console.error('THREE.WireframeGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
 +
return;
 +
} // buffer
 +
 +
 +
const vertices = []; // helper variables
 +
 +
const edge = [0, 0],
 +
edges = {};
 +
const vertex = new Vector3();
 +
 +
if (geometry.index !== null) {
 +
// indexed BufferGeometry
 +
const position = geometry.attributes.position;
 +
const indices = geometry.index;
 +
let groups = geometry.groups;
 +
 +
if (groups.length === 0) {
 +
groups = [{
 +
start: 0,
 +
count: indices.count,
 +
materialIndex: 0
 +
}];
 +
} // create a data structure that contains all eges without duplicates
 +
 +
 +
for (let o = 0, ol = groups.length; o < ol; ++o) {
 +
const group = groups[o];
 +
const start = group.start;
 +
const count = group.count;
 +
 +
for (let i = start, l = start + count; i < l; i += 3) {
 +
for (let j = 0; j < 3; j++) {
 +
const edge1 = indices.getX(i + j);
 +
const edge2 = indices.getX(i + (j + 1) % 3);
 +
edge[0] = Math.min(edge1, edge2); // sorting prevents duplicates
 +
 +
edge[1] = Math.max(edge1, edge2);
 +
const key = edge[0] + ',' + edge[1];
 +
 +
if (edges[key] === undefined) {
 +
edges[key] = {
 +
index1: edge[0],
 +
index2: edge[1]
 +
};
 +
}
 +
}
 +
}
 +
} // generate vertices
 +
 +
 +
for (const key in edges) {
 +
const e = edges[key];
 +
vertex.fromBufferAttribute(position, e.index1);
 +
vertices.push(vertex.x, vertex.y, vertex.z);
 +
vertex.fromBufferAttribute(position, e.index2);
 +
vertices.push(vertex.x, vertex.y, vertex.z);
 +
}
 +
} else {
 +
// non-indexed BufferGeometry
 +
const position = geometry.attributes.position;
 +
 +
for (let i = 0, l = position.count / 3; i < l; i++) {
 +
for (let j = 0; j < 3; j++) {
 +
// three edges per triangle, an edge is represented as (index1, index2)
 +
// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
 +
const index1 = 3 * i + j;
 +
vertex.fromBufferAttribute(position, index1);
 +
vertices.push(vertex.x, vertex.y, vertex.z);
 +
const index2 = 3 * i + (j + 1) % 3;
 +
vertex.fromBufferAttribute(position, index2);
 +
vertices.push(vertex.x, vertex.y, vertex.z);
 +
}
 +
}
 +
} // build geometry
 +
 +
 +
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
}
 +
 +
}
 +
 +
var Geometries = /*#__PURE__*/Object.freeze({
 +
__proto__: null,
 +
BoxGeometry: BoxGeometry,
 +
BoxBufferGeometry: BoxGeometry,
 +
CircleGeometry: CircleGeometry,
 +
CircleBufferGeometry: CircleGeometry,
 +
ConeGeometry: ConeGeometry,
 +
ConeBufferGeometry: ConeGeometry,
 +
CylinderGeometry: CylinderGeometry,
 +
CylinderBufferGeometry: CylinderGeometry,
 +
DodecahedronGeometry: DodecahedronGeometry,
 +
DodecahedronBufferGeometry: DodecahedronGeometry,
 +
EdgesGeometry: EdgesGeometry,
 +
ExtrudeGeometry: ExtrudeGeometry,
 +
ExtrudeBufferGeometry: ExtrudeGeometry,
 +
IcosahedronGeometry: IcosahedronGeometry,
 +
IcosahedronBufferGeometry: IcosahedronGeometry,
 +
LatheGeometry: LatheGeometry,
 +
LatheBufferGeometry: LatheGeometry,
 +
OctahedronGeometry: OctahedronGeometry,
 +
OctahedronBufferGeometry: OctahedronGeometry,
 +
ParametricGeometry: ParametricGeometry,
 +
ParametricBufferGeometry: ParametricGeometry,
 +
PlaneGeometry: PlaneGeometry,
 +
PlaneBufferGeometry: PlaneGeometry,
 +
PolyhedronGeometry: PolyhedronGeometry,
 +
PolyhedronBufferGeometry: PolyhedronGeometry,
 +
RingGeometry: RingGeometry,
 +
RingBufferGeometry: RingGeometry,
 +
ShapeGeometry: ShapeGeometry,
 +
ShapeBufferGeometry: ShapeGeometry,
 +
SphereGeometry: SphereGeometry,
 +
SphereBufferGeometry: SphereGeometry,
 +
TetrahedronGeometry: TetrahedronGeometry,
 +
TetrahedronBufferGeometry: TetrahedronGeometry,
 +
TextGeometry: TextGeometry,
 +
TextBufferGeometry: TextGeometry,
 +
TorusGeometry: TorusGeometry,
 +
TorusBufferGeometry: TorusGeometry,
 +
TorusKnotGeometry: TorusKnotGeometry,
 +
TorusKnotBufferGeometry: TorusKnotGeometry,
 +
TubeGeometry: TubeGeometry,
 +
TubeBufferGeometry: TubeGeometry,
 +
WireframeGeometry: WireframeGeometry
 +
});
 +
 +
/**
 +
* parameters = {
 +
* color: <THREE.Color>
 +
* }
 +
*/
 +
 +
class ShadowMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'ShadowMaterial';
 +
this.color = new Color(0x000000);
 +
this.transparent = true;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.color.copy(source.color);
 +
return this;
 +
}
 +
 +
}
 +
 +
ShadowMaterial.prototype.isShadowMaterial = true;
 +
 +
class RawShaderMaterial extends ShaderMaterial {
 +
constructor(parameters) {
 +
super(parameters);
 +
this.type = 'RawShaderMaterial';
 +
}
 +
 +
}
 +
 +
RawShaderMaterial.prototype.isRawShaderMaterial = true;
 +
 +
/**
 +
* parameters = {
 +
* color: <hex>,
 +
* roughness: <float>,
 +
* metalness: <float>,
 +
* opacity: <float>,
 +
*
 +
* map: new THREE.Texture( <Image> ),
 +
*
 +
* lightMap: new THREE.Texture( <Image> ),
 +
* lightMapIntensity: <float>
 +
*
 +
* aoMap: new THREE.Texture( <Image> ),
 +
* aoMapIntensity: <float>
 +
*
 +
* emissive: <hex>,
 +
* emissiveIntensity: <float>
 +
* emissiveMap: new THREE.Texture( <Image> ),
 +
*
 +
* bumpMap: new THREE.Texture( <Image> ),
 +
* bumpScale: <float>,
 +
*
 +
* normalMap: new THREE.Texture( <Image> ),
 +
* normalMapType: THREE.TangentSpaceNormalMap,
 +
* normalScale: <Vector2>,
 +
*
 +
* displacementMap: new THREE.Texture( <Image> ),
 +
* displacementScale: <float>,
 +
* displacementBias: <float>,
 +
*
 +
* roughnessMap: new THREE.Texture( <Image> ),
 +
*
 +
* metalnessMap: new THREE.Texture( <Image> ),
 +
*
 +
* alphaMap: new THREE.Texture( <Image> ),
 +
*
 +
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
 +
* envMapIntensity: <float>
 +
*
 +
* refractionRatio: <float>,
 +
*
 +
* wireframe: <boolean>,
 +
* wireframeLinewidth: <float>,
 +
*
 +
* morphTargets: <bool>,
 +
* morphNormals: <bool>,
 +
*
 +
* flatShading: <bool>
 +
* }
 +
*/
 +
 +
class MeshStandardMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.defines = {
 +
'STANDARD': ''
 +
};
 +
this.type = 'MeshStandardMaterial';
 +
this.color = new Color(0xffffff); // diffuse
 +
 +
this.roughness = 1.0;
 +
this.metalness = 0.0;
 +
this.map = null;
 +
this.lightMap = null;
 +
this.lightMapIntensity = 1.0;
 +
this.aoMap = null;
 +
this.aoMapIntensity = 1.0;
 +
this.emissive = new Color(0x000000);
 +
this.emissiveIntensity = 1.0;
 +
this.emissiveMap = null;
 +
this.bumpMap = null;
 +
this.bumpScale = 1;
 +
this.normalMap = null;
 +
this.normalMapType = TangentSpaceNormalMap;
 +
this.normalScale = new Vector2(1, 1);
 +
this.displacementMap = null;
 +
this.displacementScale = 1;
 +
this.displacementBias = 0;
 +
this.roughnessMap = null;
 +
this.metalnessMap = null;
 +
this.alphaMap = null;
 +
this.envMap = null;
 +
this.envMapIntensity = 1.0;
 +
this.refractionRatio = 0.98;
 +
this.wireframe = false;
 +
this.wireframeLinewidth = 1;
 +
this.wireframeLinecap = 'round';
 +
this.wireframeLinejoin = 'round';
 +
this.morphTargets = false;
 +
this.morphNormals = false;
 +
this.flatShading = false;
 +
this.vertexTangents = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.defines = {
 +
'STANDARD': ''
 +
};
 +
this.color.copy(source.color);
 +
this.roughness = source.roughness;
 +
this.metalness = source.metalness;
 +
this.map = source.map;
 +
this.lightMap = source.lightMap;
 +
this.lightMapIntensity = source.lightMapIntensity;
 +
this.aoMap = source.aoMap;
 +
this.aoMapIntensity = source.aoMapIntensity;
 +
this.emissive.copy(source.emissive);
 +
this.emissiveMap = source.emissiveMap;
 +
this.emissiveIntensity = source.emissiveIntensity;
 +
this.bumpMap = source.bumpMap;
 +
this.bumpScale = source.bumpScale;
 +
this.normalMap = source.normalMap;
 +
this.normalMapType = source.normalMapType;
 +
this.normalScale.copy(source.normalScale);
 +
this.displacementMap = source.displacementMap;
 +
this.displacementScale = source.displacementScale;
 +
this.displacementBias = source.displacementBias;
 +
this.roughnessMap = source.roughnessMap;
 +
this.metalnessMap = source.metalnessMap;
 +
this.alphaMap = source.alphaMap;
 +
this.envMap = source.envMap;
 +
this.envMapIntensity = source.envMapIntensity;
 +
this.refractionRatio = source.refractionRatio;
 +
this.wireframe = source.wireframe;
 +
this.wireframeLinewidth = source.wireframeLinewidth;
 +
this.wireframeLinecap = source.wireframeLinecap;
 +
this.wireframeLinejoin = source.wireframeLinejoin;
 +
this.morphTargets = source.morphTargets;
 +
this.morphNormals = source.morphNormals;
 +
this.flatShading = source.flatShading;
 +
this.vertexTangents = source.vertexTangents;
 +
return this;
 +
}
 +
 +
}
 +
 +
MeshStandardMaterial.prototype.isMeshStandardMaterial = true;
 +
 +
/**
 +
* parameters = {
 +
* clearcoat: <float>,
 +
* clearcoatMap: new THREE.Texture( <Image> ),
 +
* clearcoatRoughness: <float>,
 +
* clearcoatRoughnessMap: new THREE.Texture( <Image> ),
 +
* clearcoatNormalScale: <Vector2>,
 +
* clearcoatNormalMap: new THREE.Texture( <Image> ),
 +
*
 +
* reflectivity: <float>,
 +
* ior: <float>,
 +
*
 +
* sheen: <Color>,
 +
*
 +
* transmission: <float>,
 +
* transmissionMap: new THREE.Texture( <Image> ),
 +
*
 +
* thickness: <float>,
 +
* thicknessMap: new THREE.Texture( <Image> ),
 +
* attenuationDistance: <float>,
 +
* attenuationColor: <Color>
 +
* }
 +
*/
 +
 +
class MeshPhysicalMaterial extends MeshStandardMaterial {
 +
constructor(parameters) {
 +
super();
 +
this.defines = {
 +
'STANDARD': '',
 +
'PHYSICAL': ''
 +
};
 +
this.type = 'MeshPhysicalMaterial';
 +
this.clearcoat = 0.0;
 +
this.clearcoatMap = null;
 +
this.clearcoatRoughness = 0.0;
 +
this.clearcoatRoughnessMap = null;
 +
this.clearcoatNormalScale = new Vector2(1, 1);
 +
this.clearcoatNormalMap = null;
 +
this.reflectivity = 0.5; // maps to F0 = 0.04
 +
 +
Object.defineProperty(this, 'ior', {
 +
get: function () {
 +
return (1 + 0.4 * this.reflectivity) / (1 - 0.4 * this.reflectivity);
 +
},
 +
set: function (ior) {
 +
this.reflectivity = clamp(2.5 * (ior - 1) / (ior + 1), 0, 1);
 +
}
 +
});
 +
this.sheen = null; // null will disable sheen bsdf
 +
 +
this.transmission = 0.0;
 +
this.transmissionMap = null;
 +
this.thickness = 0.01;
 +
this.thicknessMap = null;
 +
this.attenuationDistance = 0.0;
 +
this.attenuationColor = new Color(1, 1, 1);
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.defines = {
 +
'STANDARD': '',
 +
'PHYSICAL': ''
 +
};
 +
this.clearcoat = source.clearcoat;
 +
this.clearcoatMap = source.clearcoatMap;
 +
this.clearcoatRoughness = source.clearcoatRoughness;
 +
this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
 +
this.clearcoatNormalMap = source.clearcoatNormalMap;
 +
this.clearcoatNormalScale.copy(source.clearcoatNormalScale);
 +
this.reflectivity = source.reflectivity;
 +
 +
if (source.sheen) {
 +
this.sheen = (this.sheen || new Color()).copy(source.sheen);
 +
} else {
 +
this.sheen = null;
 +
}
 +
 +
this.transmission = source.transmission;
 +
this.transmissionMap = source.transmissionMap;
 +
this.thickness = source.thickness;
 +
this.thicknessMap = source.thicknessMap;
 +
this.attenuationDistance = source.attenuationDistance;
 +
this.attenuationColor.copy(source.attenuationColor);
 +
return this;
 +
}
 +
 +
}
 +
 +
MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;
 +
 +
/**
 +
* parameters = {
 +
* color: <hex>,
 +
* specular: <hex>,
 +
* shininess: <float>,
 +
* opacity: <float>,
 +
*
 +
* map: new THREE.Texture( <Image> ),
 +
*
 +
* lightMap: new THREE.Texture( <Image> ),
 +
* lightMapIntensity: <float>
 +
*
 +
* aoMap: new THREE.Texture( <Image> ),
 +
* aoMapIntensity: <float>
 +
*
 +
* emissive: <hex>,
 +
* emissiveIntensity: <float>
 +
* emissiveMap: new THREE.Texture( <Image> ),
 +
*
 +
* bumpMap: new THREE.Texture( <Image> ),
 +
* bumpScale: <float>,
 +
*
 +
* normalMap: new THREE.Texture( <Image> ),
 +
* normalMapType: THREE.TangentSpaceNormalMap,
 +
* normalScale: <Vector2>,
 +
*
 +
* displacementMap: new THREE.Texture( <Image> ),
 +
* displacementScale: <float>,
 +
* displacementBias: <float>,
 +
*
 +
* specularMap: new THREE.Texture( <Image> ),
 +
*
 +
* alphaMap: new THREE.Texture( <Image> ),
 +
*
 +
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
 +
* combine: THREE.MultiplyOperation,
 +
* reflectivity: <float>,
 +
* refractionRatio: <float>,
 +
*
 +
* wireframe: <boolean>,
 +
* wireframeLinewidth: <float>,
 +
*
 +
* morphTargets: <bool>,
 +
* morphNormals: <bool>,
 +
*
 +
* flatShading: <bool>
 +
* }
 +
*/
 +
 +
class MeshPhongMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'MeshPhongMaterial';
 +
this.color = new Color(0xffffff); // diffuse
 +
 +
this.specular = new Color(0x111111);
 +
this.shininess = 30;
 +
this.map = null;
 +
this.lightMap = null;
 +
this.lightMapIntensity = 1.0;
 +
this.aoMap = null;
 +
this.aoMapIntensity = 1.0;
 +
this.emissive = new Color(0x000000);
 +
this.emissiveIntensity = 1.0;
 +
this.emissiveMap = null;
 +
this.bumpMap = null;
 +
this.bumpScale = 1;
 +
this.normalMap = null;
 +
this.normalMapType = TangentSpaceNormalMap;
 +
this.normalScale = new Vector2(1, 1);
 +
this.displacementMap = null;
 +
this.displacementScale = 1;
 +
this.displacementBias = 0;
 +
this.specularMap = null;
 +
this.alphaMap = null;
 +
this.envMap = null;
 +
this.combine = MultiplyOperation;
 +
this.reflectivity = 1;
 +
this.refractionRatio = 0.98;
 +
this.wireframe = false;
 +
this.wireframeLinewidth = 1;
 +
this.wireframeLinecap = 'round';
 +
this.wireframeLinejoin = 'round';
 +
this.morphTargets = false;
 +
this.morphNormals = false;
 +
this.flatShading = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.color.copy(source.color);
 +
this.specular.copy(source.specular);
 +
this.shininess = source.shininess;
 +
this.map = source.map;
 +
this.lightMap = source.lightMap;
 +
this.lightMapIntensity = source.lightMapIntensity;
 +
this.aoMap = source.aoMap;
 +
this.aoMapIntensity = source.aoMapIntensity;
 +
this.emissive.copy(source.emissive);
 +
this.emissiveMap = source.emissiveMap;
 +
this.emissiveIntensity = source.emissiveIntensity;
 +
this.bumpMap = source.bumpMap;
 +
this.bumpScale = source.bumpScale;
 +
this.normalMap = source.normalMap;
 +
this.normalMapType = source.normalMapType;
 +
this.normalScale.copy(source.normalScale);
 +
this.displacementMap = source.displacementMap;
 +
this.displacementScale = source.displacementScale;
 +
this.displacementBias = source.displacementBias;
 +
this.specularMap = source.specularMap;
 +
this.alphaMap = source.alphaMap;
 +
this.envMap = source.envMap;
 +
this.combine = source.combine;
 +
this.reflectivity = source.reflectivity;
 +
this.refractionRatio = source.refractionRatio;
 +
this.wireframe = source.wireframe;
 +
this.wireframeLinewidth = source.wireframeLinewidth;
 +
this.wireframeLinecap = source.wireframeLinecap;
 +
this.wireframeLinejoin = source.wireframeLinejoin;
 +
this.morphTargets = source.morphTargets;
 +
this.morphNormals = source.morphNormals;
 +
this.flatShading = source.flatShading;
 +
return this;
 +
}
 +
 +
}
 +
 +
MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
 +
 +
/**
 +
* parameters = {
 +
* color: <hex>,
 +
*
 +
* map: new THREE.Texture( <Image> ),
 +
* gradientMap: new THREE.Texture( <Image> ),
 +
*
 +
* lightMap: new THREE.Texture( <Image> ),
 +
* lightMapIntensity: <float>
 +
*
 +
* aoMap: new THREE.Texture( <Image> ),
 +
* aoMapIntensity: <float>
 +
*
 +
* emissive: <hex>,
 +
* emissiveIntensity: <float>
 +
* emissiveMap: new THREE.Texture( <Image> ),
 +
*
 +
* bumpMap: new THREE.Texture( <Image> ),
 +
* bumpScale: <float>,
 +
*
 +
* normalMap: new THREE.Texture( <Image> ),
 +
* normalMapType: THREE.TangentSpaceNormalMap,
 +
* normalScale: <Vector2>,
 +
*
 +
* displacementMap: new THREE.Texture( <Image> ),
 +
* displacementScale: <float>,
 +
* displacementBias: <float>,
 +
*
 +
* alphaMap: new THREE.Texture( <Image> ),
 +
*
 +
* wireframe: <boolean>,
 +
* wireframeLinewidth: <float>,
 +
*
 +
* morphTargets: <bool>,
 +
* morphNormals: <bool>
 +
* }
 +
*/
 +
 +
class MeshToonMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.defines = {
 +
'TOON': ''
 +
};
 +
this.type = 'MeshToonMaterial';
 +
this.color = new Color(0xffffff);
 +
this.map = null;
 +
this.gradientMap = null;
 +
this.lightMap = null;
 +
this.lightMapIntensity = 1.0;
 +
this.aoMap = null;
 +
this.aoMapIntensity = 1.0;
 +
this.emissive = new Color(0x000000);
 +
this.emissiveIntensity = 1.0;
 +
this.emissiveMap = null;
 +
this.bumpMap = null;
 +
this.bumpScale = 1;
 +
this.normalMap = null;
 +
this.normalMapType = TangentSpaceNormalMap;
 +
this.normalScale = new Vector2(1, 1);
 +
this.displacementMap = null;
 +
this.displacementScale = 1;
 +
this.displacementBias = 0;
 +
this.alphaMap = null;
 +
this.wireframe = false;
 +
this.wireframeLinewidth = 1;
 +
this.wireframeLinecap = 'round';
 +
this.wireframeLinejoin = 'round';
 +
this.morphTargets = false;
 +
this.morphNormals = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.color.copy(source.color);
 +
this.map = source.map;
 +
this.gradientMap = source.gradientMap;
 +
this.lightMap = source.lightMap;
 +
this.lightMapIntensity = source.lightMapIntensity;
 +
this.aoMap = source.aoMap;
 +
this.aoMapIntensity = source.aoMapIntensity;
 +
this.emissive.copy(source.emissive);
 +
this.emissiveMap = source.emissiveMap;
 +
this.emissiveIntensity = source.emissiveIntensity;
 +
this.bumpMap = source.bumpMap;
 +
this.bumpScale = source.bumpScale;
 +
this.normalMap = source.normalMap;
 +
this.normalMapType = source.normalMapType;
 +
this.normalScale.copy(source.normalScale);
 +
this.displacementMap = source.displacementMap;
 +
this.displacementScale = source.displacementScale;
 +
this.displacementBias = source.displacementBias;
 +
this.alphaMap = source.alphaMap;
 +
this.wireframe = source.wireframe;
 +
this.wireframeLinewidth = source.wireframeLinewidth;
 +
this.wireframeLinecap = source.wireframeLinecap;
 +
this.wireframeLinejoin = source.wireframeLinejoin;
 +
this.morphTargets = source.morphTargets;
 +
this.morphNormals = source.morphNormals;
 +
return this;
 +
}
 +
 +
}
 +
 +
MeshToonMaterial.prototype.isMeshToonMaterial = true;
 +
 +
/**
 +
* parameters = {
 +
* opacity: <float>,
 +
*
 +
* bumpMap: new THREE.Texture( <Image> ),
 +
* bumpScale: <float>,
 +
*
 +
* normalMap: new THREE.Texture( <Image> ),
 +
* normalMapType: THREE.TangentSpaceNormalMap,
 +
* normalScale: <Vector2>,
 +
*
 +
* displacementMap: new THREE.Texture( <Image> ),
 +
* displacementScale: <float>,
 +
* displacementBias: <float>,
 +
*
 +
* wireframe: <boolean>,
 +
* wireframeLinewidth: <float>
 +
*
 +
* morphTargets: <bool>,
 +
* morphNormals: <bool>,
 +
*
 +
* flatShading: <bool>
 +
* }
 +
*/
 +
 +
class MeshNormalMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'MeshNormalMaterial';
 +
this.bumpMap = null;
 +
this.bumpScale = 1;
 +
this.normalMap = null;
 +
this.normalMapType = TangentSpaceNormalMap;
 +
this.normalScale = new Vector2(1, 1);
 +
this.displacementMap = null;
 +
this.displacementScale = 1;
 +
this.displacementBias = 0;
 +
this.wireframe = false;
 +
this.wireframeLinewidth = 1;
 +
this.fog = false;
 +
this.morphTargets = false;
 +
this.morphNormals = false;
 +
this.flatShading = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.bumpMap = source.bumpMap;
 +
this.bumpScale = source.bumpScale;
 +
this.normalMap = source.normalMap;
 +
this.normalMapType = source.normalMapType;
 +
this.normalScale.copy(source.normalScale);
 +
this.displacementMap = source.displacementMap;
 +
this.displacementScale = source.displacementScale;
 +
this.displacementBias = source.displacementBias;
 +
this.wireframe = source.wireframe;
 +
this.wireframeLinewidth = source.wireframeLinewidth;
 +
this.morphTargets = source.morphTargets;
 +
this.morphNormals = source.morphNormals;
 +
this.flatShading = source.flatShading;
 +
return this;
 +
}
 +
 +
}
 +
 +
MeshNormalMaterial.prototype.isMeshNormalMaterial = true;
 +
 +
/**
 +
* parameters = {
 +
* color: <hex>,
 +
* opacity: <float>,
 +
*
 +
* map: new THREE.Texture( <Image> ),
 +
*
 +
* lightMap: new THREE.Texture( <Image> ),
 +
* lightMapIntensity: <float>
 +
*
 +
* aoMap: new THREE.Texture( <Image> ),
 +
* aoMapIntensity: <float>
 +
*
 +
* emissive: <hex>,
 +
* emissiveIntensity: <float>
 +
* emissiveMap: new THREE.Texture( <Image> ),
 +
*
 +
* specularMap: new THREE.Texture( <Image> ),
 +
*
 +
* alphaMap: new THREE.Texture( <Image> ),
 +
*
 +
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
 +
* combine: THREE.Multiply,
 +
* reflectivity: <float>,
 +
* refractionRatio: <float>,
 +
*
 +
* wireframe: <boolean>,
 +
* wireframeLinewidth: <float>,
 +
*
 +
* morphTargets: <bool>,
 +
* morphNormals: <bool>
 +
* }
 +
*/
 +
 +
class MeshLambertMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'MeshLambertMaterial';
 +
this.color = new Color(0xffffff); // diffuse
 +
 +
this.map = null;
 +
this.lightMap = null;
 +
this.lightMapIntensity = 1.0;
 +
this.aoMap = null;
 +
this.aoMapIntensity = 1.0;
 +
this.emissive = new Color(0x000000);
 +
this.emissiveIntensity = 1.0;
 +
this.emissiveMap = null;
 +
this.specularMap = null;
 +
this.alphaMap = null;
 +
this.envMap = null;
 +
this.combine = MultiplyOperation;
 +
this.reflectivity = 1;
 +
this.refractionRatio = 0.98;
 +
this.wireframe = false;
 +
this.wireframeLinewidth = 1;
 +
this.wireframeLinecap = 'round';
 +
this.wireframeLinejoin = 'round';
 +
this.morphTargets = false;
 +
this.morphNormals = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.color.copy(source.color);
 +
this.map = source.map;
 +
this.lightMap = source.lightMap;
 +
this.lightMapIntensity = source.lightMapIntensity;
 +
this.aoMap = source.aoMap;
 +
this.aoMapIntensity = source.aoMapIntensity;
 +
this.emissive.copy(source.emissive);
 +
this.emissiveMap = source.emissiveMap;
 +
this.emissiveIntensity = source.emissiveIntensity;
 +
this.specularMap = source.specularMap;
 +
this.alphaMap = source.alphaMap;
 +
this.envMap = source.envMap;
 +
this.combine = source.combine;
 +
this.reflectivity = source.reflectivity;
 +
this.refractionRatio = source.refractionRatio;
 +
this.wireframe = source.wireframe;
 +
this.wireframeLinewidth = source.wireframeLinewidth;
 +
this.wireframeLinecap = source.wireframeLinecap;
 +
this.wireframeLinejoin = source.wireframeLinejoin;
 +
this.morphTargets = source.morphTargets;
 +
this.morphNormals = source.morphNormals;
 +
return this;
 +
}
 +
 +
}
 +
 +
MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
 +
 +
/**
 +
* parameters = {
 +
* color: <hex>,
 +
* opacity: <float>,
 +
*
 +
* matcap: new THREE.Texture( <Image> ),
 +
*
 +
* map: new THREE.Texture( <Image> ),
 +
*
 +
* bumpMap: new THREE.Texture( <Image> ),
 +
* bumpScale: <float>,
 +
*
 +
* normalMap: new THREE.Texture( <Image> ),
 +
* normalMapType: THREE.TangentSpaceNormalMap,
 +
* normalScale: <Vector2>,
 +
*
 +
* displacementMap: new THREE.Texture( <Image> ),
 +
* displacementScale: <float>,
 +
* displacementBias: <float>,
 +
*
 +
* alphaMap: new THREE.Texture( <Image> ),
 +
*
 +
* morphTargets: <bool>,
 +
* morphNormals: <bool>
 +
*
 +
* flatShading: <bool>
 +
* }
 +
*/
 +
 +
class MeshMatcapMaterial extends Material {
 +
constructor(parameters) {
 +
super();
 +
this.defines = {
 +
'MATCAP': ''
 +
};
 +
this.type = 'MeshMatcapMaterial';
 +
this.color = new Color(0xffffff); // diffuse
 +
 +
this.matcap = null;
 +
this.map = null;
 +
this.bumpMap = null;
 +
this.bumpScale = 1;
 +
this.normalMap = null;
 +
this.normalMapType = TangentSpaceNormalMap;
 +
this.normalScale = new Vector2(1, 1);
 +
this.displacementMap = null;
 +
this.displacementScale = 1;
 +
this.displacementBias = 0;
 +
this.alphaMap = null;
 +
this.morphTargets = false;
 +
this.morphNormals = false;
 +
this.flatShading = false;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.defines = {
 +
'MATCAP': ''
 +
};
 +
this.color.copy(source.color);
 +
this.matcap = source.matcap;
 +
this.map = source.map;
 +
this.bumpMap = source.bumpMap;
 +
this.bumpScale = source.bumpScale;
 +
this.normalMap = source.normalMap;
 +
this.normalMapType = source.normalMapType;
 +
this.normalScale.copy(source.normalScale);
 +
this.displacementMap = source.displacementMap;
 +
this.displacementScale = source.displacementScale;
 +
this.displacementBias = source.displacementBias;
 +
this.alphaMap = source.alphaMap;
 +
this.morphTargets = source.morphTargets;
 +
this.morphNormals = source.morphNormals;
 +
this.flatShading = source.flatShading;
 +
return this;
 +
}
 +
 +
}
 +
 +
MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;
 +
 +
/**
 +
* parameters = {
 +
* color: <hex>,
 +
* opacity: <float>,
 +
*
 +
* linewidth: <float>,
 +
*
 +
* scale: <float>,
 +
* dashSize: <float>,
 +
* gapSize: <float>
 +
* }
 +
*/
 +
 +
class LineDashedMaterial extends LineBasicMaterial {
 +
constructor(parameters) {
 +
super();
 +
this.type = 'LineDashedMaterial';
 +
this.scale = 1;
 +
this.dashSize = 3;
 +
this.gapSize = 1;
 +
this.setValues(parameters);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.scale = source.scale;
 +
this.dashSize = source.dashSize;
 +
this.gapSize = source.gapSize;
 +
return this;
 +
}
 +
 +
}
 +
 +
LineDashedMaterial.prototype.isLineDashedMaterial = true;
 +
 +
var Materials = /*#__PURE__*/Object.freeze({
 +
__proto__: null,
 +
ShadowMaterial: ShadowMaterial,
 +
SpriteMaterial: SpriteMaterial,
 +
RawShaderMaterial: RawShaderMaterial,
 +
ShaderMaterial: ShaderMaterial,
 +
PointsMaterial: PointsMaterial,
 +
MeshPhysicalMaterial: MeshPhysicalMaterial,
 +
MeshStandardMaterial: MeshStandardMaterial,
 +
MeshPhongMaterial: MeshPhongMaterial,
 +
MeshToonMaterial: MeshToonMaterial,
 +
MeshNormalMaterial: MeshNormalMaterial,
 +
MeshLambertMaterial: MeshLambertMaterial,
 +
MeshDepthMaterial: MeshDepthMaterial,
 +
MeshDistanceMaterial: MeshDistanceMaterial,
 +
MeshBasicMaterial: MeshBasicMaterial,
 +
MeshMatcapMaterial: MeshMatcapMaterial,
 +
LineDashedMaterial: LineDashedMaterial,
 +
LineBasicMaterial: LineBasicMaterial,
 +
Material: Material
 +
});
 +
 +
const AnimationUtils = {
 +
// same as Array.prototype.slice, but also works on typed arrays
 +
arraySlice: function (array, from, to) {
 +
if (AnimationUtils.isTypedArray(array)) {
 +
// in ios9 array.subarray(from, undefined) will return empty array
 +
// but array.subarray(from) or array.subarray(from, len) is correct
 +
return new array.constructor(array.subarray(from, to !== undefined ? to : array.length));
 +
}
 +
 +
return array.slice(from, to);
 +
},
 +
// converts an array to a specific type
 +
convertArray: function (array, type, forceClone) {
 +
if (!array || // let 'undefined' and 'null' pass
 +
!forceClone && array.constructor === type) return array;
 +
 +
if (typeof type.BYTES_PER_ELEMENT === 'number') {
 +
return new type(array); // create typed array
 +
}
 +
 +
return Array.prototype.slice.call(array); // create Array
 +
},
 +
isTypedArray: function (object) {
 +
return ArrayBuffer.isView(object) && !(object instanceof DataView);
 +
},
 +
// returns an array by which times and values can be sorted
 +
getKeyframeOrder: function (times) {
 +
function compareTime(i, j) {
 +
return times[i] - times[j];
 +
}
 +
 +
const n = times.length;
 +
const result = new Array(n);
 +
 +
for (let i = 0; i !== n; ++i) result[i] = i;
 +
 +
result.sort(compareTime);
 +
return result;
 +
},
 +
// uses the array previously returned by 'getKeyframeOrder' to sort data
 +
sortedArray: function (values, stride, order) {
 +
const nValues = values.length;
 +
const result = new values.constructor(nValues);
 +
 +
for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) {
 +
const srcOffset = order[i] * stride;
 +
 +
for (let j = 0; j !== stride; ++j) {
 +
result[dstOffset++] = values[srcOffset + j];
 +
}
 +
}
 +
 +
return result;
 +
},
 +
// function for parsing AOS keyframe formats
 +
flattenJSON: function (jsonKeys, times, values, valuePropertyName) {
 +
let i = 1,
 +
key = jsonKeys[0];
 +
 +
while (key !== undefined && key[valuePropertyName] === undefined) {
 +
key = jsonKeys[i++];
 +
}
 +
 +
if (key === undefined) return; // no data
 +
 +
let value = key[valuePropertyName];
 +
if (value === undefined) return; // no data
 +
 +
if (Array.isArray(value)) {
 +
do {
 +
value = key[valuePropertyName];
 +
 +
if (value !== undefined) {
 +
times.push(key.time);
 +
values.push.apply(values, value); // push all elements
 +
}
 +
 +
key = jsonKeys[i++];
 +
} while (key !== undefined);
 +
} else if (value.toArray !== undefined) {
 +
// ...assume THREE.Math-ish
 +
do {
 +
value = key[valuePropertyName];
 +
 +
if (value !== undefined) {
 +
times.push(key.time);
 +
value.toArray(values, values.length);
 +
}
 +
 +
key = jsonKeys[i++];
 +
} while (key !== undefined);
 +
} else {
 +
// otherwise push as-is
 +
do {
 +
value = key[valuePropertyName];
 +
 +
if (value !== undefined) {
 +
times.push(key.time);
 +
values.push(value);
 +
}
 +
 +
key = jsonKeys[i++];
 +
} while (key !== undefined);
 +
}
 +
},
 +
subclip: function (sourceClip, name, startFrame, endFrame, fps = 30) {
 +
const clip = sourceClip.clone();
 +
clip.name = name;
 +
const tracks = [];
 +
 +
for (let i = 0; i < clip.tracks.length; ++i) {
 +
const track = clip.tracks[i];
 +
const valueSize = track.getValueSize();
 +
const times = [];
 +
const values = [];
 +
 +
for (let j = 0; j < track.times.length; ++j) {
 +
const frame = track.times[j] * fps;
 +
if (frame < startFrame || frame >= endFrame) continue;
 +
times.push(track.times[j]);
 +
 +
for (let k = 0; k < valueSize; ++k) {
 +
values.push(track.values[j * valueSize + k]);
 +
}
 +
}
 +
 +
if (times.length === 0) continue;
 +
track.times = AnimationUtils.convertArray(times, track.times.constructor);
 +
track.values = AnimationUtils.convertArray(values, track.values.constructor);
 +
tracks.push(track);
 +
}
 +
 +
clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip
 +
 +
let minStartTime = Infinity;
 +
 +
for (let i = 0; i < clip.tracks.length; ++i) {
 +
if (minStartTime > clip.tracks[i].times[0]) {
 +
minStartTime = clip.tracks[i].times[0];
 +
}
 +
} // shift all tracks such that clip begins at t=0
 +
 +
 +
for (let i = 0; i < clip.tracks.length; ++i) {
 +
clip.tracks[i].shift(-1 * minStartTime);
 +
}
 +
 +
clip.resetDuration();
 +
return clip;
 +
},
 +
makeClipAdditive: function (targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) {
 +
if (fps <= 0) fps = 30;
 +
const numTracks = referenceClip.tracks.length;
 +
const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame
 +
 +
for (let i = 0; i < numTracks; ++i) {
 +
const referenceTrack = referenceClip.tracks[i];
 +
const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric
 +
 +
if (referenceTrackType === 'bool' || referenceTrackType === 'string') continue; // Find the track in the target clip whose name and type matches the reference track
 +
 +
const targetTrack = targetClip.tracks.find(function (track) {
 +
return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType;
 +
});
 +
if (targetTrack === undefined) continue;
 +
let referenceOffset = 0;
 +
const referenceValueSize = referenceTrack.getValueSize();
 +
 +
if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
 +
referenceOffset = referenceValueSize / 3;
 +
}
 +
 +
let targetOffset = 0;
 +
const targetValueSize = targetTrack.getValueSize();
 +
 +
if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
 +
targetOffset = targetValueSize / 3;
 +
}
 +
 +
const lastIndex = referenceTrack.times.length - 1;
 +
let referenceValue; // Find the value to subtract out of the track
 +
 +
if (referenceTime <= referenceTrack.times[0]) {
 +
// Reference frame is earlier than the first keyframe, so just use the first keyframe
 +
const startIndex = referenceOffset;
 +
const endIndex = referenceValueSize - referenceOffset;
 +
referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
 +
} else if (referenceTime >= referenceTrack.times[lastIndex]) {
 +
// Reference frame is after the last keyframe, so just use the last keyframe
 +
const startIndex = lastIndex * referenceValueSize + referenceOffset;
 +
const endIndex = startIndex + referenceValueSize - referenceOffset;
 +
referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
 +
} else {
 +
// Interpolate to the reference value
 +
const interpolant = referenceTrack.createInterpolant();
 +
const startIndex = referenceOffset;
 +
const endIndex = referenceValueSize - referenceOffset;
 +
interpolant.evaluate(referenceTime);
 +
referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, startIndex, endIndex);
 +
} // Conjugate the quaternion
 +
 +
 +
if (referenceTrackType === 'quaternion') {
 +
const referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate();
 +
referenceQuat.toArray(referenceValue);
 +
} // Subtract the reference value from all of the track values
 +
 +
 +
const numTimes = targetTrack.times.length;
 +
 +
for (let j = 0; j < numTimes; ++j) {
 +
const valueStart = j * targetValueSize + targetOffset;
 +
 +
if (referenceTrackType === 'quaternion') {
 +
// Multiply the conjugate for quaternion track types
 +
Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart);
 +
} else {
 +
const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types
 +
 +
for (let k = 0; k < valueEnd; ++k) {
 +
targetTrack.values[valueStart + k] -= referenceValue[k];
 +
}
 +
}
 +
}
 +
}
 +
 +
targetClip.blendMode = AdditiveAnimationBlendMode;
 +
return targetClip;
 +
}
 +
};
 +
 +
/**
 +
* Abstract base class of interpolants over parametric samples.
 +
*
 +
* The parameter domain is one dimensional, typically the time or a path
 +
* along a curve defined by the data.
 +
*
 +
* The sample values can have any dimensionality and derived classes may
 +
* apply special interpretations to the data.
 +
*
 +
* This class provides the interval seek in a Template Method, deferring
 +
* the actual interpolation to derived classes.
 +
*
 +
* Time complexity is O(1) for linear access crossing at most two points
 +
* and O(log N) for random access, where N is the number of positions.
 +
*
 +
* References:
 +
*
 +
* http://www.oodesign.com/template-method-pattern.html
 +
*
 +
*/
 +
class Interpolant {
 +
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
 +
this.parameterPositions = parameterPositions;
 +
this._cachedIndex = 0;
 +
this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize);
 +
this.sampleValues = sampleValues;
 +
this.valueSize = sampleSize;
 +
this.settings = null;
 +
this.DefaultSettings_ = {};
 +
}
 +
 +
evaluate(t) {
 +
const pp = this.parameterPositions;
 +
let i1 = this._cachedIndex,
 +
t1 = pp[i1],
 +
t0 = pp[i1 - 1];
 +
 +
validate_interval: {
 +
seek: {
 +
let right;
 +
 +
linear_scan: {
 +
//- See http://jsperf.com/comparison-to-undefined/3
 +
//- slower code:
 +
//-
 +
//- if ( t >= t1 || t1 === undefined ) {
 +
forward_scan: if (!(t < t1)) {
 +
for (let giveUpAt = i1 + 2;;) {
 +
if (t1 === undefined) {
 +
if (t < t0) break forward_scan; // after end
 +
 +
i1 = pp.length;
 +
this._cachedIndex = i1;
 +
return this.afterEnd_(i1 - 1, t, t0);
 +
}
 +
 +
if (i1 === giveUpAt) break; // this loop
 +
 +
t0 = t1;
 +
t1 = pp[++i1];
 +
 +
if (t < t1) {
 +
// we have arrived at the sought interval
 +
break seek;
 +
}
 +
} // prepare binary search on the right side of the index
 +
 +
 +
right = pp.length;
 +
break linear_scan;
 +
} //- slower code:
 +
//- if ( t < t0 || t0 === undefined ) {
 +
 +
 +
if (!(t >= t0)) {
 +
// looping?
 +
const t1global = pp[1];
 +
 +
if (t < t1global) {
 +
i1 = 2; // + 1, using the scan for the details
 +
 +
t0 = t1global;
 +
} // linear reverse scan
 +
 +
 +
for (let giveUpAt = i1 - 2;;) {
 +
if (t0 === undefined) {
 +
// before start
 +
this._cachedIndex = 0;
 +
return this.beforeStart_(0, t, t1);
 +
}
 +
 +
if (i1 === giveUpAt) break; // this loop
 +
 +
t1 = t0;
 +
t0 = pp[--i1 - 1];
 +
 +
if (t >= t0) {
 +
// we have arrived at the sought interval
 +
break seek;
 +
}
 +
} // prepare binary search on the left side of the index
 +
 +
 +
right = i1;
 +
i1 = 0;
 +
break linear_scan;
 +
} // the interval is valid
 +
 +
 +
break validate_interval;
 +
} // linear scan
 +
// binary search
 +
 +
 +
while (i1 < right) {
 +
const mid = i1 + right >>> 1;
 +
 +
if (t < pp[mid]) {
 +
right = mid;
 +
} else {
 +
i1 = mid + 1;
 +
}
 +
}
 +
 +
t1 = pp[i1];
 +
t0 = pp[i1 - 1]; // check boundary cases, again
 +
 +
if (t0 === undefined) {
 +
this._cachedIndex = 0;
 +
return this.beforeStart_(0, t, t1);
 +
}
 +
 +
if (t1 === undefined) {
 +
i1 = pp.length;
 +
this._cachedIndex = i1;
 +
return this.afterEnd_(i1 - 1, t0, t);
 +
}
 +
} // seek
 +
 +
 +
this._cachedIndex = i1;
 +
this.intervalChanged_(i1, t0, t1);
 +
} // validate_interval
 +
 +
 +
return this.interpolate_(i1, t0, t, t1);
 +
}
 +
 +
getSettings_() {
 +
return this.settings || this.DefaultSettings_;
 +
}
 +
 +
copySampleValue_(index) {
 +
// copies a sample value to the result buffer
 +
const result = this.resultBuffer,
 +
values = this.sampleValues,
 +
stride = this.valueSize,
 +
offset = index * stride;
 +
 +
for (let i = 0; i !== stride; ++i) {
 +
result[i] = values[offset + i];
 +
}
 +
 +
return result;
 +
} // Template methods for derived classes:
 +
 +
 +
interpolate_()
 +
/* i1, t0, t, t1 */
 +
{
 +
throw new Error('call to abstract method'); // implementations shall return this.resultBuffer
 +
}
 +
 +
intervalChanged_()
 +
/* i1, t0, t1 */
 +
{// empty
 +
}
 +
 +
} // ALIAS DEFINITIONS
 +
 +
 +
Interpolant.prototype.beforeStart_ = Interpolant.prototype.copySampleValue_;
 +
Interpolant.prototype.afterEnd_ = Interpolant.prototype.copySampleValue_;
 +
 +
/**
 +
* Fast and simple cubic spline interpolant.
 +
*
 +
* It was derived from a Hermitian construction setting the first derivative
 +
* at each sample position to the linear slope between neighboring positions
 +
* over their parameter interval.
 +
*/
 +
 +
class CubicInterpolant extends Interpolant {
 +
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
 +
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
 +
this._weightPrev = -0;
 +
this._offsetPrev = -0;
 +
this._weightNext = -0;
 +
this._offsetNext = -0;
 +
this.DefaultSettings_ = {
 +
endingStart: ZeroCurvatureEnding,
 +
endingEnd: ZeroCurvatureEnding
 +
};
 +
}
 +
 +
intervalChanged_(i1, t0, t1) {
 +
const pp = this.parameterPositions;
 +
let iPrev = i1 - 2,
 +
iNext = i1 + 1,
 +
tPrev = pp[iPrev],
 +
tNext = pp[iNext];
 +
 +
if (tPrev === undefined) {
 +
switch (this.getSettings_().endingStart) {
 +
case ZeroSlopeEnding:
 +
// f'(t0) = 0
 +
iPrev = i1;
 +
tPrev = 2 * t0 - t1;
 +
break;
 +
 +
case WrapAroundEnding:
 +
// use the other end of the curve
 +
iPrev = pp.length - 2;
 +
tPrev = t0 + pp[iPrev] - pp[iPrev + 1];
 +
break;
 +
 +
default:
 +
// ZeroCurvatureEnding
 +
// f''(t0) = 0 a.k.a. Natural Spline
 +
iPrev = i1;
 +
tPrev = t1;
 +
}
 +
}
 +
 +
if (tNext === undefined) {
 +
switch (this.getSettings_().endingEnd) {
 +
case ZeroSlopeEnding:
 +
// f'(tN) = 0
 +
iNext = i1;
 +
tNext = 2 * t1 - t0;
 +
break;
 +
 +
case WrapAroundEnding:
 +
// use the other end of the curve
 +
iNext = 1;
 +
tNext = t1 + pp[1] - pp[0];
 +
break;
 +
 +
default:
 +
// ZeroCurvatureEnding
 +
// f''(tN) = 0, a.k.a. Natural Spline
 +
iNext = i1 - 1;
 +
tNext = t0;
 +
}
 +
}
 +
 +
const halfDt = (t1 - t0) * 0.5,
 +
stride = this.valueSize;
 +
this._weightPrev = halfDt / (t0 - tPrev);
 +
this._weightNext = halfDt / (tNext - t1);
 +
this._offsetPrev = iPrev * stride;
 +
this._offsetNext = iNext * stride;
 +
}
 +
 +
interpolate_(i1, t0, t, t1) {
 +
const result = this.resultBuffer,
 +
values = this.sampleValues,
 +
stride = this.valueSize,
 +
o1 = i1 * stride,
 +
o0 = o1 - stride,
 +
oP = this._offsetPrev,
 +
oN = this._offsetNext,
 +
wP = this._weightPrev,
 +
wN = this._weightNext,
 +
p = (t - t0) / (t1 - t0),
 +
pp = p * p,
 +
ppp = pp * p; // evaluate polynomials
 +
 +
const sP = -wP * ppp + 2 * wP * pp - wP * p;
 +
const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1;
 +
const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p;
 +
const sN = wN * ppp - wN * pp; // combine data linearly
 +
 +
for (let i = 0; i !== stride; ++i) {
 +
result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i];
 +
}
 +
 +
return result;
 +
}
 +
 +
}
 +
 +
class LinearInterpolant extends Interpolant {
 +
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
 +
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
 +
}
 +
 +
interpolate_(i1, t0, t, t1) {
 +
const result = this.resultBuffer,
 +
values = this.sampleValues,
 +
stride = this.valueSize,
 +
offset1 = i1 * stride,
 +
offset0 = offset1 - stride,
 +
weight1 = (t - t0) / (t1 - t0),
 +
weight0 = 1 - weight1;
 +
 +
for (let i = 0; i !== stride; ++i) {
 +
result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1;
 +
}
 +
 +
return result;
 +
}
 +
 +
}
 +
 +
/**
 +
*
 +
* Interpolant that evaluates to the sample value at the position preceeding
 +
* the parameter.
 +
*/
 +
 +
class DiscreteInterpolant extends Interpolant {
 +
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
 +
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
 +
}
 +
 +
interpolate_(i1
 +
/*, t0, t, t1 */
 +
) {
 +
return this.copySampleValue_(i1 - 1);
 +
}
 +
 +
}
 +
 +
class KeyframeTrack {
 +
constructor(name, times, values, interpolation) {
 +
if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined');
 +
if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name);
 +
this.name = name;
 +
this.times = AnimationUtils.convertArray(times, this.TimeBufferType);
 +
this.values = AnimationUtils.convertArray(values, this.ValueBufferType);
 +
this.setInterpolation(interpolation || this.DefaultInterpolation);
 +
} // Serialization (in static context, because of constructor invocation
 +
// and automatic invocation of .toJSON):
 +
 +
 +
static toJSON(track) {
 +
const trackType = track.constructor;
 +
let json; // derived classes can define a static toJSON method
 +
 +
if (trackType.toJSON !== this.toJSON) {
 +
json = trackType.toJSON(track);
 +
} else {
 +
// by default, we assume the data can be serialized as-is
 +
json = {
 +
'name': track.name,
 +
'times': AnimationUtils.convertArray(track.times, Array),
 +
'values': AnimationUtils.convertArray(track.values, Array)
 +
};
 +
const interpolation = track.getInterpolation();
 +
 +
if (interpolation !== track.DefaultInterpolation) {
 +
json.interpolation = interpolation;
 +
}
 +
}
 +
 +
json.type = track.ValueTypeName; // mandatory
 +
 +
return json;
 +
}
 +
 +
InterpolantFactoryMethodDiscrete(result) {
 +
return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result);
 +
}
 +
 +
InterpolantFactoryMethodLinear(result) {
 +
return new LinearInterpolant(this.times, this.values, this.getValueSize(), result);
 +
}
 +
 +
InterpolantFactoryMethodSmooth(result) {
 +
return new CubicInterpolant(this.times, this.values, this.getValueSize(), result);
 +
}
 +
 +
setInterpolation(interpolation) {
 +
let factoryMethod;
 +
 +
switch (interpolation) {
 +
case InterpolateDiscrete:
 +
factoryMethod = this.InterpolantFactoryMethodDiscrete;
 +
break;
 +
 +
case InterpolateLinear:
 +
factoryMethod = this.InterpolantFactoryMethodLinear;
 +
break;
 +
 +
case InterpolateSmooth:
 +
factoryMethod = this.InterpolantFactoryMethodSmooth;
 +
break;
 +
}
 +
 +
if (factoryMethod === undefined) {
 +
const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name;
 +
 +
if (this.createInterpolant === undefined) {
 +
// fall back to default, unless the default itself is messed up
 +
if (interpolation !== this.DefaultInterpolation) {
 +
this.setInterpolation(this.DefaultInterpolation);
 +
} else {
 +
throw new Error(message); // fatal, in this case
 +
}
 +
}
 +
 +
console.warn('THREE.KeyframeTrack:', message);
 +
return this;
 +
}
 +
 +
this.createInterpolant = factoryMethod;
 +
return this;
 +
}
 +
 +
getInterpolation() {
 +
switch (this.createInterpolant) {
 +
case this.InterpolantFactoryMethodDiscrete:
 +
return InterpolateDiscrete;
 +
 +
case this.InterpolantFactoryMethodLinear:
 +
return InterpolateLinear;
 +
 +
case this.InterpolantFactoryMethodSmooth:
 +
return InterpolateSmooth;
 +
}
 +
}
 +
 +
getValueSize() {
 +
return this.values.length / this.times.length;
 +
} // move all keyframes either forwards or backwards in time
 +
 +
 +
shift(timeOffset) {
 +
if (timeOffset !== 0.0) {
 +
const times = this.times;
 +
 +
for (let i = 0, n = times.length; i !== n; ++i) {
 +
times[i] += timeOffset;
 +
}
 +
}
 +
 +
return this;
 +
} // scale all keyframe times by a factor (useful for frame <-> seconds conversions)
 +
 +
 +
scale(timeScale) {
 +
if (timeScale !== 1.0) {
 +
const times = this.times;
 +
 +
for (let i = 0, n = times.length; i !== n; ++i) {
 +
times[i] *= timeScale;
 +
}
 +
}
 +
 +
return this;
 +
} // removes keyframes before and after animation without changing any values within the range [startTime, endTime].
 +
// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
 +
 +
 +
trim(startTime, endTime) {
 +
const times = this.times,
 +
nKeys = times.length;
 +
let from = 0,
 +
to = nKeys - 1;
 +
 +
while (from !== nKeys && times[from] < startTime) {
 +
++from;
 +
}
 +
 +
while (to !== -1 && times[to] > endTime) {
 +
--to;
 +
}
 +
 +
++to; // inclusive -> exclusive bound
 +
 +
if (from !== 0 || to !== nKeys) {
 +
// empty tracks are forbidden, so keep at least one keyframe
 +
if (from >= to) {
 +
to = Math.max(to, 1);
 +
from = to - 1;
 +
}
 +
 +
const stride = this.getValueSize();
 +
this.times = AnimationUtils.arraySlice(times, from, to);
 +
this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride);
 +
}
 +
 +
return this;
 +
} // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
 +
 +
 +
validate() {
 +
let valid = true;
 +
const valueSize = this.getValueSize();
 +
 +
if (valueSize - Math.floor(valueSize) !== 0) {
 +
console.error('THREE.KeyframeTrack: Invalid value size in track.', this);
 +
valid = false;
 +
}
 +
 +
const times = this.times,
 +
values = this.values,
 +
nKeys = times.length;
 +
 +
if (nKeys === 0) {
 +
console.error('THREE.KeyframeTrack: Track is empty.', this);
 +
valid = false;
 +
}
 +
 +
let prevTime = null;
 +
 +
for (let i = 0; i !== nKeys; i++) {
 +
const currTime = times[i];
 +
 +
if (typeof currTime === 'number' && isNaN(currTime)) {
 +
console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime);
 +
valid = false;
 +
break;
 +
}
 +
 +
if (prevTime !== null && prevTime > currTime) {
 +
console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime);
 +
valid = false;
 +
break;
 +
}
 +
 +
prevTime = currTime;
 +
}
 +
 +
if (values !== undefined) {
 +
if (AnimationUtils.isTypedArray(values)) {
 +
for (let i = 0, n = values.length; i !== n; ++i) {
 +
const value = values[i];
 +
 +
if (isNaN(value)) {
 +
console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value);
 +
valid = false;
 +
break;
 +
}
 +
}
 +
}
 +
}
 +
 +
return valid;
 +
} // removes equivalent sequential keys as common in morph target sequences
 +
// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
 +
 +
 +
optimize() {
 +
// times or values may be shared with other tracks, so overwriting is unsafe
 +
const times = AnimationUtils.arraySlice(this.times),
 +
values = AnimationUtils.arraySlice(this.values),
 +
stride = this.getValueSize(),
 +
smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
 +
lastIndex = times.length - 1;
 +
let writeIndex = 1;
 +
 +
for (let i = 1; i < lastIndex; ++i) {
 +
let keep = false;
 +
const time = times[i];
 +
const timeNext = times[i + 1]; // remove adjacent keyframes scheduled at the same time
 +
 +
if (time !== timeNext && (i !== 1 || time !== times[0])) {
 +
if (!smoothInterpolation) {
 +
// remove unnecessary keyframes same as their neighbors
 +
const offset = i * stride,
 +
offsetP = offset - stride,
 +
offsetN = offset + stride;
 +
 +
for (let j = 0; j !== stride; ++j) {
 +
const value = values[offset + j];
 +
 +
if (value !== values[offsetP + j] || value !== values[offsetN + j]) {
 +
keep = true;
 +
break;
 +
}
 +
}
 +
} else {
 +
keep = true;
 +
}
 +
} // in-place compaction
 +
 +
 +
if (keep) {
 +
if (i !== writeIndex) {
 +
times[writeIndex] = times[i];
 +
const readOffset = i * stride,
 +
writeOffset = writeIndex * stride;
 +
 +
for (let j = 0; j !== stride; ++j) {
 +
values[writeOffset + j] = values[readOffset + j];
 +
}
 +
}
 +
 +
++writeIndex;
 +
}
 +
} // flush last keyframe (compaction looks ahead)
 +
 +
 +
if (lastIndex > 0) {
 +
times[writeIndex] = times[lastIndex];
 +
 +
for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) {
 +
values[writeOffset + j] = values[readOffset + j];
 +
}
 +
 +
++writeIndex;
 +
}
 +
 +
if (writeIndex !== times.length) {
 +
this.times = AnimationUtils.arraySlice(times, 0, writeIndex);
 +
this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride);
 +
} else {
 +
this.times = times;
 +
this.values = values;
 +
}
 +
 +
return this;
 +
}
 +
 +
clone() {
 +
const times = AnimationUtils.arraySlice(this.times, 0);
 +
const values = AnimationUtils.arraySlice(this.values, 0);
 +
const TypedKeyframeTrack = this.constructor;
 +
const track = new TypedKeyframeTrack(this.name, times, values); // Interpolant argument to constructor is not saved, so copy the factory method directly.
 +
 +
track.createInterpolant = this.createInterpolant;
 +
return track;
 +
}
 +
 +
}
 +
 +
KeyframeTrack.prototype.TimeBufferType = Float32Array;
 +
KeyframeTrack.prototype.ValueBufferType = Float32Array;
 +
KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
 +
 +
/**
 +
* A Track of Boolean keyframe values.
 +
*/
 +
 +
class BooleanKeyframeTrack extends KeyframeTrack {}
 +
 +
BooleanKeyframeTrack.prototype.ValueTypeName = 'bool';
 +
BooleanKeyframeTrack.prototype.ValueBufferType = Array;
 +
BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
 +
BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
 +
BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; // Note: Actually this track could have a optimized / compressed
 +
 +
/**
 +
* A Track of keyframe values that represent color.
 +
*/
 +
 +
class ColorKeyframeTrack extends KeyframeTrack {}
 +
 +
ColorKeyframeTrack.prototype.ValueTypeName = 'color'; // ValueBufferType is inherited
 +
 +
/**
 +
* A Track of numeric keyframe values.
 +
*/
 +
 +
class NumberKeyframeTrack extends KeyframeTrack {}
 +
 +
NumberKeyframeTrack.prototype.ValueTypeName = 'number'; // ValueBufferType is inherited
 +
 +
/**
 +
* Spherical linear unit quaternion interpolant.
 +
*/
 +
 +
class QuaternionLinearInterpolant extends Interpolant {
 +
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
 +
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
 +
}
 +
 +
interpolate_(i1, t0, t, t1) {
 +
const result = this.resultBuffer,
 +
values = this.sampleValues,
 +
stride = this.valueSize,
 +
alpha = (t - t0) / (t1 - t0);
 +
let offset = i1 * stride;
 +
 +
for (let end = offset + stride; offset !== end; offset += 4) {
 +
Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha);
 +
}
 +
 +
return result;
 +
}
 +
 +
}
 +
 +
/**
 +
* A Track of quaternion keyframe values.
 +
*/
 +
 +
class QuaternionKeyframeTrack extends KeyframeTrack {
 +
InterpolantFactoryMethodLinear(result) {
 +
return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result);
 +
}
 +
 +
}
 +
 +
QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited
 +
 +
QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
 +
QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
 +
 +
/**
 +
* A Track that interpolates Strings
 +
*/
 +
 +
class StringKeyframeTrack extends KeyframeTrack {}
 +
 +
StringKeyframeTrack.prototype.ValueTypeName = 'string';
 +
StringKeyframeTrack.prototype.ValueBufferType = Array;
 +
StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
 +
StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
 +
StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
 +
 +
/**
 +
* A Track of vectored keyframe values.
 +
*/
 +
 +
class VectorKeyframeTrack extends KeyframeTrack {}
 +
 +
VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; // ValueBufferType is inherited
 +
 +
class AnimationClip {
 +
constructor(name, duration = -1, tracks, blendMode = NormalAnimationBlendMode) {
 +
this.name = name;
 +
this.tracks = tracks;
 +
this.duration = duration;
 +
this.blendMode = blendMode;
 +
this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks
 +
 +
if (this.duration < 0) {
 +
this.resetDuration();
 +
}
 +
}
 +
 +
static parse(json) {
 +
const tracks = [],
 +
jsonTracks = json.tracks,
 +
frameTime = 1.0 / (json.fps || 1.0);
 +
 +
for (let i = 0, n = jsonTracks.length; i !== n; ++i) {
 +
tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime));
 +
}
 +
 +
const clip = new this(json.name, json.duration, tracks, json.blendMode);
 +
clip.uuid = json.uuid;
 +
return clip;
 +
}
 +
 +
static toJSON(clip) {
 +
const tracks = [],
 +
clipTracks = clip.tracks;
 +
const json = {
 +
'name': clip.name,
 +
'duration': clip.duration,
 +
'tracks': tracks,
 +
'uuid': clip.uuid,
 +
'blendMode': clip.blendMode
 +
};
 +
 +
for (let i = 0, n = clipTracks.length; i !== n; ++i) {
 +
tracks.push(KeyframeTrack.toJSON(clipTracks[i]));
 +
}
 +
 +
return json;
 +
}
 +
 +
static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) {
 +
const numMorphTargets = morphTargetSequence.length;
 +
const tracks = [];
 +
 +
for (let i = 0; i < numMorphTargets; i++) {
 +
let times = [];
 +
let values = [];
 +
times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets);
 +
values.push(0, 1, 0);
 +
const order = AnimationUtils.getKeyframeOrder(times);
 +
times = AnimationUtils.sortedArray(times, 1, order);
 +
values = AnimationUtils.sortedArray(values, 1, order); // if there is a key at the first frame, duplicate it as the
 +
// last frame as well for perfect loop.
 +
 +
if (!noLoop && times[0] === 0) {
 +
times.push(numMorphTargets);
 +
values.push(values[0]);
 +
}
 +
 +
tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps));
 +
}
 +
 +
return new this(name, -1, tracks);
 +
}
 +
 +
static findByName(objectOrClipArray, name) {
 +
let clipArray = objectOrClipArray;
 +
 +
if (!Array.isArray(objectOrClipArray)) {
 +
const o = objectOrClipArray;
 +
clipArray = o.geometry && o.geometry.animations || o.animations;
 +
}
 +
 +
for (let i = 0; i < clipArray.length; i++) {
 +
if (clipArray[i].name === name) {
 +
return clipArray[i];
 +
}
 +
}
 +
 +
return null;
 +
}
 +
 +
static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) {
 +
const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences
 +
// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
 +
 +
const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based
 +
// patterns like Walk_001, Walk_002, Run_001, Run_002
 +
 +
for (let i = 0, il = morphTargets.length; i < il; i++) {
 +
const morphTarget = morphTargets[i];
 +
const parts = morphTarget.name.match(pattern);
 +
 +
if (parts && parts.length > 1) {
 +
const name = parts[1];
 +
let animationMorphTargets = animationToMorphTargets[name];
 +
 +
if (!animationMorphTargets) {
 +
animationToMorphTargets[name] = animationMorphTargets = [];
 +
}
 +
 +
animationMorphTargets.push(morphTarget);
 +
}
 +
}
 +
 +
const clips = [];
 +
 +
for (const name in animationToMorphTargets) {
 +
clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop));
 +
}
 +
 +
return clips;
 +
} // parse the animation.hierarchy format
 +
 +
 +
static parseAnimation(animation, bones) {
 +
if (!animation) {
 +
console.error('THREE.AnimationClip: No animation in JSONLoader data.');
 +
return null;
 +
}
 +
 +
const addNonemptyTrack = function (trackType, trackName, animationKeys, propertyName, destTracks) {
 +
// only return track if there are actually keys.
 +
if (animationKeys.length !== 0) {
 +
const times = [];
 +
const values = [];
 +
AnimationUtils.flattenJSON(animationKeys, times, values, propertyName); // empty keys are filtered out, so check again
 +
 +
if (times.length !== 0) {
 +
destTracks.push(new trackType(trackName, times, values));
 +
}
 +
}
 +
};
 +
 +
const tracks = [];
 +
const clipName = animation.name || 'default';
 +
const fps = animation.fps || 30;
 +
const blendMode = animation.blendMode; // automatic length determination in AnimationClip.
 +
 +
let duration = animation.length || -1;
 +
const hierarchyTracks = animation.hierarchy || [];
 +
 +
for (let h = 0; h < hierarchyTracks.length; h++) {
 +
const animationKeys = hierarchyTracks[h].keys; // skip empty tracks
 +
 +
if (!animationKeys || animationKeys.length === 0) continue; // process morph targets
 +
 +
if (animationKeys[0].morphTargets) {
 +
// figure out all morph targets used in this track
 +
const morphTargetNames = {};
 +
let k;
 +
 +
for (k = 0; k < animationKeys.length; k++) {
 +
if (animationKeys[k].morphTargets) {
 +
for (let m = 0; m < animationKeys[k].morphTargets.length; m++) {
 +
morphTargetNames[animationKeys[k].morphTargets[m]] = -1;
 +
}
 +
}
 +
} // create a track for each morph target with all zero
 +
// morphTargetInfluences except for the keys in which
 +
// the morphTarget is named.
 +
 +
 +
for (const morphTargetName in morphTargetNames) {
 +
const times = [];
 +
const values = [];
 +
 +
for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) {
 +
const animationKey = animationKeys[k];
 +
times.push(animationKey.time);
 +
values.push(animationKey.morphTarget === morphTargetName ? 1 : 0);
 +
}
 +
 +
tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values));
 +
}
 +
 +
duration = morphTargetNames.length * (fps || 1.0);
 +
} else {
 +
// ...assume skeletal animation
 +
const boneName = '.bones[' + bones[h].name + ']';
 +
addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks);
 +
addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks);
 +
addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks);
 +
}
 +
}
 +
 +
if (tracks.length === 0) {
 +
return null;
 +
}
 +
 +
const clip = new this(clipName, duration, tracks, blendMode);
 +
return clip;
 +
}
 +
 +
resetDuration() {
 +
const tracks = this.tracks;
 +
let duration = 0;
 +
 +
for (let i = 0, n = tracks.length; i !== n; ++i) {
 +
const track = this.tracks[i];
 +
duration = Math.max(duration, track.times[track.times.length - 1]);
 +
}
 +
 +
this.duration = duration;
 +
return this;
 +
}
 +
 +
trim() {
 +
for (let i = 0; i < this.tracks.length; i++) {
 +
this.tracks[i].trim(0, this.duration);
 +
}
 +
 +
return this;
 +
}
 +
 +
validate() {
 +
let valid = true;
 +
 +
for (let i = 0; i < this.tracks.length; i++) {
 +
valid = valid && this.tracks[i].validate();
 +
}
 +
 +
return valid;
 +
}
 +
 +
optimize() {
 +
for (let i = 0; i < this.tracks.length; i++) {
 +
this.tracks[i].optimize();
 +
}
 +
 +
return this;
 +
}
 +
 +
clone() {
 +
const tracks = [];
 +
 +
for (let i = 0; i < this.tracks.length; i++) {
 +
tracks.push(this.tracks[i].clone());
 +
}
 +
 +
return new this.constructor(this.name, this.duration, tracks, this.blendMode);
 +
}
 +
 +
toJSON() {
 +
return this.constructor.toJSON(this);
 +
}
 +
 +
}
 +
 +
function getTrackTypeForValueTypeName(typeName) {
 +
switch (typeName.toLowerCase()) {
 +
case 'scalar':
 +
case 'double':
 +
case 'float':
 +
case 'number':
 +
case 'integer':
 +
return NumberKeyframeTrack;
 +
 +
case 'vector':
 +
case 'vector2':
 +
case 'vector3':
 +
case 'vector4':
 +
return VectorKeyframeTrack;
 +
 +
case 'color':
 +
return ColorKeyframeTrack;
 +
 +
case 'quaternion':
 +
return QuaternionKeyframeTrack;
 +
 +
case 'bool':
 +
case 'boolean':
 +
return BooleanKeyframeTrack;
 +
 +
case 'string':
 +
return StringKeyframeTrack;
 +
}
 +
 +
throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName);
 +
}
 +
 +
function parseKeyframeTrack(json) {
 +
if (json.type === undefined) {
 +
throw new Error('THREE.KeyframeTrack: track type undefined, can not parse');
 +
}
 +
 +
const trackType = getTrackTypeForValueTypeName(json.type);
 +
 +
if (json.times === undefined) {
 +
const times = [],
 +
values = [];
 +
AnimationUtils.flattenJSON(json.keys, times, values, 'value');
 +
json.times = times;
 +
json.values = values;
 +
} // derived classes can define a static parse method
 +
 +
 +
if (trackType.parse !== undefined) {
 +
return trackType.parse(json);
 +
} else {
 +
// by default, we assume a constructor compatible with the base
 +
return new trackType(json.name, json.times, json.values, json.interpolation);
 +
}
 +
}
 +
 +
const Cache = {
 +
enabled: false,
 +
files: {},
 +
add: function (key, file) {
 +
if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Adding key:', key );
 +
 +
this.files[key] = file;
 +
},
 +
get: function (key) {
 +
if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Checking key:', key );
 +
 +
return this.files[key];
 +
},
 +
remove: function (key) {
 +
delete this.files[key];
 +
},
 +
clear: function () {
 +
this.files = {};
 +
}
 +
};
 +
 +
class LoadingManager {
 +
constructor(onLoad, onProgress, onError) {
 +
const scope = this;
 +
let isLoading = false;
 +
let itemsLoaded = 0;
 +
let itemsTotal = 0;
 +
let urlModifier = undefined;
 +
const handlers = []; // Refer to #5689 for the reason why we don't set .onStart
 +
// in the constructor
 +
 +
this.onStart = undefined;
 +
this.onLoad = onLoad;
 +
this.onProgress = onProgress;
 +
this.onError = onError;
 +
 +
this.itemStart = function (url) {
 +
itemsTotal++;
 +
 +
if (isLoading === false) {
 +
if (scope.onStart !== undefined) {
 +
scope.onStart(url, itemsLoaded, itemsTotal);
 +
}
 +
}
 +
 +
isLoading = true;
 +
};
 +
 +
this.itemEnd = function (url) {
 +
itemsLoaded++;
 +
 +
if (scope.onProgress !== undefined) {
 +
scope.onProgress(url, itemsLoaded, itemsTotal);
 +
}
 +
 +
if (itemsLoaded === itemsTotal) {
 +
isLoading = false;
 +
 +
if (scope.onLoad !== undefined) {
 +
scope.onLoad();
 +
}
 +
}
 +
};
 +
 +
this.itemError = function (url) {
 +
if (scope.onError !== undefined) {
 +
scope.onError(url);
 +
}
 +
};
 +
 +
this.resolveURL = function (url) {
 +
if (urlModifier) {
 +
return urlModifier(url);
 +
}
 +
 +
return url;
 +
};
 +
 +
this.setURLModifier = function (transform) {
 +
urlModifier = transform;
 +
return this;
 +
};
 +
 +
this.addHandler = function (regex, loader) {
 +
handlers.push(regex, loader);
 +
return this;
 +
};
 +
 +
this.removeHandler = function (regex) {
 +
const index = handlers.indexOf(regex);
 +
 +
if (index !== -1) {
 +
handlers.splice(index, 2);
 +
}
 +
 +
return this;
 +
};
 +
 +
this.getHandler = function (file) {
 +
for (let i = 0, l = handlers.length; i < l; i += 2) {
 +
const regex = handlers[i];
 +
const loader = handlers[i + 1];
 +
if (regex.global) regex.lastIndex = 0; // see #17920
 +
 +
if (regex.test(file)) {
 +
return loader;
 +
}
 +
}
 +
 +
return null;
 +
};
 +
}
 +
 +
}
 +
 +
const DefaultLoadingManager = new LoadingManager();
 +
 +
class Loader {
 +
constructor(manager) {
 +
this.manager = manager !== undefined ? manager : DefaultLoadingManager;
 +
this.crossOrigin = 'anonymous';
 +
this.withCredentials = false;
 +
this.path = '';
 +
this.resourcePath = '';
 +
this.requestHeader = {};
 +
}
 +
 +
load()
 +
/* url, onLoad, onProgress, onError */
 +
{}
 +
 +
loadAsync(url, onProgress) {
 +
const scope = this;
 +
return new Promise(function (resolve, reject) {
 +
scope.load(url, resolve, onProgress, reject);
 +
});
 +
}
 +
 +
parse()
 +
/* data */
 +
{}
 +
 +
setCrossOrigin(crossOrigin) {
 +
this.crossOrigin = crossOrigin;
 +
return this;
 +
}
 +
 +
setWithCredentials(value) {
 +
this.withCredentials = value;
 +
return this;
 +
}
 +
 +
setPath(path) {
 +
this.path = path;
 +
return this;
 +
}
 +
 +
setResourcePath(resourcePath) {
 +
this.resourcePath = resourcePath;
 +
return this;
 +
}
 +
 +
setRequestHeader(requestHeader) {
 +
this.requestHeader = requestHeader;
 +
return this;
 +
}
 +
 +
}
 +
 +
const loading = {};
 +
 +
class FileLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
if (url === undefined) url = '';
 +
if (this.path !== undefined) url = this.path + url;
 +
url = this.manager.resolveURL(url);
 +
const scope = this;
 +
const cached = Cache.get(url);
 +
 +
if (cached !== undefined) {
 +
scope.manager.itemStart(url);
 +
setTimeout(function () {
 +
if (onLoad) onLoad(cached);
 +
scope.manager.itemEnd(url);
 +
}, 0);
 +
return cached;
 +
} // Check if request is duplicate
 +
 +
 +
if (loading[url] !== undefined) {
 +
loading[url].push({
 +
onLoad: onLoad,
 +
onProgress: onProgress,
 +
onError: onError
 +
});
 +
return;
 +
} // Check for data: URI
 +
 +
 +
const dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
 +
const dataUriRegexResult = url.match(dataUriRegex);
 +
let request; // Safari can not handle Data URIs through XMLHttpRequest so process manually
 +
 +
if (dataUriRegexResult) {
 +
const mimeType = dataUriRegexResult[1];
 +
const isBase64 = !!dataUriRegexResult[2];
 +
let data = dataUriRegexResult[3];
 +
data = decodeURIComponent(data);
 +
if (isBase64) data = atob(data);
 +
 +
try {
 +
let response;
 +
const responseType = (this.responseType || '').toLowerCase();
 +
 +
switch (responseType) {
 +
case 'arraybuffer':
 +
case 'blob':
 +
const view = new Uint8Array(data.length);
 +
 +
for (let i = 0; i < data.length; i++) {
 +
view[i] = data.charCodeAt(i);
 +
}
 +
 +
if (responseType === 'blob') {
 +
response = new Blob([view.buffer], {
 +
type: mimeType
 +
});
 +
} else {
 +
response = view.buffer;
 +
}
 +
 +
break;
 +
 +
case 'document':
 +
const parser = new DOMParser();
 +
response = parser.parseFromString(data, mimeType);
 +
break;
 +
 +
case 'json':
 +
response = JSON.parse(data);
 +
break;
 +
 +
default:
 +
// 'text' or other
 +
response = data;
 +
break;
 +
} // Wait for next browser tick like standard XMLHttpRequest event dispatching does
 +
 +
 +
setTimeout(function () {
 +
if (onLoad) onLoad(response);
 +
scope.manager.itemEnd(url);
 +
}, 0);
 +
} catch (error) {
 +
// Wait for next browser tick like standard XMLHttpRequest event dispatching does
 +
setTimeout(function () {
 +
if (onError) onError(error);
 +
scope.manager.itemError(url);
 +
scope.manager.itemEnd(url);
 +
}, 0);
 +
}
 +
} else {
 +
// Initialise array for duplicate requests
 +
loading[url] = [];
 +
loading[url].push({
 +
onLoad: onLoad,
 +
onProgress: onProgress,
 +
onError: onError
 +
});
 +
request = new XMLHttpRequest();
 +
request.open('GET', url, true);
 +
request.addEventListener('load', function (event) {
 +
const response = this.response;
 +
const callbacks = loading[url];
 +
delete loading[url];
 +
 +
if (this.status === 200 || this.status === 0) {
 +
// Some browsers return HTTP Status 0 when using non-http protocol
 +
// e.g. 'file://' or 'data://'. Handle as success.
 +
if (this.status === 0) console.warn('THREE.FileLoader: HTTP Status 0 received.'); // Add to cache only on HTTP success, so that we do not cache
 +
// error response bodies as proper responses to requests.
 +
 +
Cache.add(url, response);
 +
 +
for (let i = 0, il = callbacks.length; i < il; i++) {
 +
const callback = callbacks[i];
 +
if (callback.onLoad) callback.onLoad(response);
 +
}
 +
 +
scope.manager.itemEnd(url);
 +
} else {
 +
for (let i = 0, il = callbacks.length; i < il; i++) {
 +
const callback = callbacks[i];
 +
if (callback.onError) callback.onError(event);
 +
}
 +
 +
scope.manager.itemError(url);
 +
scope.manager.itemEnd(url);
 +
}
 +
}, false);
 +
request.addEventListener('progress', function (event) {
 +
const callbacks = loading[url];
 +
 +
for (let i = 0, il = callbacks.length; i < il; i++) {
 +
const callback = callbacks[i];
 +
if (callback.onProgress) callback.onProgress(event);
 +
}
 +
}, false);
 +
request.addEventListener('error', function (event) {
 +
const callbacks = loading[url];
 +
delete loading[url];
 +
 +
for (let i = 0, il = callbacks.length; i < il; i++) {
 +
const callback = callbacks[i];
 +
if (callback.onError) callback.onError(event);
 +
}
 +
 +
scope.manager.itemError(url);
 +
scope.manager.itemEnd(url);
 +
}, false);
 +
request.addEventListener('abort', function (event) {
 +
const callbacks = loading[url];
 +
delete loading[url];
 +
 +
for (let i = 0, il = callbacks.length; i < il; i++) {
 +
const callback = callbacks[i];
 +
if (callback.onError) callback.onError(event);
 +
}
 +
 +
scope.manager.itemError(url);
 +
scope.manager.itemEnd(url);
 +
}, false);
 +
if (this.responseType !== undefined) request.responseType = this.responseType;
 +
if (this.withCredentials !== undefined) request.withCredentials = this.withCredentials;
 +
if (request.overrideMimeType) request.overrideMimeType(this.mimeType !== undefined ? this.mimeType : 'text/plain');
 +
 +
for (const header in this.requestHeader) {
 +
request.setRequestHeader(header, this.requestHeader[header]);
 +
}
 +
 +
request.send(null);
 +
}
 +
 +
scope.manager.itemStart(url);
 +
return request;
 +
}
 +
 +
setResponseType(value) {
 +
this.responseType = value;
 +
return this;
 +
}
 +
 +
setMimeType(value) {
 +
this.mimeType = value;
 +
return this;
 +
}
 +
 +
}
 +
 +
class AnimationLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
const scope = this;
 +
const loader = new FileLoader(this.manager);
 +
loader.setPath(this.path);
 +
loader.setRequestHeader(this.requestHeader);
 +
loader.setWithCredentials(this.withCredentials);
 +
loader.load(url, function (text) {
 +
try {
 +
onLoad(scope.parse(JSON.parse(text)));
 +
} catch (e) {
 +
if (onError) {
 +
onError(e);
 +
} else {
 +
console.error(e);
 +
}
 +
 +
scope.manager.itemError(url);
 +
}
 +
}, onProgress, onError);
 +
}
 +
 +
parse(json) {
 +
const animations = [];
 +
 +
for (let i = 0; i < json.length; i++) {
 +
const clip = AnimationClip.parse(json[i]);
 +
animations.push(clip);
 +
}
 +
 +
return animations;
 +
}
 +
 +
}
 +
 +
/**
 +
* Abstract Base class to block based textures loader (dds, pvr, ...)
 +
*
 +
* Sub classes have to implement the parse() method which will be used in load().
 +
*/
 +
 +
class CompressedTextureLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
const scope = this;
 +
const images = [];
 +
const texture = new CompressedTexture();
 +
const loader = new FileLoader(this.manager);
 +
loader.setPath(this.path);
 +
loader.setResponseType('arraybuffer');
 +
loader.setRequestHeader(this.requestHeader);
 +
loader.setWithCredentials(scope.withCredentials);
 +
let loaded = 0;
 +
 +
function loadTexture(i) {
 +
loader.load(url[i], function (buffer) {
 +
const texDatas = scope.parse(buffer, true);
 +
images[i] = {
 +
width: texDatas.width,
 +
height: texDatas.height,
 +
format: texDatas.format,
 +
mipmaps: texDatas.mipmaps
 +
};
 +
loaded += 1;
 +
 +
if (loaded === 6) {
 +
if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter;
 +
texture.image = images;
 +
texture.format = texDatas.format;
 +
texture.needsUpdate = true;
 +
if (onLoad) onLoad(texture);
 +
}
 +
}, onProgress, onError);
 +
}
 +
 +
if (Array.isArray(url)) {
 +
for (let i = 0, il = url.length; i < il; ++i) {
 +
loadTexture(i);
 +
}
 +
} else {
 +
// compressed cubemap texture stored in a single DDS file
 +
loader.load(url, function (buffer) {
 +
const texDatas = scope.parse(buffer, true);
 +
 +
if (texDatas.isCubemap) {
 +
const faces = texDatas.mipmaps.length / texDatas.mipmapCount;
 +
 +
for (let f = 0; f < faces; f++) {
 +
images[f] = {
 +
mipmaps: []
 +
};
 +
 +
for (let i = 0; i < texDatas.mipmapCount; i++) {
 +
images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]);
 +
images[f].format = texDatas.format;
 +
images[f].width = texDatas.width;
 +
images[f].height = texDatas.height;
 +
}
 +
}
 +
 +
texture.image = images;
 +
} else {
 +
texture.image.width = texDatas.width;
 +
texture.image.height = texDatas.height;
 +
texture.mipmaps = texDatas.mipmaps;
 +
}
 +
 +
if (texDatas.mipmapCount === 1) {
 +
texture.minFilter = LinearFilter;
 +
}
 +
 +
texture.format = texDatas.format;
 +
texture.needsUpdate = true;
 +
if (onLoad) onLoad(texture);
 +
}, onProgress, onError);
 +
}
 +
 +
return texture;
 +
}
 +
 +
}
 +
 +
class ImageLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
if (this.path !== undefined) url = this.path + url;
 +
url = this.manager.resolveURL(url);
 +
const scope = this;
 +
const cached = Cache.get(url);
 +
 +
if (cached !== undefined) {
 +
scope.manager.itemStart(url);
 +
setTimeout(function () {
 +
if (onLoad) onLoad(cached);
 +
scope.manager.itemEnd(url);
 +
}, 0);
 +
return cached;
 +
}
 +
 +
const image = document.createElementNS('http://www.w3.org/1999/xhtml', 'img');
 +
 +
function onImageLoad() {
 +
image.removeEventListener('load', onImageLoad, false);
 +
image.removeEventListener('error', onImageError, false);
 +
Cache.add(url, this);
 +
if (onLoad) onLoad(this);
 +
scope.manager.itemEnd(url);
 +
}
 +
 +
function onImageError(event) {
 +
image.removeEventListener('load', onImageLoad, false);
 +
image.removeEventListener('error', onImageError, false);
 +
if (onError) onError(event);
 +
scope.manager.itemError(url);
 +
scope.manager.itemEnd(url);
 +
}
 +
 +
image.addEventListener('load', onImageLoad, false);
 +
image.addEventListener('error', onImageError, false);
 +
 +
if (url.substr(0, 5) !== 'data:') {
 +
if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin;
 +
}
 +
 +
scope.manager.itemStart(url);
 +
image.src = url;
 +
return image;
 +
}
 +
 +
}
 +
 +
class CubeTextureLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(urls, onLoad, onProgress, onError) {
 +
const texture = new CubeTexture();
 +
const loader = new ImageLoader(this.manager);
 +
loader.setCrossOrigin(this.crossOrigin);
 +
loader.setPath(this.path);
 +
let loaded = 0;
 +
 +
function loadTexture(i) {
 +
loader.load(urls[i], function (image) {
 +
texture.images[i] = image;
 +
loaded++;
 +
 +
if (loaded === 6) {
 +
texture.needsUpdate = true;
 +
if (onLoad) onLoad(texture);
 +
}
 +
}, undefined, onError);
 +
}
 +
 +
for (let i = 0; i < urls.length; ++i) {
 +
loadTexture(i);
 +
}
 +
 +
return texture;
 +
}
 +
 +
}
 +
 +
/**
 +
* Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
 +
*
 +
* Sub classes have to implement the parse() method which will be used in load().
 +
*/
 +
 +
class DataTextureLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
const scope = this;
 +
const texture = new DataTexture();
 +
const loader = new FileLoader(this.manager);
 +
loader.setResponseType('arraybuffer');
 +
loader.setRequestHeader(this.requestHeader);
 +
loader.setPath(this.path);
 +
loader.setWithCredentials(scope.withCredentials);
 +
loader.load(url, function (buffer) {
 +
const texData = scope.parse(buffer);
 +
if (!texData) return;
 +
 +
if (texData.image !== undefined) {
 +
texture.image = texData.image;
 +
} else if (texData.data !== undefined) {
 +
texture.image.width = texData.width;
 +
texture.image.height = texData.height;
 +
texture.image.data = texData.data;
 +
}
 +
 +
texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
 +
texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;
 +
texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
 +
texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;
 +
texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;
 +
 +
if (texData.encoding !== undefined) {
 +
texture.encoding = texData.encoding;
 +
}
 +
 +
if (texData.flipY !== undefined) {
 +
texture.flipY = texData.flipY;
 +
}
 +
 +
if (texData.format !== undefined) {
 +
texture.format = texData.format;
 +
}
 +
 +
if (texData.type !== undefined) {
 +
texture.type = texData.type;
 +
}
 +
 +
if (texData.mipmaps !== undefined) {
 +
texture.mipmaps = texData.mipmaps;
 +
texture.minFilter = LinearMipmapLinearFilter; // presumably...
 +
}
 +
 +
if (texData.mipmapCount === 1) {
 +
texture.minFilter = LinearFilter;
 +
}
 +
 +
if (texData.generateMipmaps !== undefined) {
 +
texture.generateMipmaps = texData.generateMipmaps;
 +
}
 +
 +
texture.needsUpdate = true;
 +
if (onLoad) onLoad(texture, texData);
 +
}, onProgress, onError);
 +
return texture;
 +
}
 +
 +
}
 +
 +
class TextureLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
const texture = new Texture();
 +
const loader = new ImageLoader(this.manager);
 +
loader.setCrossOrigin(this.crossOrigin);
 +
loader.setPath(this.path);
 +
loader.load(url, function (image) {
 +
texture.image = image; // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
 +
 +
const isJPEG = url.search(/\.jpe?g($|\?)/i) > 0 || url.search(/^data\:image\/jpeg/) === 0;
 +
texture.format = isJPEG ? RGBFormat : RGBAFormat;
 +
texture.needsUpdate = true;
 +
 +
if (onLoad !== undefined) {
 +
onLoad(texture);
 +
}
 +
}, onProgress, onError);
 +
return texture;
 +
}
 +
 +
}
 +
 +
/**************************************************************
 +
* Curved Path - a curve path is simply a array of connected
 +
* curves, but retains the api of a curve
 +
**************************************************************/
 +
 +
class CurvePath extends Curve {
 +
constructor() {
 +
super();
 +
this.type = 'CurvePath';
 +
this.curves = [];
 +
this.autoClose = false; // Automatically closes the path
 +
}
 +
 +
add(curve) {
 +
this.curves.push(curve);
 +
}
 +
 +
closePath() {
 +
// Add a line curve if start and end of lines are not connected
 +
const startPoint = this.curves[0].getPoint(0);
 +
const endPoint = this.curves[this.curves.length - 1].getPoint(1);
 +
 +
if (!startPoint.equals(endPoint)) {
 +
this.curves.push(new LineCurve(endPoint, startPoint));
 +
}
 +
} // To get accurate point with reference to
 +
// entire path distance at time t,
 +
// following has to be done:
 +
// 1. Length of each sub path have to be known
 +
// 2. Locate and identify type of curve
 +
// 3. Get t for the curve
 +
// 4. Return curve.getPointAt(t')
 +
 +
 +
getPoint(t) {
 +
const d = t * this.getLength();
 +
const curveLengths = this.getCurveLengths();
 +
let i = 0; // To think about boundaries points.
 +
 +
while (i < curveLengths.length) {
 +
if (curveLengths[i] >= d) {
 +
const diff = curveLengths[i] - d;
 +
const curve = this.curves[i];
 +
const segmentLength = curve.getLength();
 +
const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;
 +
return curve.getPointAt(u);
 +
}
 +
 +
i++;
 +
}
 +
 +
return null; // loop where sum != 0, sum > d , sum+1 <d
 +
} // We cannot use the default THREE.Curve getPoint() with getLength() because in
 +
// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
 +
// getPoint() depends on getLength
 +
 +
 +
getLength() {
 +
const lens = this.getCurveLengths();
 +
return lens[lens.length - 1];
 +
} // cacheLengths must be recalculated.
 +
 +
 +
updateArcLengths() {
 +
this.needsUpdate = true;
 +
this.cacheLengths = null;
 +
this.getCurveLengths();
 +
} // Compute lengths and cache them
 +
// We cannot overwrite getLengths() because UtoT mapping uses it.
 +
 +
 +
getCurveLengths() {
 +
// We use cache values if curves and cache array are same length
 +
if (this.cacheLengths && this.cacheLengths.length === this.curves.length) {
 +
return this.cacheLengths;
 +
} // Get length of sub-curve
 +
// Push sums into cached array
 +
 +
 +
const lengths = [];
 +
let sums = 0;
 +
 +
for (let i = 0, l = this.curves.length; i < l; i++) {
 +
sums += this.curves[i].getLength();
 +
lengths.push(sums);
 +
}
 +
 +
this.cacheLengths = lengths;
 +
return lengths;
 +
}
 +
 +
getSpacedPoints(divisions = 40) {
 +
const points = [];
 +
 +
for (let i = 0; i <= divisions; i++) {
 +
points.push(this.getPoint(i / divisions));
 +
}
 +
 +
if (this.autoClose) {
 +
points.push(points[0]);
 +
}
 +
 +
return points;
 +
}
 +
 +
getPoints(divisions = 12) {
 +
const points = [];
 +
let last;
 +
 +
for (let i = 0, curves = this.curves; i < curves.length; i++) {
 +
const curve = curves[i];
 +
const resolution = curve && curve.isEllipseCurve ? divisions * 2 : curve && (curve.isLineCurve || curve.isLineCurve3) ? 1 : curve && curve.isSplineCurve ? divisions * curve.points.length : divisions;
 +
const pts = curve.getPoints(resolution);
 +
 +
for (let j = 0; j < pts.length; j++) {
 +
const point = pts[j];
 +
if (last && last.equals(point)) continue; // ensures no consecutive points are duplicates
 +
 +
points.push(point);
 +
last = point;
 +
}
 +
}
 +
 +
if (this.autoClose && points.length > 1 && !points[points.length - 1].equals(points[0])) {
 +
points.push(points[0]);
 +
}
 +
 +
return points;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.curves = [];
 +
 +
for (let i = 0, l = source.curves.length; i < l; i++) {
 +
const curve = source.curves[i];
 +
this.curves.push(curve.clone());
 +
}
 +
 +
this.autoClose = source.autoClose;
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.autoClose = this.autoClose;
 +
data.curves = [];
 +
 +
for (let i = 0, l = this.curves.length; i < l; i++) {
 +
const curve = this.curves[i];
 +
data.curves.push(curve.toJSON());
 +
}
 +
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.autoClose = json.autoClose;
 +
this.curves = [];
 +
 +
for (let i = 0, l = json.curves.length; i < l; i++) {
 +
const curve = json.curves[i];
 +
this.curves.push(new Curves[curve.type]().fromJSON(curve));
 +
}
 +
 +
return this;
 +
}
 +
 +
}
 +
 +
class Path extends CurvePath {
 +
constructor(points) {
 +
super();
 +
this.type = 'Path';
 +
this.currentPoint = new Vector2();
 +
 +
if (points) {
 +
this.setFromPoints(points);
 +
}
 +
}
 +
 +
setFromPoints(points) {
 +
this.moveTo(points[0].x, points[0].y);
 +
 +
for (let i = 1, l = points.length; i < l; i++) {
 +
this.lineTo(points[i].x, points[i].y);
 +
}
 +
 +
return this;
 +
}
 +
 +
moveTo(x, y) {
 +
this.currentPoint.set(x, y); // TODO consider referencing vectors instead of copying?
 +
 +
return this;
 +
}
 +
 +
lineTo(x, y) {
 +
const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y));
 +
this.curves.push(curve);
 +
this.currentPoint.set(x, y);
 +
return this;
 +
}
 +
 +
quadraticCurveTo(aCPx, aCPy, aX, aY) {
 +
const curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY));
 +
this.curves.push(curve);
 +
this.currentPoint.set(aX, aY);
 +
return this;
 +
}
 +
 +
bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
 +
const curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY));
 +
this.curves.push(curve);
 +
this.currentPoint.set(aX, aY);
 +
return this;
 +
}
 +
 +
splineThru(pts
 +
/*Array of Vector*/
 +
) {
 +
const npts = [this.currentPoint.clone()].concat(pts);
 +
const curve = new SplineCurve(npts);
 +
this.curves.push(curve);
 +
this.currentPoint.copy(pts[pts.length - 1]);
 +
return this;
 +
}
 +
 +
arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
 +
const x0 = this.currentPoint.x;
 +
const y0 = this.currentPoint.y;
 +
this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise);
 +
return this;
 +
}
 +
 +
absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
 +
this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
 +
return this;
 +
}
 +
 +
ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
 +
const x0 = this.currentPoint.x;
 +
const y0 = this.currentPoint.y;
 +
this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
 +
return this;
 +
}
 +
 +
absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
 +
const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
 +
 +
if (this.curves.length > 0) {
 +
// if a previous curve is present, attempt to join
 +
const firstPoint = curve.getPoint(0);
 +
 +
if (!firstPoint.equals(this.currentPoint)) {
 +
this.lineTo(firstPoint.x, firstPoint.y);
 +
}
 +
}
 +
 +
this.curves.push(curve);
 +
const lastPoint = curve.getPoint(1);
 +
this.currentPoint.copy(lastPoint);
 +
return this;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.currentPoint.copy(source.currentPoint);
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.currentPoint = this.currentPoint.toArray();
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.currentPoint.fromArray(json.currentPoint);
 +
return this;
 +
}
 +
 +
}
 +
 +
class Shape extends Path {
 +
constructor(points) {
 +
super(points);
 +
this.uuid = generateUUID();
 +
this.type = 'Shape';
 +
this.holes = [];
 +
}
 +
 +
getPointsHoles(divisions) {
 +
const holesPts = [];
 +
 +
for (let i = 0, l = this.holes.length; i < l; i++) {
 +
holesPts[i] = this.holes[i].getPoints(divisions);
 +
}
 +
 +
return holesPts;
 +
} // get points of shape and holes (keypoints based on segments parameter)
 +
 +
 +
extractPoints(divisions) {
 +
return {
 +
shape: this.getPoints(divisions),
 +
holes: this.getPointsHoles(divisions)
 +
};
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.holes = [];
 +
 +
for (let i = 0, l = source.holes.length; i < l; i++) {
 +
const hole = source.holes[i];
 +
this.holes.push(hole.clone());
 +
}
 +
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.uuid = this.uuid;
 +
data.holes = [];
 +
 +
for (let i = 0, l = this.holes.length; i < l; i++) {
 +
const hole = this.holes[i];
 +
data.holes.push(hole.toJSON());
 +
}
 +
 +
return data;
 +
}
 +
 +
fromJSON(json) {
 +
super.fromJSON(json);
 +
this.uuid = json.uuid;
 +
this.holes = [];
 +
 +
for (let i = 0, l = json.holes.length; i < l; i++) {
 +
const hole = json.holes[i];
 +
this.holes.push(new Path().fromJSON(hole));
 +
}
 +
 +
return this;
 +
}
 +
 +
}
 +
 +
class Light extends Object3D {
 +
constructor(color, intensity = 1) {
 +
super();
 +
this.type = 'Light';
 +
this.color = new Color(color);
 +
this.intensity = intensity;
 +
}
 +
 +
dispose() {// Empty here in base class; some subclasses override.
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.color.copy(source.color);
 +
this.intensity = source.intensity;
 +
return this;
 +
}
 +
 +
toJSON(meta) {
 +
const data = super.toJSON(meta);
 +
data.object.color = this.color.getHex();
 +
data.object.intensity = this.intensity;
 +
if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex();
 +
if (this.distance !== undefined) data.object.distance = this.distance;
 +
if (this.angle !== undefined) data.object.angle = this.angle;
 +
if (this.decay !== undefined) data.object.decay = this.decay;
 +
if (this.penumbra !== undefined) data.object.penumbra = this.penumbra;
 +
if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON();
 +
return data;
 +
}
 +
 +
}
 +
 +
Light.prototype.isLight = true;
 +
 +
class HemisphereLight extends Light {
 +
constructor(skyColor, groundColor, intensity) {
 +
super(skyColor, intensity);
 +
this.type = 'HemisphereLight';
 +
this.position.copy(Object3D.DefaultUp);
 +
this.updateMatrix();
 +
this.groundColor = new Color(groundColor);
 +
}
 +
 +
copy(source) {
 +
Light.prototype.copy.call(this, source);
 +
this.groundColor.copy(source.groundColor);
 +
return this;
 +
}
 +
 +
}
 +
 +
HemisphereLight.prototype.isHemisphereLight = true;
 +
 +
const _projScreenMatrix$1 = /*@__PURE__*/new Matrix4();
 +
 +
const _lightPositionWorld$1 = /*@__PURE__*/new Vector3();
 +
 +
const _lookTarget$1 = /*@__PURE__*/new Vector3();
 +
 +
class LightShadow {
 +
constructor(camera) {
 +
this.camera = camera;
 +
this.bias = 0;
 +
this.normalBias = 0;
 +
this.radius = 1;
 +
this.mapSize = new Vector2(512, 512);
 +
this.map = null;
 +
this.mapPass = null;
 +
this.matrix = new Matrix4();
 +
this.autoUpdate = true;
 +
this.needsUpdate = false;
 +
this._frustum = new Frustum();
 +
this._frameExtents = new Vector2(1, 1);
 +
this._viewportCount = 1;
 +
this._viewports = [new Vector4(0, 0, 1, 1)];
 +
}
 +
 +
getViewportCount() {
 +
return this._viewportCount;
 +
}
 +
 +
getFrustum() {
 +
return this._frustum;
 +
}
 +
 +
updateMatrices(light) {
 +
const shadowCamera = this.camera;
 +
const shadowMatrix = this.matrix;
 +
 +
_lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld);
 +
 +
shadowCamera.position.copy(_lightPositionWorld$1);
 +
 +
_lookTarget$1.setFromMatrixPosition(light.target.matrixWorld);
 +
 +
shadowCamera.lookAt(_lookTarget$1);
 +
shadowCamera.updateMatrixWorld();
 +
 +
_projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse);
 +
 +
this._frustum.setFromProjectionMatrix(_projScreenMatrix$1);
 +
 +
shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0);
 +
shadowMatrix.multiply(shadowCamera.projectionMatrix);
 +
shadowMatrix.multiply(shadowCamera.matrixWorldInverse);
 +
}
 +
 +
getViewport(viewportIndex) {
 +
return this._viewports[viewportIndex];
 +
}
 +
 +
getFrameExtents() {
 +
return this._frameExtents;
 +
}
 +
 +
dispose() {
 +
if (this.map) {
 +
this.map.dispose();
 +
}
 +
 +
if (this.mapPass) {
 +
this.mapPass.dispose();
 +
}
 +
}
 +
 +
copy(source) {
 +
this.camera = source.camera.clone();
 +
this.bias = source.bias;
 +
this.radius = source.radius;
 +
this.mapSize.copy(source.mapSize);
 +
return this;
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
toJSON() {
 +
const object = {};
 +
if (this.bias !== 0) object.bias = this.bias;
 +
if (this.normalBias !== 0) object.normalBias = this.normalBias;
 +
if (this.radius !== 1) object.radius = this.radius;
 +
if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray();
 +
object.camera = this.camera.toJSON(false).object;
 +
delete object.camera.matrix;
 +
return object;
 +
}
 +
 +
}
 +
 +
class SpotLightShadow extends LightShadow {
 +
constructor() {
 +
super(new PerspectiveCamera(50, 1, 0.5, 500));
 +
this.focus = 1;
 +
}
 +
 +
updateMatrices(light) {
 +
const camera = this.camera;
 +
const fov = RAD2DEG * 2 * light.angle * this.focus;
 +
const aspect = this.mapSize.width / this.mapSize.height;
 +
const far = light.distance || camera.far;
 +
 +
if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) {
 +
camera.fov = fov;
 +
camera.aspect = aspect;
 +
camera.far = far;
 +
camera.updateProjectionMatrix();
 +
}
 +
 +
super.updateMatrices(light);
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.focus = source.focus;
 +
return this;
 +
}
 +
 +
}
 +
 +
SpotLightShadow.prototype.isSpotLightShadow = true;
 +
 +
class SpotLight extends Light {
 +
constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1) {
 +
super(color, intensity);
 +
this.type = 'SpotLight';
 +
this.position.copy(Object3D.DefaultUp);
 +
this.updateMatrix();
 +
this.target = new Object3D();
 +
this.distance = distance;
 +
this.angle = angle;
 +
this.penumbra = penumbra;
 +
this.decay = decay; // for physically correct lights, should be 2.
 +
 +
this.shadow = new SpotLightShadow();
 +
}
 +
 +
get power() {
 +
// intensity = power per solid angle.
 +
// ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
 +
return this.intensity * Math.PI;
 +
}
 +
 +
set power(power) {
 +
// intensity = power per solid angle.
 +
// ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
 +
this.intensity = power / Math.PI;
 +
}
 +
 +
dispose() {
 +
this.shadow.dispose();
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.distance = source.distance;
 +
this.angle = source.angle;
 +
this.penumbra = source.penumbra;
 +
this.decay = source.decay;
 +
this.target = source.target.clone();
 +
this.shadow = source.shadow.clone();
 +
return this;
 +
}
 +
 +
}
 +
 +
SpotLight.prototype.isSpotLight = true;
 +
 +
const _projScreenMatrix = /*@__PURE__*/new Matrix4();
 +
 +
const _lightPositionWorld = /*@__PURE__*/new Vector3();
 +
 +
const _lookTarget = /*@__PURE__*/new Vector3();
 +
 +
class PointLightShadow extends LightShadow {
 +
constructor() {
 +
super(new PerspectiveCamera(90, 1, 0.5, 500));
 +
this._frameExtents = new Vector2(4, 2);
 +
this._viewportCount = 6;
 +
this._viewports = [// These viewports map a cube-map onto a 2D texture with the
 +
// following orientation:
 +
//
 +
// xzXZ
 +
// y Y
 +
//
 +
// X - Positive x direction
 +
// x - Negative x direction
 +
// Y - Positive y direction
 +
// y - Negative y direction
 +
// Z - Positive z direction
 +
// z - Negative z direction
 +
// positive X
 +
new Vector4(2, 1, 1, 1), // negative X
 +
new Vector4(0, 1, 1, 1), // positive Z
 +
new Vector4(3, 1, 1, 1), // negative Z
 +
new Vector4(1, 1, 1, 1), // positive Y
 +
new Vector4(3, 0, 1, 1), // negative Y
 +
new Vector4(1, 0, 1, 1)];
 +
this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)];
 +
this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)];
 +
}
 +
 +
updateMatrices(light, viewportIndex = 0) {
 +
const camera = this.camera;
 +
const shadowMatrix = this.matrix;
 +
const far = light.distance || camera.far;
 +
 +
if (far !== camera.far) {
 +
camera.far = far;
 +
camera.updateProjectionMatrix();
 +
}
 +
 +
_lightPositionWorld.setFromMatrixPosition(light.matrixWorld);
 +
 +
camera.position.copy(_lightPositionWorld);
 +
 +
_lookTarget.copy(camera.position);
 +
 +
_lookTarget.add(this._cubeDirections[viewportIndex]);
 +
 +
camera.up.copy(this._cubeUps[viewportIndex]);
 +
camera.lookAt(_lookTarget);
 +
camera.updateMatrixWorld();
 +
shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z);
 +
 +
_projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
 +
 +
this._frustum.setFromProjectionMatrix(_projScreenMatrix);
 +
}
 +
 +
}
 +
 +
PointLightShadow.prototype.isPointLightShadow = true;
 +
 +
class PointLight extends Light {
 +
constructor(color, intensity, distance = 0, decay = 1) {
 +
super(color, intensity);
 +
this.type = 'PointLight';
 +
this.distance = distance;
 +
this.decay = decay; // for physically correct lights, should be 2.
 +
 +
this.shadow = new PointLightShadow();
 +
}
 +
 +
get power() {
 +
// intensity = power per solid angle.
 +
// ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
 +
return this.intensity * 4 * Math.PI;
 +
}
 +
 +
set power(power) {
 +
// intensity = power per solid angle.
 +
// ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
 +
this.intensity = power / (4 * Math.PI);
 +
}
 +
 +
dispose() {
 +
this.shadow.dispose();
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.distance = source.distance;
 +
this.decay = source.decay;
 +
this.shadow = source.shadow.clone();
 +
return this;
 +
}
 +
 +
}
 +
 +
PointLight.prototype.isPointLight = true;
 +
 +
class OrthographicCamera extends Camera {
 +
constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000) {
 +
super();
 +
this.type = 'OrthographicCamera';
 +
this.zoom = 1;
 +
this.view = null;
 +
this.left = left;
 +
this.right = right;
 +
this.top = top;
 +
this.bottom = bottom;
 +
this.near = near;
 +
this.far = far;
 +
this.updateProjectionMatrix();
 +
}
 +
 +
copy(source, recursive) {
 +
super.copy(source, recursive);
 +
this.left = source.left;
 +
this.right = source.right;
 +
this.top = source.top;
 +
this.bottom = source.bottom;
 +
this.near = source.near;
 +
this.far = source.far;
 +
this.zoom = source.zoom;
 +
this.view = source.view === null ? null : Object.assign({}, source.view);
 +
return this;
 +
}
 +
 +
setViewOffset(fullWidth, fullHeight, x, y, width, height) {
 +
if (this.view === null) {
 +
this.view = {
 +
enabled: true,
 +
fullWidth: 1,
 +
fullHeight: 1,
 +
offsetX: 0,
 +
offsetY: 0,
 +
width: 1,
 +
height: 1
 +
};
 +
}
 +
 +
this.view.enabled = true;
 +
this.view.fullWidth = fullWidth;
 +
this.view.fullHeight = fullHeight;
 +
this.view.offsetX = x;
 +
this.view.offsetY = y;
 +
this.view.width = width;
 +
this.view.height = height;
 +
this.updateProjectionMatrix();
 +
}
 +
 +
clearViewOffset() {
 +
if (this.view !== null) {
 +
this.view.enabled = false;
 +
}
 +
 +
this.updateProjectionMatrix();
 +
}
 +
 +
updateProjectionMatrix() {
 +
const dx = (this.right - this.left) / (2 * this.zoom);
 +
const dy = (this.top - this.bottom) / (2 * this.zoom);
 +
const cx = (this.right + this.left) / 2;
 +
const cy = (this.top + this.bottom) / 2;
 +
let left = cx - dx;
 +
let right = cx + dx;
 +
let top = cy + dy;
 +
let bottom = cy - dy;
 +
 +
if (this.view !== null && this.view.enabled) {
 +
const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom;
 +
const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom;
 +
left += scaleW * this.view.offsetX;
 +
right = left + scaleW * this.view.width;
 +
top -= scaleH * this.view.offsetY;
 +
bottom = top - scaleH * this.view.height;
 +
}
 +
 +
this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far);
 +
this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
 +
}
 +
 +
toJSON(meta) {
 +
const data = super.toJSON(meta);
 +
data.object.zoom = this.zoom;
 +
data.object.left = this.left;
 +
data.object.right = this.right;
 +
data.object.top = this.top;
 +
data.object.bottom = this.bottom;
 +
data.object.near = this.near;
 +
data.object.far = this.far;
 +
if (this.view !== null) data.object.view = Object.assign({}, this.view);
 +
return data;
 +
}
 +
 +
}
 +
 +
OrthographicCamera.prototype.isOrthographicCamera = true;
 +
 +
class DirectionalLightShadow extends LightShadow {
 +
constructor() {
 +
super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500));
 +
}
 +
 +
}
 +
 +
DirectionalLightShadow.prototype.isDirectionalLightShadow = true;
 +
 +
class DirectionalLight extends Light {
 +
constructor(color, intensity) {
 +
super(color, intensity);
 +
this.type = 'DirectionalLight';
 +
this.position.copy(Object3D.DefaultUp);
 +
this.updateMatrix();
 +
this.target = new Object3D();
 +
this.shadow = new DirectionalLightShadow();
 +
}
 +
 +
dispose() {
 +
this.shadow.dispose();
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.target = source.target.clone();
 +
this.shadow = source.shadow.clone();
 +
return this;
 +
}
 +
 +
}
 +
 +
DirectionalLight.prototype.isDirectionalLight = true;
 +
 +
class AmbientLight extends Light {
 +
constructor(color, intensity) {
 +
super(color, intensity);
 +
this.type = 'AmbientLight';
 +
}
 +
 +
}
 +
 +
AmbientLight.prototype.isAmbientLight = true;
 +
 +
class RectAreaLight extends Light {
 +
constructor(color, intensity, width = 10, height = 10) {
 +
super(color, intensity);
 +
this.type = 'RectAreaLight';
 +
this.width = width;
 +
this.height = height;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.width = source.width;
 +
this.height = source.height;
 +
return this;
 +
}
 +
 +
toJSON(meta) {
 +
const data = super.toJSON(meta);
 +
data.object.width = this.width;
 +
data.object.height = this.height;
 +
return data;
 +
}
 +
 +
}
 +
 +
RectAreaLight.prototype.isRectAreaLight = true;
 +
 +
/**
 +
* Primary reference:
 +
* https://graphics.stanford.edu/papers/envmap/envmap.pdf
 +
*
 +
* Secondary reference:
 +
* https://www.ppsloan.org/publications/StupidSH36.pdf
 +
*/
 +
// 3-band SH defined by 9 coefficients
 +
 +
class SphericalHarmonics3 {
 +
constructor() {
 +
this.coefficients = [];
 +
 +
for (let i = 0; i < 9; i++) {
 +
this.coefficients.push(new Vector3());
 +
}
 +
}
 +
 +
set(coefficients) {
 +
for (let i = 0; i < 9; i++) {
 +
this.coefficients[i].copy(coefficients[i]);
 +
}
 +
 +
return this;
 +
}
 +
 +
zero() {
 +
for (let i = 0; i < 9; i++) {
 +
this.coefficients[i].set(0, 0, 0);
 +
}
 +
 +
return this;
 +
} // get the radiance in the direction of the normal
 +
// target is a Vector3
 +
 +
 +
getAt(normal, target) {
 +
// normal is assumed to be unit length
 +
const x = normal.x,
 +
y = normal.y,
 +
z = normal.z;
 +
const coeff = this.coefficients; // band 0
 +
 +
target.copy(coeff[0]).multiplyScalar(0.282095); // band 1
 +
 +
target.addScaledVector(coeff[1], 0.488603 * y);
 +
target.addScaledVector(coeff[2], 0.488603 * z);
 +
target.addScaledVector(coeff[3], 0.488603 * x); // band 2
 +
 +
target.addScaledVector(coeff[4], 1.092548 * (x * y));
 +
target.addScaledVector(coeff[5], 1.092548 * (y * z));
 +
target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0));
 +
target.addScaledVector(coeff[7], 1.092548 * (x * z));
 +
target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y));
 +
return target;
 +
} // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal
 +
// target is a Vector3
 +
// https://graphics.stanford.edu/papers/envmap/envmap.pdf
 +
 +
 +
getIrradianceAt(normal, target) {
 +
// normal is assumed to be unit length
 +
const x = normal.x,
 +
y = normal.y,
 +
z = normal.z;
 +
const coeff = this.coefficients; // band 0
 +
 +
target.copy(coeff[0]).multiplyScalar(0.886227); // π * 0.282095
 +
// band 1
 +
 +
target.addScaledVector(coeff[1], 2.0 * 0.511664 * y); // ( 2 * π / 3 ) * 0.488603
 +
 +
target.addScaledVector(coeff[2], 2.0 * 0.511664 * z);
 +
target.addScaledVector(coeff[3], 2.0 * 0.511664 * x); // band 2
 +
 +
target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y); // ( π / 4 ) * 1.092548
 +
 +
target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z);
 +
target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); // ( π / 4 ) * 0.315392 * 3
 +
 +
target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z);
 +
target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); // ( π / 4 ) * 0.546274
 +
 +
return target;
 +
}
 +
 +
add(sh) {
 +
for (let i = 0; i < 9; i++) {
 +
this.coefficients[i].add(sh.coefficients[i]);
 +
}
 +
 +
return this;
 +
}
 +
 +
addScaledSH(sh, s) {
 +
for (let i = 0; i < 9; i++) {
 +
this.coefficients[i].addScaledVector(sh.coefficients[i], s);
 +
}
 +
 +
return this;
 +
}
 +
 +
scale(s) {
 +
for (let i = 0; i < 9; i++) {
 +
this.coefficients[i].multiplyScalar(s);
 +
}
 +
 +
return this;
 +
}
 +
 +
lerp(sh, alpha) {
 +
for (let i = 0; i < 9; i++) {
 +
this.coefficients[i].lerp(sh.coefficients[i], alpha);
 +
}
 +
 +
return this;
 +
}
 +
 +
equals(sh) {
 +
for (let i = 0; i < 9; i++) {
 +
if (!this.coefficients[i].equals(sh.coefficients[i])) {
 +
return false;
 +
}
 +
}
 +
 +
return true;
 +
}
 +
 +
copy(sh) {
 +
return this.set(sh.coefficients);
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
fromArray(array, offset = 0) {
 +
const coefficients = this.coefficients;
 +
 +
for (let i = 0; i < 9; i++) {
 +
coefficients[i].fromArray(array, offset + i * 3);
 +
}
 +
 +
return this;
 +
}
 +
 +
toArray(array = [], offset = 0) {
 +
const coefficients = this.coefficients;
 +
 +
for (let i = 0; i < 9; i++) {
 +
coefficients[i].toArray(array, offset + i * 3);
 +
}
 +
 +
return array;
 +
} // evaluate the basis functions
 +
// shBasis is an Array[ 9 ]
 +
 +
 +
static getBasisAt(normal, shBasis) {
 +
// normal is assumed to be unit length
 +
const x = normal.x,
 +
y = normal.y,
 +
z = normal.z; // band 0
 +
 +
shBasis[0] = 0.282095; // band 1
 +
 +
shBasis[1] = 0.488603 * y;
 +
shBasis[2] = 0.488603 * z;
 +
shBasis[3] = 0.488603 * x; // band 2
 +
 +
shBasis[4] = 1.092548 * x * y;
 +
shBasis[5] = 1.092548 * y * z;
 +
shBasis[6] = 0.315392 * (3 * z * z - 1);
 +
shBasis[7] = 1.092548 * x * z;
 +
shBasis[8] = 0.546274 * (x * x - y * y);
 +
}
 +
 +
}
 +
 +
SphericalHarmonics3.prototype.isSphericalHarmonics3 = true;
 +
 +
class LightProbe extends Light {
 +
constructor(sh = new SphericalHarmonics3(), intensity = 1) {
 +
super(undefined, intensity);
 +
this.sh = sh;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.sh.copy(source.sh);
 +
return this;
 +
}
 +
 +
fromJSON(json) {
 +
this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();
 +
 +
this.sh.fromArray(json.sh);
 +
return this;
 +
}
 +
 +
toJSON(meta) {
 +
const data = super.toJSON(meta);
 +
data.object.sh = this.sh.toArray();
 +
return data;
 +
}
 +
 +
}
 +
 +
LightProbe.prototype.isLightProbe = true;
 +
 +
class MaterialLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
this.textures = {};
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
const scope = this;
 +
const loader = new FileLoader(scope.manager);
 +
loader.setPath(scope.path);
 +
loader.setRequestHeader(scope.requestHeader);
 +
loader.setWithCredentials(scope.withCredentials);
 +
loader.load(url, function (text) {
 +
try {
 +
onLoad(scope.parse(JSON.parse(text)));
 +
} catch (e) {
 +
if (onError) {
 +
onError(e);
 +
} else {
 +
console.error(e);
 +
}
 +
 +
scope.manager.itemError(url);
 +
}
 +
}, onProgress, onError);
 +
}
 +
 +
parse(json) {
 +
const textures = this.textures;
 +
 +
function getTexture(name) {
 +
if (textures[name] === undefined) {
 +
console.warn('THREE.MaterialLoader: Undefined texture', name);
 +
}
 +
 +
return textures[name];
 +
}
 +
 +
const material = new Materials[json.type]();
 +
if (json.uuid !== undefined) material.uuid = json.uuid;
 +
if (json.name !== undefined) material.name = json.name;
 +
if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color);
 +
if (json.roughness !== undefined) material.roughness = json.roughness;
 +
if (json.metalness !== undefined) material.metalness = json.metalness;
 +
if (json.sheen !== undefined) material.sheen = new Color().setHex(json.sheen);
 +
if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive);
 +
if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular);
 +
if (json.shininess !== undefined) material.shininess = json.shininess;
 +
if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat;
 +
if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness;
 +
if (json.transmission !== undefined) material.transmission = json.transmission;
 +
if (json.thickness !== undefined) material.thickness = json.thickness;
 +
if (json.attenuationDistance !== undefined) material.attenuationDistance = json.attenuationDistance;
 +
if (json.attenuationColor !== undefined && material.attenuationColor !== undefined) material.attenuationColor.setHex(json.attenuationColor);
 +
if (json.fog !== undefined) material.fog = json.fog;
 +
if (json.flatShading !== undefined) material.flatShading = json.flatShading;
 +
if (json.blending !== undefined) material.blending = json.blending;
 +
if (json.combine !== undefined) material.combine = json.combine;
 +
if (json.side !== undefined) material.side = json.side;
 +
if (json.shadowSide !== undefined) material.shadowSide = json.shadowSide;
 +
if (json.opacity !== undefined) material.opacity = json.opacity;
 +
if (json.transparent !== undefined) material.transparent = json.transparent;
 +
if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest;
 +
if (json.depthTest !== undefined) material.depthTest = json.depthTest;
 +
if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite;
 +
if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite;
 +
if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite;
 +
if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask;
 +
if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc;
 +
if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef;
 +
if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask;
 +
if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail;
 +
if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail;
 +
if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass;
 +
if (json.wireframe !== undefined) material.wireframe = json.wireframe;
 +
if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth;
 +
if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap;
 +
if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin;
 +
if (json.rotation !== undefined) material.rotation = json.rotation;
 +
if (json.linewidth !== 1) material.linewidth = json.linewidth;
 +
if (json.dashSize !== undefined) material.dashSize = json.dashSize;
 +
if (json.gapSize !== undefined) material.gapSize = json.gapSize;
 +
if (json.scale !== undefined) material.scale = json.scale;
 +
if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset;
 +
if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor;
 +
if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits;
 +
if (json.morphTargets !== undefined) material.morphTargets = json.morphTargets;
 +
if (json.morphNormals !== undefined) material.morphNormals = json.morphNormals;
 +
if (json.dithering !== undefined) material.dithering = json.dithering;
 +
if (json.alphaToCoverage !== undefined) material.alphaToCoverage = json.alphaToCoverage;
 +
if (json.premultipliedAlpha !== undefined) material.premultipliedAlpha = json.premultipliedAlpha;
 +
if (json.vertexTangents !== undefined) material.vertexTangents = json.vertexTangents;
 +
if (json.visible !== undefined) material.visible = json.visible;
 +
if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped;
 +
if (json.userData !== undefined) material.userData = json.userData;
 +
 +
if (json.vertexColors !== undefined) {
 +
if (typeof json.vertexColors === 'number') {
 +
material.vertexColors = json.vertexColors > 0 ? true : false;
 +
} else {
 +
material.vertexColors = json.vertexColors;
 +
}
 +
} // Shader Material
 +
 +
 +
if (json.uniforms !== undefined) {
 +
for (const name in json.uniforms) {
 +
const uniform = json.uniforms[name];
 +
material.uniforms[name] = {};
 +
 +
switch (uniform.type) {
 +
case 't':
 +
material.uniforms[name].value = getTexture(uniform.value);
 +
break;
 +
 +
case 'c':
 +
material.uniforms[name].value = new Color().setHex(uniform.value);
 +
break;
 +
 +
case 'v2':
 +
material.uniforms[name].value = new Vector2().fromArray(uniform.value);
 +
break;
 +
 +
case 'v3':
 +
material.uniforms[name].value = new Vector3().fromArray(uniform.value);
 +
break;
 +
 +
case 'v4':
 +
material.uniforms[name].value = new Vector4().fromArray(uniform.value);
 +
break;
 +
 +
case 'm3':
 +
material.uniforms[name].value = new Matrix3().fromArray(uniform.value);
 +
break;
 +
 +
case 'm4':
 +
material.uniforms[name].value = new Matrix4().fromArray(uniform.value);
 +
break;
 +
 +
default:
 +
material.uniforms[name].value = uniform.value;
 +
}
 +
}
 +
}
 +
 +
if (json.defines !== undefined) material.defines = json.defines;
 +
if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader;
 +
if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader;
 +
 +
if (json.extensions !== undefined) {
 +
for (const key in json.extensions) {
 +
material.extensions[key] = json.extensions[key];
 +
}
 +
} // Deprecated
 +
 +
 +
if (json.shading !== undefined) material.flatShading = json.shading === 1; // THREE.FlatShading
 +
// for PointsMaterial
 +
 +
if (json.size !== undefined) material.size = json.size;
 +
if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation; // maps
 +
 +
if (json.map !== undefined) material.map = getTexture(json.map);
 +
if (json.matcap !== undefined) material.matcap = getTexture(json.matcap);
 +
if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap);
 +
if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap);
 +
if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale;
 +
if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap);
 +
if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType;
 +
 +
if (json.normalScale !== undefined) {
 +
let normalScale = json.normalScale;
 +
 +
if (Array.isArray(normalScale) === false) {
 +
// Blender exporter used to export a scalar. See #7459
 +
normalScale = [normalScale, normalScale];
 +
}
 +
 +
material.normalScale = new Vector2().fromArray(normalScale);
 +
}
 +
 +
if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap);
 +
if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale;
 +
if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias;
 +
if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap);
 +
if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap);
 +
if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap);
 +
if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity;
 +
if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap);
 +
if (json.envMap !== undefined) material.envMap = getTexture(json.envMap);
 +
if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity;
 +
if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity;
 +
if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio;
 +
if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap);
 +
if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity;
 +
if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap);
 +
if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity;
 +
if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap);
 +
if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap);
 +
if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap);
 +
if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap);
 +
if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale);
 +
if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap);
 +
if (json.thicknessMap !== undefined) material.thicknessMap = getTexture(json.thicknessMap);
 +
return material;
 +
}
 +
 +
setTextures(value) {
 +
this.textures = value;
 +
return this;
 +
}
 +
 +
}
 +
 +
class LoaderUtils {
 +
static decodeText(array) {
 +
if (typeof TextDecoder !== 'undefined') {
 +
return new TextDecoder().decode(array);
 +
} // Avoid the String.fromCharCode.apply(null, array) shortcut, which
 +
// throws a "maximum call stack size exceeded" error for large arrays.
 +
 +
 +
let s = '';
 +
 +
for (let i = 0, il = array.length; i < il; i++) {
 +
// Implicitly assumes little-endian.
 +
s += String.fromCharCode(array[i]);
 +
}
 +
 +
try {
 +
// merges multi-byte utf-8 characters.
 +
return decodeURIComponent(escape(s));
 +
} catch (e) {
 +
// see #16358
 +
return s;
 +
}
 +
}
 +
 +
static extractUrlBase(url) {
 +
const index = url.lastIndexOf('/');
 +
if (index === -1) return './';
 +
return url.substr(0, index + 1);
 +
}
 +
 +
}
 +
 +
class InstancedBufferGeometry extends BufferGeometry {
 +
constructor() {
 +
super();
 +
this.type = 'InstancedBufferGeometry';
 +
this.instanceCount = Infinity;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.instanceCount = source.instanceCount;
 +
return this;
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON(this);
 +
data.instanceCount = this.instanceCount;
 +
data.isInstancedBufferGeometry = true;
 +
return data;
 +
}
 +
 +
}
 +
 +
InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true;
 +
 +
class InstancedBufferAttribute extends BufferAttribute {
 +
constructor(array, itemSize, normalized, meshPerAttribute = 1) {
 +
if (typeof normalized === 'number') {
 +
meshPerAttribute = normalized;
 +
normalized = false;
 +
console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.');
 +
}
 +
 +
super(array, itemSize, normalized);
 +
this.meshPerAttribute = meshPerAttribute;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.meshPerAttribute = source.meshPerAttribute;
 +
return this;
 +
}
 +
 +
toJSON() {
 +
const data = super.toJSON();
 +
data.meshPerAttribute = this.meshPerAttribute;
 +
data.isInstancedBufferAttribute = true;
 +
return data;
 +
}
 +
 +
}
 +
 +
InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true;
 +
 +
class BufferGeometryLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
const scope = this;
 +
const loader = new FileLoader(scope.manager);
 +
loader.setPath(scope.path);
 +
loader.setRequestHeader(scope.requestHeader);
 +
loader.setWithCredentials(scope.withCredentials);
 +
loader.load(url, function (text) {
 +
try {
 +
onLoad(scope.parse(JSON.parse(text)));
 +
} catch (e) {
 +
if (onError) {
 +
onError(e);
 +
} else {
 +
console.error(e);
 +
}
 +
 +
scope.manager.itemError(url);
 +
}
 +
}, onProgress, onError);
 +
}
 +
 +
parse(json) {
 +
const interleavedBufferMap = {};
 +
const arrayBufferMap = {};
 +
 +
function getInterleavedBuffer(json, uuid) {
 +
if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid];
 +
const interleavedBuffers = json.interleavedBuffers;
 +
const interleavedBuffer = interleavedBuffers[uuid];
 +
const buffer = getArrayBuffer(json, interleavedBuffer.buffer);
 +
const array = getTypedArray(interleavedBuffer.type, buffer);
 +
const ib = new InterleavedBuffer(array, interleavedBuffer.stride);
 +
ib.uuid = interleavedBuffer.uuid;
 +
interleavedBufferMap[uuid] = ib;
 +
return ib;
 +
}
 +
 +
function getArrayBuffer(json, uuid) {
 +
if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid];
 +
const arrayBuffers = json.arrayBuffers;
 +
const arrayBuffer = arrayBuffers[uuid];
 +
const ab = new Uint32Array(arrayBuffer).buffer;
 +
arrayBufferMap[uuid] = ab;
 +
return ab;
 +
}
 +
 +
const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();
 +
const index = json.data.index;
 +
 +
if (index !== undefined) {
 +
const typedArray = getTypedArray(index.type, index.array);
 +
geometry.setIndex(new BufferAttribute(typedArray, 1));
 +
}
 +
 +
const attributes = json.data.attributes;
 +
 +
for (const key in attributes) {
 +
const attribute = attributes[key];
 +
let bufferAttribute;
 +
 +
if (attribute.isInterleavedBufferAttribute) {
 +
const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
 +
bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
 +
} else {
 +
const typedArray = getTypedArray(attribute.type, attribute.array);
 +
const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;
 +
bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized);
 +
}
 +
 +
if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
 +
if (attribute.usage !== undefined) bufferAttribute.setUsage(attribute.usage);
 +
 +
if (attribute.updateRange !== undefined) {
 +
bufferAttribute.updateRange.offset = attribute.updateRange.offset;
 +
bufferAttribute.updateRange.count = attribute.updateRange.count;
 +
}
 +
 +
geometry.setAttribute(key, bufferAttribute);
 +
}
 +
 +
const morphAttributes = json.data.morphAttributes;
 +
 +
if (morphAttributes) {
 +
for (const key in morphAttributes) {
 +
const attributeArray = morphAttributes[key];
 +
const array = [];
 +
 +
for (let i = 0, il = attributeArray.length; i < il; i++) {
 +
const attribute = attributeArray[i];
 +
let bufferAttribute;
 +
 +
if (attribute.isInterleavedBufferAttribute) {
 +
const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
 +
bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
 +
} else {
 +
const typedArray = getTypedArray(attribute.type, attribute.array);
 +
bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized);
 +
}
 +
 +
if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
 +
array.push(bufferAttribute);
 +
}
 +
 +
geometry.morphAttributes[key] = array;
 +
}
 +
}
 +
 +
const morphTargetsRelative = json.data.morphTargetsRelative;
 +
 +
if (morphTargetsRelative) {
 +
geometry.morphTargetsRelative = true;
 +
}
 +
 +
const groups = json.data.groups || json.data.drawcalls || json.data.offsets;
 +
 +
if (groups !== undefined) {
 +
for (let i = 0, n = groups.length; i !== n; ++i) {
 +
const group = groups[i];
 +
geometry.addGroup(group.start, group.count, group.materialIndex);
 +
}
 +
}
 +
 +
const boundingSphere = json.data.boundingSphere;
 +
 +
if (boundingSphere !== undefined) {
 +
const center = new Vector3();
 +
 +
if (boundingSphere.center !== undefined) {
 +
center.fromArray(boundingSphere.center);
 +
}
 +
 +
geometry.boundingSphere = new Sphere(center, boundingSphere.radius);
 +
}
 +
 +
if (json.name) geometry.name = json.name;
 +
if (json.userData) geometry.userData = json.userData;
 +
return geometry;
 +
}
 +
 +
}
 +
 +
class ObjectLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
const scope = this;
 +
const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
 +
this.resourcePath = this.resourcePath || path;
 +
const loader = new FileLoader(this.manager);
 +
loader.setPath(this.path);
 +
loader.setRequestHeader(this.requestHeader);
 +
loader.setWithCredentials(this.withCredentials);
 +
loader.load(url, function (text) {
 +
let json = null;
 +
 +
try {
 +
json = JSON.parse(text);
 +
} catch (error) {
 +
if (onError !== undefined) onError(error);
 +
console.error('THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message);
 +
return;
 +
}
 +
 +
const metadata = json.metadata;
 +
 +
if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
 +
console.error('THREE.ObjectLoader: Can\'t load ' + url);
 +
return;
 +
}
 +
 +
scope.parse(json, onLoad);
 +
}, onProgress, onError);
 +
}
 +
 +
async loadAsync(url, onProgress) {
 +
const scope = this;
 +
const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
 +
this.resourcePath = this.resourcePath || path;
 +
const loader = new FileLoader(this.manager);
 +
loader.setPath(this.path);
 +
loader.setRequestHeader(this.requestHeader);
 +
loader.setWithCredentials(this.withCredentials);
 +
const text = await loader.loadAsync(url, onProgress);
 +
const json = JSON.parse(text);
 +
const metadata = json.metadata;
 +
 +
if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
 +
throw new Error('THREE.ObjectLoader: Can\'t load ' + url);
 +
}
 +
 +
return await scope.parseAsync(json);
 +
}
 +
 +
parse(json, onLoad) {
 +
const animations = this.parseAnimations(json.animations);
 +
const shapes = this.parseShapes(json.shapes);
 +
const geometries = this.parseGeometries(json.geometries, shapes);
 +
const images = this.parseImages(json.images, function () {
 +
if (onLoad !== undefined) onLoad(object);
 +
});
 +
const textures = this.parseTextures(json.textures, images);
 +
const materials = this.parseMaterials(json.materials, textures);
 +
const object = this.parseObject(json.object, geometries, materials, textures, animations);
 +
const skeletons = this.parseSkeletons(json.skeletons, object);
 +
this.bindSkeletons(object, skeletons); //
 +
 +
if (onLoad !== undefined) {
 +
let hasImages = false;
 +
 +
for (const uuid in images) {
 +
if (images[uuid] instanceof HTMLImageElement) {
 +
hasImages = true;
 +
break;
 +
}
 +
}
 +
 +
if (hasImages === false) onLoad(object);
 +
}
 +
 +
return object;
 +
}
 +
 +
async parseAsync(json) {
 +
const animations = this.parseAnimations(json.animations);
 +
const shapes = this.parseShapes(json.shapes);
 +
const geometries = this.parseGeometries(json.geometries, shapes);
 +
const images = await this.parseImagesAsync(json.images);
 +
const textures = this.parseTextures(json.textures, images);
 +
const materials = this.parseMaterials(json.materials, textures);
 +
const object = this.parseObject(json.object, geometries, materials, textures, animations);
 +
const skeletons = this.parseSkeletons(json.skeletons, object);
 +
this.bindSkeletons(object, skeletons);
 +
return object;
 +
}
 +
 +
parseShapes(json) {
 +
const shapes = {};
 +
 +
if (json !== undefined) {
 +
for (let i = 0, l = json.length; i < l; i++) {
 +
const shape = new Shape().fromJSON(json[i]);
 +
shapes[shape.uuid] = shape;
 +
}
 +
}
 +
 +
return shapes;
 +
}
 +
 +
parseSkeletons(json, object) {
 +
const skeletons = {};
 +
const bones = {}; // generate bone lookup table
 +
 +
object.traverse(function (child) {
 +
if (child.isBone) bones[child.uuid] = child;
 +
}); // create skeletons
 +
 +
if (json !== undefined) {
 +
for (let i = 0, l = json.length; i < l; i++) {
 +
const skeleton = new Skeleton().fromJSON(json[i], bones);
 +
skeletons[skeleton.uuid] = skeleton;
 +
}
 +
}
 +
 +
return skeletons;
 +
}
 +
 +
parseGeometries(json, shapes) {
 +
const geometries = {};
 +
 +
if (json !== undefined) {
 +
const bufferGeometryLoader = new BufferGeometryLoader();
 +
 +
for (let i = 0, l = json.length; i < l; i++) {
 +
let geometry;
 +
const data = json[i];
 +
 +
switch (data.type) {
 +
case 'BufferGeometry':
 +
case 'InstancedBufferGeometry':
 +
geometry = bufferGeometryLoader.parse(data);
 +
break;
 +
 +
case 'Geometry':
 +
console.error('THREE.ObjectLoader: The legacy Geometry type is no longer supported.');
 +
break;
 +
 +
default:
 +
if (data.type in Geometries) {
 +
geometry = Geometries[data.type].fromJSON(data, shapes);
 +
} else {
 +
console.warn(`THREE.ObjectLoader: Unsupported geometry type "${data.type}"`);
 +
}
 +
 +
}
 +
 +
geometry.uuid = data.uuid;
 +
if (data.name !== undefined) geometry.name = data.name;
 +
if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData;
 +
geometries[data.uuid] = geometry;
 +
}
 +
}
 +
 +
return geometries;
 +
}
 +
 +
parseMaterials(json, textures) {
 +
const cache = {}; // MultiMaterial
 +
 +
const materials = {};
 +
 +
if (json !== undefined) {
 +
const loader = new MaterialLoader();
 +
loader.setTextures(textures);
 +
 +
for (let i = 0, l = json.length; i < l; i++) {
 +
const data = json[i];
 +
 +
if (data.type === 'MultiMaterial') {
 +
// Deprecated
 +
const array = [];
 +
 +
for (let j = 0; j < data.materials.length; j++) {
 +
const material = data.materials[j];
 +
 +
if (cache[material.uuid] === undefined) {
 +
cache[material.uuid] = loader.parse(material);
 +
}
 +
 +
array.push(cache[material.uuid]);
 +
}
 +
 +
materials[data.uuid] = array;
 +
} else {
 +
if (cache[data.uuid] === undefined) {
 +
cache[data.uuid] = loader.parse(data);
 +
}
 +
 +
materials[data.uuid] = cache[data.uuid];
 +
}
 +
}
 +
}
 +
 +
return materials;
 +
}
 +
 +
parseAnimations(json) {
 +
const animations = {};
 +
 +
if (json !== undefined) {
 +
for (let i = 0; i < json.length; i++) {
 +
const data = json[i];
 +
const clip = AnimationClip.parse(data);
 +
animations[clip.uuid] = clip;
 +
}
 +
}
 +
 +
return animations;
 +
}
 +
 +
parseImages(json, onLoad) {
 +
const scope = this;
 +
const images = {};
 +
let loader;
 +
 +
function loadImage(url) {
 +
scope.manager.itemStart(url);
 +
return loader.load(url, function () {
 +
scope.manager.itemEnd(url);
 +
}, undefined, function () {
 +
scope.manager.itemError(url);
 +
scope.manager.itemEnd(url);
 +
});
 +
}
 +
 +
function deserializeImage(image) {
 +
if (typeof image === 'string') {
 +
const url = image;
 +
const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
 +
return loadImage(path);
 +
} else {
 +
if (image.data) {
 +
return {
 +
data: getTypedArray(image.type, image.data),
 +
width: image.width,
 +
height: image.height
 +
};
 +
} else {
 +
return null;
 +
}
 +
}
 +
}
 +
 +
if (json !== undefined && json.length > 0) {
 +
const manager = new LoadingManager(onLoad);
 +
loader = new ImageLoader(manager);
 +
loader.setCrossOrigin(this.crossOrigin);
 +
 +
for (let i = 0, il = json.length; i < il; i++) {
 +
const image = json[i];
 +
const url = image.url;
 +
 +
if (Array.isArray(url)) {
 +
// load array of images e.g CubeTexture
 +
images[image.uuid] = [];
 +
 +
for (let j = 0, jl = url.length; j < jl; j++) {
 +
const currentUrl = url[j];
 +
const deserializedImage = deserializeImage(currentUrl);
 +
 +
if (deserializedImage !== null) {
 +
if (deserializedImage instanceof HTMLImageElement) {
 +
images[image.uuid].push(deserializedImage);
 +
} else {
 +
// special case: handle array of data textures for cube textures
 +
images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
 +
}
 +
}
 +
}
 +
} else {
 +
// load single image
 +
const deserializedImage = deserializeImage(image.url);
 +
 +
if (deserializedImage !== null) {
 +
images[image.uuid] = deserializedImage;
 +
}
 +
}
 +
}
 +
}
 +
 +
return images;
 +
}
 +
 +
async parseImagesAsync(json) {
 +
const scope = this;
 +
const images = {};
 +
let loader;
 +
 +
async function deserializeImage(image) {
 +
if (typeof image === 'string') {
 +
const url = image;
 +
const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
 +
return await loader.loadAsync(path);
 +
} else {
 +
if (image.data) {
 +
return {
 +
data: getTypedArray(image.type, image.data),
 +
width: image.width,
 +
height: image.height
 +
};
 +
} else {
 +
return null;
 +
}
 +
}
 +
}
 +
 +
if (json !== undefined && json.length > 0) {
 +
loader = new ImageLoader(this.manager);
 +
loader.setCrossOrigin(this.crossOrigin);
 +
 +
for (let i = 0, il = json.length; i < il; i++) {
 +
const image = json[i];
 +
const url = image.url;
 +
 +
if (Array.isArray(url)) {
 +
// load array of images e.g CubeTexture
 +
images[image.uuid] = [];
 +
 +
for (let j = 0, jl = url.length; j < jl; j++) {
 +
const currentUrl = url[j];
 +
const deserializedImage = await deserializeImage(currentUrl);
 +
 +
if (deserializedImage !== null) {
 +
if (deserializedImage instanceof HTMLImageElement) {
 +
images[image.uuid].push(deserializedImage);
 +
} else {
 +
// special case: handle array of data textures for cube textures
 +
images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
 +
}
 +
}
 +
}
 +
} else {
 +
// load single image
 +
const deserializedImage = await deserializeImage(image.url);
 +
 +
if (deserializedImage !== null) {
 +
images[image.uuid] = deserializedImage;
 +
}
 +
}
 +
}
 +
}
 +
 +
return images;
 +
}
 +
 +
parseTextures(json, images) {
 +
function parseConstant(value, type) {
 +
if (typeof value === 'number') return value;
 +
console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value);
 +
return type[value];
 +
}
 +
 +
const textures = {};
 +
 +
if (json !== undefined) {
 +
for (let i = 0, l = json.length; i < l; i++) {
 +
const data = json[i];
 +
 +
if (data.image === undefined) {
 +
console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid);
 +
}
 +
 +
if (images[data.image] === undefined) {
 +
console.warn('THREE.ObjectLoader: Undefined image', data.image);
 +
}
 +
 +
let texture;
 +
const image = images[data.image];
 +
 +
if (Array.isArray(image)) {
 +
texture = new CubeTexture(image);
 +
if (image.length === 6) texture.needsUpdate = true;
 +
} else {
 +
if (image && image.data) {
 +
texture = new DataTexture(image.data, image.width, image.height);
 +
} else {
 +
texture = new Texture(image);
 +
}
 +
 +
if (image) texture.needsUpdate = true; // textures can have undefined image data
 +
}
 +
 +
texture.uuid = data.uuid;
 +
if (data.name !== undefined) texture.name = data.name;
 +
if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING);
 +
if (data.offset !== undefined) texture.offset.fromArray(data.offset);
 +
if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat);
 +
if (data.center !== undefined) texture.center.fromArray(data.center);
 +
if (data.rotation !== undefined) texture.rotation = data.rotation;
 +
 +
if (data.wrap !== undefined) {
 +
texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING);
 +
texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING);
 +
}
 +
 +
if (data.format !== undefined) texture.format = data.format;
 +
if (data.type !== undefined) texture.type = data.type;
 +
if (data.encoding !== undefined) texture.encoding = data.encoding;
 +
if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER);
 +
if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER);
 +
if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy;
 +
if (data.flipY !== undefined) texture.flipY = data.flipY;
 +
if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha;
 +
if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment;
 +
textures[data.uuid] = texture;
 +
}
 +
}
 +
 +
return textures;
 +
}
 +
 +
parseObject(data, geometries, materials, textures, animations) {
 +
let object;
 +
 +
function getGeometry(name) {
 +
if (geometries[name] === undefined) {
 +
console.warn('THREE.ObjectLoader: Undefined geometry', name);
 +
}
 +
 +
return geometries[name];
 +
}
 +
 +
function getMaterial(name) {
 +
if (name === undefined) return undefined;
 +
 +
if (Array.isArray(name)) {
 +
const array = [];
 +
 +
for (let i = 0, l = name.length; i < l; i++) {
 +
const uuid = name[i];
 +
 +
if (materials[uuid] === undefined) {
 +
console.warn('THREE.ObjectLoader: Undefined material', uuid);
 +
}
 +
 +
array.push(materials[uuid]);
 +
}
 +
 +
return array;
 +
}
 +
 +
if (materials[name] === undefined) {
 +
console.warn('THREE.ObjectLoader: Undefined material', name);
 +
}
 +
 +
return materials[name];
 +
}
 +
 +
function getTexture(uuid) {
 +
if (textures[uuid] === undefined) {
 +
console.warn('THREE.ObjectLoader: Undefined texture', uuid);
 +
}
 +
 +
return textures[uuid];
 +
}
 +
 +
let geometry, material;
 +
 +
switch (data.type) {
 +
case 'Scene':
 +
object = new Scene();
 +
 +
if (data.background !== undefined) {
 +
if (Number.isInteger(data.background)) {
 +
object.background = new Color(data.background);
 +
} else {
 +
object.background = getTexture(data.background);
 +
}
 +
}
 +
 +
if (data.environment !== undefined) object.environment = getTexture(data.environment);
 +
 +
if (data.fog !== undefined) {
 +
if (data.fog.type === 'Fog') {
 +
object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far);
 +
} else if (data.fog.type === 'FogExp2') {
 +
object.fog = new FogExp2(data.fog.color, data.fog.density);
 +
}
 +
}
 +
 +
break;
 +
 +
case 'PerspectiveCamera':
 +
object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far);
 +
if (data.focus !== undefined) object.focus = data.focus;
 +
if (data.zoom !== undefined) object.zoom = data.zoom;
 +
if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge;
 +
if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset;
 +
if (data.view !== undefined) object.view = Object.assign({}, data.view);
 +
break;
 +
 +
case 'OrthographicCamera':
 +
object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far);
 +
if (data.zoom !== undefined) object.zoom = data.zoom;
 +
if (data.view !== undefined) object.view = Object.assign({}, data.view);
 +
break;
 +
 +
case 'AmbientLight':
 +
object = new AmbientLight(data.color, data.intensity);
 +
break;
 +
 +
case 'DirectionalLight':
 +
object = new DirectionalLight(data.color, data.intensity);
 +
break;
 +
 +
case 'PointLight':
 +
object = new PointLight(data.color, data.intensity, data.distance, data.decay);
 +
break;
 +
 +
case 'RectAreaLight':
 +
object = new RectAreaLight(data.color, data.intensity, data.width, data.height);
 +
break;
 +
 +
case 'SpotLight':
 +
object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay);
 +
break;
 +
 +
case 'HemisphereLight':
 +
object = new HemisphereLight(data.color, data.groundColor, data.intensity);
 +
break;
 +
 +
case 'LightProbe':
 +
object = new LightProbe().fromJSON(data);
 +
break;
 +
 +
case 'SkinnedMesh':
 +
geometry = getGeometry(data.geometry);
 +
material = getMaterial(data.material);
 +
object = new SkinnedMesh(geometry, material);
 +
if (data.bindMode !== undefined) object.bindMode = data.bindMode;
 +
if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix);
 +
if (data.skeleton !== undefined) object.skeleton = data.skeleton;
 +
break;
 +
 +
case 'Mesh':
 +
geometry = getGeometry(data.geometry);
 +
material = getMaterial(data.material);
 +
object = new Mesh(geometry, material);
 +
break;
 +
 +
case 'InstancedMesh':
 +
geometry = getGeometry(data.geometry);
 +
material = getMaterial(data.material);
 +
const count = data.count;
 +
const instanceMatrix = data.instanceMatrix;
 +
const instanceColor = data.instanceColor;
 +
object = new InstancedMesh(geometry, material, count);
 +
object.instanceMatrix = new BufferAttribute(new Float32Array(instanceMatrix.array), 16);
 +
if (instanceColor !== undefined) object.instanceColor = new BufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize);
 +
break;
 +
 +
case 'LOD':
 +
object = new LOD();
 +
break;
 +
 +
case 'Line':
 +
object = new Line(getGeometry(data.geometry), getMaterial(data.material));
 +
break;
 +
 +
case 'LineLoop':
 +
object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material));
 +
break;
 +
 +
case 'LineSegments':
 +
object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material));
 +
break;
 +
 +
case 'PointCloud':
 +
case 'Points':
 +
object = new Points(getGeometry(data.geometry), getMaterial(data.material));
 +
break;
 +
 +
case 'Sprite':
 +
object = new Sprite(getMaterial(data.material));
 +
break;
 +
 +
case 'Group':
 +
object = new Group();
 +
break;
 +
 +
case 'Bone':
 +
object = new Bone();
 +
break;
 +
 +
default:
 +
object = new Object3D();
 +
}
 +
 +
object.uuid = data.uuid;
 +
if (data.name !== undefined) object.name = data.name;
 +
 +
if (data.matrix !== undefined) {
 +
object.matrix.fromArray(data.matrix);
 +
if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate;
 +
if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale);
 +
} else {
 +
if (data.position !== undefined) object.position.fromArray(data.position);
 +
if (data.rotation !== undefined) object.rotation.fromArray(data.rotation);
 +
if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion);
 +
if (data.scale !== undefined) object.scale.fromArray(data.scale);
 +
}
 +
 +
if (data.castShadow !== undefined) object.castShadow = data.castShadow;
 +
if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow;
 +
 +
if (data.shadow) {
 +
if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias;
 +
if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias;
 +
if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius;
 +
if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize);
 +
if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera);
 +
}
 +
 +
if (data.visible !== undefined) object.visible = data.visible;
 +
if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled;
 +
if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder;
 +
if (data.userData !== undefined) object.userData = data.userData;
 +
if (data.layers !== undefined) object.layers.mask = data.layers;
 +
 +
if (data.children !== undefined) {
 +
const children = data.children;
 +
 +
for (let i = 0; i < children.length; i++) {
 +
object.add(this.parseObject(children[i], geometries, materials, textures, animations));
 +
}
 +
}
 +
 +
if (data.animations !== undefined) {
 +
const objectAnimations = data.animations;
 +
 +
for (let i = 0; i < objectAnimations.length; i++) {
 +
const uuid = objectAnimations[i];
 +
object.animations.push(animations[uuid]);
 +
}
 +
}
 +
 +
if (data.type === 'LOD') {
 +
if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate;
 +
const levels = data.levels;
 +
 +
for (let l = 0; l < levels.length; l++) {
 +
const level = levels[l];
 +
const child = object.getObjectByProperty('uuid', level.object);
 +
 +
if (child !== undefined) {
 +
object.addLevel(child, level.distance);
 +
}
 +
}
 +
}
 +
 +
return object;
 +
}
 +
 +
bindSkeletons(object, skeletons) {
 +
if (Object.keys(skeletons).length === 0) return;
 +
object.traverse(function (child) {
 +
if (child.isSkinnedMesh === true && child.skeleton !== undefined) {
 +
const skeleton = skeletons[child.skeleton];
 +
 +
if (skeleton === undefined) {
 +
console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton);
 +
} else {
 +
child.bind(skeleton, child.bindMatrix);
 +
}
 +
}
 +
});
 +
}
 +
/* DEPRECATED */
 +
 +
 +
setTexturePath(value) {
 +
console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().');
 +
return this.setResourcePath(value);
 +
}
 +
 +
}
 +
 +
const TEXTURE_MAPPING = {
 +
UVMapping: UVMapping,
 +
CubeReflectionMapping: CubeReflectionMapping,
 +
CubeRefractionMapping: CubeRefractionMapping,
 +
EquirectangularReflectionMapping: EquirectangularReflectionMapping,
 +
EquirectangularRefractionMapping: EquirectangularRefractionMapping,
 +
CubeUVReflectionMapping: CubeUVReflectionMapping,
 +
CubeUVRefractionMapping: CubeUVRefractionMapping
 +
};
 +
const TEXTURE_WRAPPING = {
 +
RepeatWrapping: RepeatWrapping,
 +
ClampToEdgeWrapping: ClampToEdgeWrapping,
 +
MirroredRepeatWrapping: MirroredRepeatWrapping
 +
};
 +
const TEXTURE_FILTER = {
 +
NearestFilter: NearestFilter,
 +
NearestMipmapNearestFilter: NearestMipmapNearestFilter,
 +
NearestMipmapLinearFilter: NearestMipmapLinearFilter,
 +
LinearFilter: LinearFilter,
 +
LinearMipmapNearestFilter: LinearMipmapNearestFilter,
 +
LinearMipmapLinearFilter: LinearMipmapLinearFilter
 +
};
 +
 +
class ImageBitmapLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
 +
if (typeof createImageBitmap === 'undefined') {
 +
console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.');
 +
}
 +
 +
if (typeof fetch === 'undefined') {
 +
console.warn('THREE.ImageBitmapLoader: fetch() not supported.');
 +
}
 +
 +
this.options = {
 +
premultiplyAlpha: 'none'
 +
};
 +
}
 +
 +
setOptions(options) {
 +
this.options = options;
 +
return this;
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
if (url === undefined) url = '';
 +
if (this.path !== undefined) url = this.path + url;
 +
url = this.manager.resolveURL(url);
 +
const scope = this;
 +
const cached = Cache.get(url);
 +
 +
if (cached !== undefined) {
 +
scope.manager.itemStart(url);
 +
setTimeout(function () {
 +
if (onLoad) onLoad(cached);
 +
scope.manager.itemEnd(url);
 +
}, 0);
 +
return cached;
 +
}
 +
 +
const fetchOptions = {};
 +
fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include';
 +
fetchOptions.headers = this.requestHeader;
 +
fetch(url, fetchOptions).then(function (res) {
 +
return res.blob();
 +
}).then(function (blob) {
 +
return createImageBitmap(blob, Object.assign(scope.options, {
 +
colorSpaceConversion: 'none'
 +
}));
 +
}).then(function (imageBitmap) {
 +
Cache.add(url, imageBitmap);
 +
if (onLoad) onLoad(imageBitmap);
 +
scope.manager.itemEnd(url);
 +
}).catch(function (e) {
 +
if (onError) onError(e);
 +
scope.manager.itemError(url);
 +
scope.manager.itemEnd(url);
 +
});
 +
scope.manager.itemStart(url);
 +
}
 +
 +
}
 +
 +
ImageBitmapLoader.prototype.isImageBitmapLoader = true;
 +
 +
class ShapePath {
 +
constructor() {
 +
this.type = 'ShapePath';
 +
this.color = new Color();
 +
this.subPaths = [];
 +
this.currentPath = null;
 +
}
 +
 +
moveTo(x, y) {
 +
this.currentPath = new Path();
 +
this.subPaths.push(this.currentPath);
 +
this.currentPath.moveTo(x, y);
 +
return this;
 +
}
 +
 +
lineTo(x, y) {
 +
this.currentPath.lineTo(x, y);
 +
return this;
 +
}
 +
 +
quadraticCurveTo(aCPx, aCPy, aX, aY) {
 +
this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY);
 +
return this;
 +
}
 +
 +
bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
 +
this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY);
 +
return this;
 +
}
 +
 +
splineThru(pts) {
 +
this.currentPath.splineThru(pts);
 +
return this;
 +
}
 +
 +
toShapes(isCCW, noHoles) {
 +
function toShapesNoHoles(inSubpaths) {
 +
const shapes = [];
 +
 +
for (let i = 0, l = inSubpaths.length; i < l; i++) {
 +
const tmpPath = inSubpaths[i];
 +
const tmpShape = new Shape();
 +
tmpShape.curves = tmpPath.curves;
 +
shapes.push(tmpShape);
 +
}
 +
 +
return shapes;
 +
}
 +
 +
function isPointInsidePolygon(inPt, inPolygon) {
 +
const polyLen = inPolygon.length; // inPt on polygon contour => immediate success or
 +
// toggling of inside/outside at every single! intersection point of an edge
 +
// with the horizontal line through inPt, left of inPt
 +
// not counting lowerY endpoints of edges and whole edges on that line
 +
 +
let inside = false;
 +
 +
for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) {
 +
let edgeLowPt = inPolygon[p];
 +
let edgeHighPt = inPolygon[q];
 +
let edgeDx = edgeHighPt.x - edgeLowPt.x;
 +
let edgeDy = edgeHighPt.y - edgeLowPt.y;
 +
 +
if (Math.abs(edgeDy) > Number.EPSILON) {
 +
// not parallel
 +
if (edgeDy < 0) {
 +
edgeLowPt = inPolygon[q];
 +
edgeDx = -edgeDx;
 +
edgeHighPt = inPolygon[p];
 +
edgeDy = -edgeDy;
 +
}
 +
 +
if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue;
 +
 +
if (inPt.y === edgeLowPt.y) {
 +
if (inPt.x === edgeLowPt.x) return true; // inPt is on contour ?
 +
// continue; // no intersection or edgeLowPt => doesn't count !!!
 +
} else {
 +
const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y);
 +
if (perpEdge === 0) return true; // inPt is on contour ?
 +
 +
if (perpEdge < 0) continue;
 +
inside = !inside; // true intersection left of inPt
 +
}
 +
} else {
 +
// parallel or collinear
 +
if (inPt.y !== edgeLowPt.y) continue; // parallel
 +
// edge lies on the same horizontal line as inPt
 +
 +
if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; // inPt: Point on contour !
 +
// continue;
 +
}
 +
}
 +
 +
return inside;
 +
}
 +
 +
const isClockWise = ShapeUtils.isClockWise;
 +
const subPaths = this.subPaths;
 +
if (subPaths.length === 0) return [];
 +
if (noHoles === true) return toShapesNoHoles(subPaths);
 +
let solid, tmpPath, tmpShape;
 +
const shapes = [];
 +
 +
if (subPaths.length === 1) {
 +
tmpPath = subPaths[0];
 +
tmpShape = new Shape();
 +
tmpShape.curves = tmpPath.curves;
 +
shapes.push(tmpShape);
 +
return shapes;
 +
}
 +
 +
let holesFirst = !isClockWise(subPaths[0].getPoints());
 +
holesFirst = isCCW ? !holesFirst : holesFirst; // console.log("Holes first", holesFirst);
 +
 +
const betterShapeHoles = [];
 +
const newShapes = [];
 +
let newShapeHoles = [];
 +
let mainIdx = 0;
 +
let tmpPoints;
 +
newShapes[mainIdx] = undefined;
 +
newShapeHoles[mainIdx] = [];
 +
 +
for (let i = 0, l = subPaths.length; i < l; i++) {
 +
tmpPath = subPaths[i];
 +
tmpPoints = tmpPath.getPoints();
 +
solid = isClockWise(tmpPoints);
 +
solid = isCCW ? !solid : solid;
 +
 +
if (solid) {
 +
if (!holesFirst && newShapes[mainIdx]) mainIdx++;
 +
newShapes[mainIdx] = {
 +
s: new Shape(),
 +
p: tmpPoints
 +
};
 +
newShapes[mainIdx].s.curves = tmpPath.curves;
 +
if (holesFirst) mainIdx++;
 +
newShapeHoles[mainIdx] = []; //console.log('cw', i);
 +
} else {
 +
newShapeHoles[mainIdx].push({
 +
h: tmpPath,
 +
p: tmpPoints[0]
 +
}); //console.log('ccw', i);
 +
}
 +
} // only Holes? -> probably all Shapes with wrong orientation
 +
 +
 +
if (!newShapes[0]) return toShapesNoHoles(subPaths);
 +
 +
if (newShapes.length > 1) {
 +
let ambiguous = false;
 +
const toChange = [];
 +
 +
for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
 +
betterShapeHoles[sIdx] = [];
 +
}
 +
 +
for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
 +
const sho = newShapeHoles[sIdx];
 +
 +
for (let hIdx = 0; hIdx < sho.length; hIdx++) {
 +
const ho = sho[hIdx];
 +
let hole_unassigned = true;
 +
 +
for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) {
 +
if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) {
 +
if (sIdx !== s2Idx) toChange.push({
 +
froms: sIdx,
 +
tos: s2Idx,
 +
hole: hIdx
 +
});
 +
 +
if (hole_unassigned) {
 +
hole_unassigned = false;
 +
betterShapeHoles[s2Idx].push(ho);
 +
} else {
 +
ambiguous = true;
 +
}
 +
}
 +
}
 +
 +
if (hole_unassigned) {
 +
betterShapeHoles[sIdx].push(ho);
 +
}
 +
}
 +
} // console.log("ambiguous: ", ambiguous);
 +
 +
 +
if (toChange.length > 0) {
 +
// console.log("to change: ", toChange);
 +
if (!ambiguous) newShapeHoles = betterShapeHoles;
 +
}
 +
}
 +
 +
let tmpHoles;
 +
 +
for (let i = 0, il = newShapes.length; i < il; i++) {
 +
tmpShape = newShapes[i].s;
 +
shapes.push(tmpShape);
 +
tmpHoles = newShapeHoles[i];
 +
 +
for (let j = 0, jl = tmpHoles.length; j < jl; j++) {
 +
tmpShape.holes.push(tmpHoles[j].h);
 +
}
 +
} //console.log("shape", shapes);
 +
 +
 +
return shapes;
 +
}
 +
 +
}
 +
 +
class Font {
 +
constructor(data) {
 +
this.type = 'Font';
 +
this.data = data;
 +
}
 +
 +
generateShapes(text, size = 100) {
 +
const shapes = [];
 +
const paths = createPaths(text, size, this.data);
 +
 +
for (let p = 0, pl = paths.length; p < pl; p++) {
 +
Array.prototype.push.apply(shapes, paths[p].toShapes());
 +
}
 +
 +
return shapes;
 +
}
 +
 +
}
 +
 +
function createPaths(text, size, data) {
 +
const chars = Array.from(text);
 +
const scale = size / data.resolution;
 +
const line_height = (data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness) * scale;
 +
const paths = [];
 +
let offsetX = 0,
 +
offsetY = 0;
 +
 +
for (let i = 0; i < chars.length; i++) {
 +
const char = chars[i];
 +
 +
if (char === '\n') {
 +
offsetX = 0;
 +
offsetY -= line_height;
 +
} else {
 +
const ret = createPath(char, scale, offsetX, offsetY, data);
 +
offsetX += ret.offsetX;
 +
paths.push(ret.path);
 +
}
 +
}
 +
 +
return paths;
 +
}
 +
 +
function createPath(char, scale, offsetX, offsetY, data) {
 +
const glyph = data.glyphs[char] || data.glyphs['?'];
 +
 +
if (!glyph) {
 +
console.error('THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.');
 +
return;
 +
}
 +
 +
const path = new ShapePath();
 +
let x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2;
 +
 +
if (glyph.o) {
 +
const outline = glyph._cachedOutline || (glyph._cachedOutline = glyph.o.split(' '));
 +
 +
for (let i = 0, l = outline.length; i < l;) {
 +
const action = outline[i++];
 +
 +
switch (action) {
 +
case 'm':
 +
// moveTo
 +
x = outline[i++] * scale + offsetX;
 +
y = outline[i++] * scale + offsetY;
 +
path.moveTo(x, y);
 +
break;
 +
 +
case 'l':
 +
// lineTo
 +
x = outline[i++] * scale + offsetX;
 +
y = outline[i++] * scale + offsetY;
 +
path.lineTo(x, y);
 +
break;
 +
 +
case 'q':
 +
// quadraticCurveTo
 +
cpx = outline[i++] * scale + offsetX;
 +
cpy = outline[i++] * scale + offsetY;
 +
cpx1 = outline[i++] * scale + offsetX;
 +
cpy1 = outline[i++] * scale + offsetY;
 +
path.quadraticCurveTo(cpx1, cpy1, cpx, cpy);
 +
break;
 +
 +
case 'b':
 +
// bezierCurveTo
 +
cpx = outline[i++] * scale + offsetX;
 +
cpy = outline[i++] * scale + offsetY;
 +
cpx1 = outline[i++] * scale + offsetX;
 +
cpy1 = outline[i++] * scale + offsetY;
 +
cpx2 = outline[i++] * scale + offsetX;
 +
cpy2 = outline[i++] * scale + offsetY;
 +
path.bezierCurveTo(cpx1, cpy1, cpx2, cpy2, cpx, cpy);
 +
break;
 +
}
 +
}
 +
}
 +
 +
return {
 +
offsetX: glyph.ha * scale,
 +
path: path
 +
};
 +
}
 +
 +
Font.prototype.isFont = true;
 +
 +
class FontLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
const scope = this;
 +
const loader = new FileLoader(this.manager);
 +
loader.setPath(this.path);
 +
loader.setRequestHeader(this.requestHeader);
 +
loader.setWithCredentials(scope.withCredentials);
 +
loader.load(url, function (text) {
 +
let json;
 +
 +
try {
 +
json = JSON.parse(text);
 +
} catch (e) {
 +
console.warn('THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.');
 +
json = JSON.parse(text.substring(65, text.length - 2));
 +
}
 +
 +
const font = scope.parse(json);
 +
if (onLoad) onLoad(font);
 +
}, onProgress, onError);
 +
}
 +
 +
parse(json) {
 +
return new Font(json);
 +
}
 +
 +
}
 +
 +
let _context;
 +
 +
const AudioContext = {
 +
getContext: function () {
 +
if (_context === undefined) {
 +
_context = new (window.AudioContext || window.webkitAudioContext)();
 +
}
 +
 +
return _context;
 +
},
 +
setContext: function (value) {
 +
_context = value;
 +
}
 +
};
 +
 +
class AudioLoader extends Loader {
 +
constructor(manager) {
 +
super(manager);
 +
}
 +
 +
load(url, onLoad, onProgress, onError) {
 +
const scope = this;
 +
const loader = new FileLoader(this.manager);
 +
loader.setResponseType('arraybuffer');
 +
loader.setPath(this.path);
 +
loader.setRequestHeader(this.requestHeader);
 +
loader.setWithCredentials(this.withCredentials);
 +
loader.load(url, function (buffer) {
 +
try {
 +
// Create a copy of the buffer. The `decodeAudioData` method
 +
// detaches the buffer when complete, preventing reuse.
 +
const bufferCopy = buffer.slice(0);
 +
const context = AudioContext.getContext();
 +
context.decodeAudioData(bufferCopy, function (audioBuffer) {
 +
onLoad(audioBuffer);
 +
});
 +
} catch (e) {
 +
if (onError) {
 +
onError(e);
 +
} else {
 +
console.error(e);
 +
}
 +
 +
scope.manager.itemError(url);
 +
}
 +
}, onProgress, onError);
 +
}
 +
 +
}
 +
 +
class HemisphereLightProbe extends LightProbe {
 +
constructor(skyColor, groundColor, intensity = 1) {
 +
super(undefined, intensity);
 +
const color1 = new Color().set(skyColor);
 +
const color2 = new Color().set(groundColor);
 +
const sky = new Vector3(color1.r, color1.g, color1.b);
 +
const ground = new Vector3(color2.r, color2.g, color2.b); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI );
 +
 +
const c0 = Math.sqrt(Math.PI);
 +
const c1 = c0 * Math.sqrt(0.75);
 +
this.sh.coefficients[0].copy(sky).add(ground).multiplyScalar(c0);
 +
this.sh.coefficients[1].copy(sky).sub(ground).multiplyScalar(c1);
 +
}
 +
 +
}
 +
 +
HemisphereLightProbe.prototype.isHemisphereLightProbe = true;
 +
 +
class AmbientLightProbe extends LightProbe {
 +
constructor(color, intensity = 1) {
 +
super(undefined, intensity);
 +
const color1 = new Color().set(color); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI );
 +
 +
this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI));
 +
}
 +
 +
}
 +
 +
AmbientLightProbe.prototype.isAmbientLightProbe = true;
 +
 +
const _eyeRight = /*@__PURE__*/new Matrix4();
 +
 +
const _eyeLeft = /*@__PURE__*/new Matrix4();
 +
 +
class StereoCamera {
 +
constructor() {
 +
this.type = 'StereoCamera';
 +
this.aspect = 1;
 +
this.eyeSep = 0.064;
 +
this.cameraL = new PerspectiveCamera();
 +
this.cameraL.layers.enable(1);
 +
this.cameraL.matrixAutoUpdate = false;
 +
this.cameraR = new PerspectiveCamera();
 +
this.cameraR.layers.enable(2);
 +
this.cameraR.matrixAutoUpdate = false;
 +
this._cache = {
 +
focus: null,
 +
fov: null,
 +
aspect: null,
 +
near: null,
 +
far: null,
 +
zoom: null,
 +
eyeSep: null
 +
};
 +
}
 +
 +
update(camera) {
 +
const cache = this._cache;
 +
const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;
 +
 +
if (needsUpdate) {
 +
cache.focus = camera.focus;
 +
cache.fov = camera.fov;
 +
cache.aspect = camera.aspect * this.aspect;
 +
cache.near = camera.near;
 +
cache.far = camera.far;
 +
cache.zoom = camera.zoom;
 +
cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on
 +
// http://paulbourke.net/stereographics/stereorender/
 +
 +
const projectionMatrix = camera.projectionMatrix.clone();
 +
const eyeSepHalf = cache.eyeSep / 2;
 +
const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;
 +
const ymax = cache.near * Math.tan(DEG2RAD * cache.fov * 0.5) / cache.zoom;
 +
let xmin, xmax; // translate xOffset
 +
 +
_eyeLeft.elements[12] = -eyeSepHalf;
 +
_eyeRight.elements[12] = eyeSepHalf; // for left eye
 +
 +
xmin = -ymax * cache.aspect + eyeSepOnProjection;
 +
xmax = ymax * cache.aspect + eyeSepOnProjection;
 +
projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
 +
projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
 +
this.cameraL.projectionMatrix.copy(projectionMatrix); // for right eye
 +
 +
xmin = -ymax * cache.aspect - eyeSepOnProjection;
 +
xmax = ymax * cache.aspect - eyeSepOnProjection;
 +
projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
 +
projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
 +
this.cameraR.projectionMatrix.copy(projectionMatrix);
 +
}
 +
 +
this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft);
 +
this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight);
 +
}
 +
 +
}
 +
 +
class Clock {
 +
constructor(autoStart = true) {
 +
this.autoStart = autoStart;
 +
this.startTime = 0;
 +
this.oldTime = 0;
 +
this.elapsedTime = 0;
 +
this.running = false;
 +
}
 +
 +
start() {
 +
this.startTime = now();
 +
this.oldTime = this.startTime;
 +
this.elapsedTime = 0;
 +
this.running = true;
 +
}
 +
 +
stop() {
 +
this.getElapsedTime();
 +
this.running = false;
 +
this.autoStart = false;
 +
}
 +
 +
getElapsedTime() {
 +
this.getDelta();
 +
return this.elapsedTime;
 +
}
 +
 +
getDelta() {
 +
let diff = 0;
 +
 +
if (this.autoStart && !this.running) {
 +
this.start();
 +
return 0;
 +
}
 +
 +
if (this.running) {
 +
const newTime = now();
 +
diff = (newTime - this.oldTime) / 1000;
 +
this.oldTime = newTime;
 +
this.elapsedTime += diff;
 +
}
 +
 +
return diff;
 +
}
 +
 +
}
 +
 +
function now() {
 +
return (typeof performance === 'undefined' ? Date : performance).now(); // see #10732
 +
}
 +
 +
const _position$1 = /*@__PURE__*/new Vector3();
 +
 +
const _quaternion$1 = /*@__PURE__*/new Quaternion();
 +
 +
const _scale$1 = /*@__PURE__*/new Vector3();
 +
 +
const _orientation$1 = /*@__PURE__*/new Vector3();
 +
 +
class AudioListener extends Object3D {
 +
constructor() {
 +
super();
 +
this.type = 'AudioListener';
 +
this.context = AudioContext.getContext();
 +
this.gain = this.context.createGain();
 +
this.gain.connect(this.context.destination);
 +
this.filter = null;
 +
this.timeDelta = 0; // private
 +
 +
this._clock = new Clock();
 +
}
 +
 +
getInput() {
 +
return this.gain;
 +
}
 +
 +
removeFilter() {
 +
if (this.filter !== null) {
 +
this.gain.disconnect(this.filter);
 +
this.filter.disconnect(this.context.destination);
 +
this.gain.connect(this.context.destination);
 +
this.filter = null;
 +
}
 +
 +
return this;
 +
}
 +
 +
getFilter() {
 +
return this.filter;
 +
}
 +
 +
setFilter(value) {
 +
if (this.filter !== null) {
 +
this.gain.disconnect(this.filter);
 +
this.filter.disconnect(this.context.destination);
 +
} else {
 +
this.gain.disconnect(this.context.destination);
 +
}
 +
 +
this.filter = value;
 +
this.gain.connect(this.filter);
 +
this.filter.connect(this.context.destination);
 +
return this;
 +
}
 +
 +
getMasterVolume() {
 +
return this.gain.gain.value;
 +
}
 +
 +
setMasterVolume(value) {
 +
this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
 +
return this;
 +
}
 +
 +
updateMatrixWorld(force) {
 +
super.updateMatrixWorld(force);
 +
const listener = this.context.listener;
 +
const up = this.up;
 +
this.timeDelta = this._clock.getDelta();
 +
this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1);
 +
 +
_orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1);
 +
 +
if (listener.positionX) {
 +
// code path for Chrome (see #14393)
 +
const endTime = this.context.currentTime + this.timeDelta;
 +
listener.positionX.linearRampToValueAtTime(_position$1.x, endTime);
 +
listener.positionY.linearRampToValueAtTime(_position$1.y, endTime);
 +
listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime);
 +
listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime);
 +
listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime);
 +
listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime);
 +
listener.upX.linearRampToValueAtTime(up.x, endTime);
 +
listener.upY.linearRampToValueAtTime(up.y, endTime);
 +
listener.upZ.linearRampToValueAtTime(up.z, endTime);
 +
} else {
 +
listener.setPosition(_position$1.x, _position$1.y, _position$1.z);
 +
listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z);
 +
}
 +
}
 +
 +
}
 +
 +
class Audio extends Object3D {
 +
constructor(listener) {
 +
super();
 +
this.type = 'Audio';
 +
this.listener = listener;
 +
this.context = listener.context;
 +
this.gain = this.context.createGain();
 +
this.gain.connect(listener.getInput());
 +
this.autoplay = false;
 +
this.buffer = null;
 +
this.detune = 0;
 +
this.loop = false;
 +
this.loopStart = 0;
 +
this.loopEnd = 0;
 +
this.offset = 0;
 +
this.duration = undefined;
 +
this.playbackRate = 1;
 +
this.isPlaying = false;
 +
this.hasPlaybackControl = true;
 +
this.source = null;
 +
this.sourceType = 'empty';
 +
this._startedAt = 0;
 +
this._progress = 0;
 +
this._connected = false;
 +
this.filters = [];
 +
}
 +
 +
getOutput() {
 +
return this.gain;
 +
}
 +
 +
setNodeSource(audioNode) {
 +
this.hasPlaybackControl = false;
 +
this.sourceType = 'audioNode';
 +
this.source = audioNode;
 +
this.connect();
 +
return this;
 +
}
 +
 +
setMediaElementSource(mediaElement) {
 +
this.hasPlaybackControl = false;
 +
this.sourceType = 'mediaNode';
 +
this.source = this.context.createMediaElementSource(mediaElement);
 +
this.connect();
 +
return this;
 +
}
 +
 +
setMediaStreamSource(mediaStream) {
 +
this.hasPlaybackControl = false;
 +
this.sourceType = 'mediaStreamNode';
 +
this.source = this.context.createMediaStreamSource(mediaStream);
 +
this.connect();
 +
return this;
 +
}
 +
 +
setBuffer(audioBuffer) {
 +
this.buffer = audioBuffer;
 +
this.sourceType = 'buffer';
 +
if (this.autoplay) this.play();
 +
return this;
 +
}
 +
 +
play(delay = 0) {
 +
if (this.isPlaying === true) {
 +
console.warn('THREE.Audio: Audio is already playing.');
 +
return;
 +
}
 +
 +
if (this.hasPlaybackControl === false) {
 +
console.warn('THREE.Audio: this Audio has no playback control.');
 +
return;
 +
}
 +
 +
this._startedAt = this.context.currentTime + delay;
 +
const source = this.context.createBufferSource();
 +
source.buffer = this.buffer;
 +
source.loop = this.loop;
 +
source.loopStart = this.loopStart;
 +
source.loopEnd = this.loopEnd;
 +
source.onended = this.onEnded.bind(this);
 +
source.start(this._startedAt, this._progress + this.offset, this.duration);
 +
this.isPlaying = true;
 +
this.source = source;
 +
this.setDetune(this.detune);
 +
this.setPlaybackRate(this.playbackRate);
 +
return this.connect();
 +
}
 +
 +
pause() {
 +
if (this.hasPlaybackControl === false) {
 +
console.warn('THREE.Audio: this Audio has no playback control.');
 +
return;
 +
}
 +
 +
if (this.isPlaying === true) {
 +
// update current progress
 +
this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate;
 +
 +
if (this.loop === true) {
 +
// ensure _progress does not exceed duration with looped audios
 +
this._progress = this._progress % (this.duration || this.buffer.duration);
 +
}
 +
 +
this.source.stop();
 +
this.source.onended = null;
 +
this.isPlaying = false;
 +
}
 +
 +
return this;
 +
}
 +
 +
stop() {
 +
if (this.hasPlaybackControl === false) {
 +
console.warn('THREE.Audio: this Audio has no playback control.');
 +
return;
 +
}
 +
 +
this._progress = 0;
 +
this.source.stop();
 +
this.source.onended = null;
 +
this.isPlaying = false;
 +
return this;
 +
}
 +
 +
connect() {
 +
if (this.filters.length > 0) {
 +
this.source.connect(this.filters[0]);
 +
 +
for (let i = 1, l = this.filters.length; i < l; i++) {
 +
this.filters[i - 1].connect(this.filters[i]);
 +
}
 +
 +
this.filters[this.filters.length - 1].connect(this.getOutput());
 +
} else {
 +
this.source.connect(this.getOutput());
 +
}
 +
 +
this._connected = true;
 +
return this;
 +
}
 +
 +
disconnect() {
 +
if (this.filters.length > 0) {
 +
this.source.disconnect(this.filters[0]);
 +
 +
for (let i = 1, l = this.filters.length; i < l; i++) {
 +
this.filters[i - 1].disconnect(this.filters[i]);
 +
}
 +
 +
this.filters[this.filters.length - 1].disconnect(this.getOutput());
 +
} else {
 +
this.source.disconnect(this.getOutput());
 +
}
 +
 +
this._connected = false;
 +
return this;
 +
}
 +
 +
getFilters() {
 +
return this.filters;
 +
}
 +
 +
setFilters(value) {
 +
if (!value) value = [];
 +
 +
if (this._connected === true) {
 +
this.disconnect();
 +
this.filters = value.slice();
 +
this.connect();
 +
} else {
 +
this.filters = value.slice();
 +
}
 +
 +
return this;
 +
}
 +
 +
setDetune(value) {
 +
this.detune = value;
 +
if (this.source.detune === undefined) return; // only set detune when available
 +
 +
if (this.isPlaying === true) {
 +
this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01);
 +
}
 +
 +
return this;
 +
}
 +
 +
getDetune() {
 +
return this.detune;
 +
}
 +
 +
getFilter() {
 +
return this.getFilters()[0];
 +
}
 +
 +
setFilter(filter) {
 +
return this.setFilters(filter ? [filter] : []);
 +
}
 +
 +
setPlaybackRate(value) {
 +
if (this.hasPlaybackControl === false) {
 +
console.warn('THREE.Audio: this Audio has no playback control.');
 +
return;
 +
}
 +
 +
this.playbackRate = value;
 +
 +
if (this.isPlaying === true) {
 +
this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01);
 +
}
 +
 +
return this;
 +
}
 +
 +
getPlaybackRate() {
 +
return this.playbackRate;
 +
}
 +
 +
onEnded() {
 +
this.isPlaying = false;
 +
}
 +
 +
getLoop() {
 +
if (this.hasPlaybackControl === false) {
 +
console.warn('THREE.Audio: this Audio has no playback control.');
 +
return false;
 +
}
 +
 +
return this.loop;
 +
}
 +
 +
setLoop(value) {
 +
if (this.hasPlaybackControl === false) {
 +
console.warn('THREE.Audio: this Audio has no playback control.');
 +
return;
 +
}
 +
 +
this.loop = value;
 +
 +
if (this.isPlaying === true) {
 +
this.source.loop = this.loop;
 +
}
 +
 +
return this;
 +
}
 +
 +
setLoopStart(value) {
 +
this.loopStart = value;
 +
return this;
 +
}
 +
 +
setLoopEnd(value) {
 +
this.loopEnd = value;
 +
return this;
 +
}
 +
 +
getVolume() {
 +
return this.gain.gain.value;
 +
}
 +
 +
setVolume(value) {
 +
this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
 +
return this;
 +
}
 +
 +
}
 +
 +
const _position = /*@__PURE__*/new Vector3();
 +
 +
const _quaternion = /*@__PURE__*/new Quaternion();
 +
 +
const _scale = /*@__PURE__*/new Vector3();
 +
 +
const _orientation = /*@__PURE__*/new Vector3();
 +
 +
class PositionalAudio extends Audio {
 +
constructor(listener) {
 +
super(listener);
 +
this.panner = this.context.createPanner();
 +
this.panner.panningModel = 'HRTF';
 +
this.panner.connect(this.gain);
 +
}
 +
 +
getOutput() {
 +
return this.panner;
 +
}
 +
 +
getRefDistance() {
 +
return this.panner.refDistance;
 +
}
 +
 +
setRefDistance(value) {
 +
this.panner.refDistance = value;
 +
return this;
 +
}
 +
 +
getRolloffFactor() {
 +
return this.panner.rolloffFactor;
 +
}
 +
 +
setRolloffFactor(value) {
 +
this.panner.rolloffFactor = value;
 +
return this;
 +
}
 +
 +
getDistanceModel() {
 +
return this.panner.distanceModel;
 +
}
 +
 +
setDistanceModel(value) {
 +
this.panner.distanceModel = value;
 +
return this;
 +
}
 +
 +
getMaxDistance() {
 +
return this.panner.maxDistance;
 +
}
 +
 +
setMaxDistance(value) {
 +
this.panner.maxDistance = value;
 +
return this;
 +
}
 +
 +
setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) {
 +
this.panner.coneInnerAngle = coneInnerAngle;
 +
this.panner.coneOuterAngle = coneOuterAngle;
 +
this.panner.coneOuterGain = coneOuterGain;
 +
return this;
 +
}
 +
 +
updateMatrixWorld(force) {
 +
super.updateMatrixWorld(force);
 +
if (this.hasPlaybackControl === true && this.isPlaying === false) return;
 +
this.matrixWorld.decompose(_position, _quaternion, _scale);
 +
 +
_orientation.set(0, 0, 1).applyQuaternion(_quaternion);
 +
 +
const panner = this.panner;
 +
 +
if (panner.positionX) {
 +
// code path for Chrome and Firefox (see #14393)
 +
const endTime = this.context.currentTime + this.listener.timeDelta;
 +
panner.positionX.linearRampToValueAtTime(_position.x, endTime);
 +
panner.positionY.linearRampToValueAtTime(_position.y, endTime);
 +
panner.positionZ.linearRampToValueAtTime(_position.z, endTime);
 +
panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime);
 +
panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime);
 +
panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime);
 +
} else {
 +
panner.setPosition(_position.x, _position.y, _position.z);
 +
panner.setOrientation(_orientation.x, _orientation.y, _orientation.z);
 +
}
 +
}
 +
 +
}
 +
 +
class AudioAnalyser {
 +
constructor(audio, fftSize = 2048) {
 +
this.analyser = audio.context.createAnalyser();
 +
this.analyser.fftSize = fftSize;
 +
this.data = new Uint8Array(this.analyser.frequencyBinCount);
 +
audio.getOutput().connect(this.analyser);
 +
}
 +
 +
getFrequencyData() {
 +
this.analyser.getByteFrequencyData(this.data);
 +
return this.data;
 +
}
 +
 +
getAverageFrequency() {
 +
let value = 0;
 +
const data = this.getFrequencyData();
 +
 +
for (let i = 0; i < data.length; i++) {
 +
value += data[i];
 +
}
 +
 +
return value / data.length;
 +
}
 +
 +
}
 +
 +
class PropertyMixer {
 +
constructor(binding, typeName, valueSize) {
 +
this.binding = binding;
 +
this.valueSize = valueSize;
 +
let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]
 +
//
 +
// interpolators can use .buffer as their .result
 +
// the data then goes to 'incoming'
 +
//
 +
// 'accu0' and 'accu1' are used frame-interleaved for
 +
// the cumulative result and are compared to detect
 +
// changes
 +
//
 +
// 'orig' stores the original state of the property
 +
//
 +
// 'add' is used for additive cumulative results
 +
//
 +
// 'work' is optional and is only present for quaternion types. It is used
 +
// to store intermediate quaternion multiplication results
 +
 +
switch (typeName) {
 +
case 'quaternion':
 +
mixFunction = this._slerp;
 +
mixFunctionAdditive = this._slerpAdditive;
 +
setIdentity = this._setAdditiveIdentityQuaternion;
 +
this.buffer = new Float64Array(valueSize * 6);
 +
this._workIndex = 5;
 +
break;
 +
 +
case 'string':
 +
case 'bool':
 +
mixFunction = this._select; // Use the regular mix function and for additive on these types,
 +
// additive is not relevant for non-numeric types
 +
 +
mixFunctionAdditive = this._select;
 +
setIdentity = this._setAdditiveIdentityOther;
 +
this.buffer = new Array(valueSize * 5);
 +
break;
 +
 +
default:
 +
mixFunction = this._lerp;
 +
mixFunctionAdditive = this._lerpAdditive;
 +
setIdentity = this._setAdditiveIdentityNumeric;
 +
this.buffer = new Float64Array(valueSize * 5);
 +
}
 +
 +
this._mixBufferRegion = mixFunction;
 +
this._mixBufferRegionAdditive = mixFunctionAdditive;
 +
this._setIdentity = setIdentity;
 +
this._origIndex = 3;
 +
this._addIndex = 4;
 +
this.cumulativeWeight = 0;
 +
this.cumulativeWeightAdditive = 0;
 +
this.useCount = 0;
 +
this.referenceCount = 0;
 +
} // accumulate data in the 'incoming' region into 'accu<i>'
 +
 +
 +
accumulate(accuIndex, weight) {
 +
// note: happily accumulating nothing when weight = 0, the caller knows
 +
// the weight and shouldn't have made the call in the first place
 +
const buffer = this.buffer,
 +
stride = this.valueSize,
 +
offset = accuIndex * stride + stride;
 +
let currentWeight = this.cumulativeWeight;
 +
 +
if (currentWeight === 0) {
 +
// accuN := incoming * weight
 +
for (let i = 0; i !== stride; ++i) {
 +
buffer[offset + i] = buffer[i];
 +
}
 +
 +
currentWeight = weight;
 +
} else {
 +
// accuN := accuN + incoming * weight
 +
currentWeight += weight;
 +
const mix = weight / currentWeight;
 +
 +
this._mixBufferRegion(buffer, offset, 0, mix, stride);
 +
}
 +
 +
this.cumulativeWeight = currentWeight;
 +
} // accumulate data in the 'incoming' region into 'add'
 +
 +
 +
accumulateAdditive(weight) {
 +
const buffer = this.buffer,
 +
stride = this.valueSize,
 +
offset = stride * this._addIndex;
 +
 +
if (this.cumulativeWeightAdditive === 0) {
 +
// add = identity
 +
this._setIdentity();
 +
} // add := add + incoming * weight
 +
 +
 +
this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride);
 +
 +
this.cumulativeWeightAdditive += weight;
 +
} // apply the state of 'accu<i>' to the binding when accus differ
 +
 +
 +
apply(accuIndex) {
 +
const stride = this.valueSize,
 +
buffer = this.buffer,
 +
offset = accuIndex * stride + stride,
 +
weight = this.cumulativeWeight,
 +
weightAdditive = this.cumulativeWeightAdditive,
 +
binding = this.binding;
 +
this.cumulativeWeight = 0;
 +
this.cumulativeWeightAdditive = 0;
 +
 +
if (weight < 1) {
 +
// accuN := accuN + original * ( 1 - cumulativeWeight )
 +
const originalValueOffset = stride * this._origIndex;
 +
 +
this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride);
 +
}
 +
 +
if (weightAdditive > 0) {
 +
// accuN := accuN + additive accuN
 +
this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride);
 +
}
 +
 +
for (let i = stride, e = stride + stride; i !== e; ++i) {
 +
if (buffer[i] !== buffer[i + stride]) {
 +
// value has changed -> update scene graph
 +
binding.setValue(buffer, offset);
 +
break;
 +
}
 +
}
 +
} // remember the state of the bound property and copy it to both accus
 +
 +
 +
saveOriginalState() {
 +
const binding = this.binding;
 +
const buffer = this.buffer,
 +
stride = this.valueSize,
 +
originalValueOffset = stride * this._origIndex;
 +
binding.getValue(buffer, originalValueOffset); // accu[0..1] := orig -- initially detect changes against the original
 +
 +
for (let i = stride, e = originalValueOffset; i !== e; ++i) {
 +
buffer[i] = buffer[originalValueOffset + i % stride];
 +
} // Add to identity for additive
 +
 +
 +
this._setIdentity();
 +
 +
this.cumulativeWeight = 0;
 +
this.cumulativeWeightAdditive = 0;
 +
} // apply the state previously taken via 'saveOriginalState' to the binding
 +
 +
 +
restoreOriginalState() {
 +
const originalValueOffset = this.valueSize * 3;
 +
this.binding.setValue(this.buffer, originalValueOffset);
 +
}
 +
 +
_setAdditiveIdentityNumeric() {
 +
const startIndex = this._addIndex * this.valueSize;
 +
const endIndex = startIndex + this.valueSize;
 +
 +
for (let i = startIndex; i < endIndex; i++) {
 +
this.buffer[i] = 0;
 +
}
 +
}
 +
 +
_setAdditiveIdentityQuaternion() {
 +
this._setAdditiveIdentityNumeric();
 +
 +
this.buffer[this._addIndex * this.valueSize + 3] = 1;
 +
}
 +
 +
_setAdditiveIdentityOther() {
 +
const startIndex = this._origIndex * this.valueSize;
 +
const targetIndex = this._addIndex * this.valueSize;
 +
 +
for (let i = 0; i < this.valueSize; i++) {
 +
this.buffer[targetIndex + i] = this.buffer[startIndex + i];
 +
}
 +
} // mix functions
 +
 +
 +
_select(buffer, dstOffset, srcOffset, t, stride) {
 +
if (t >= 0.5) {
 +
for (let i = 0; i !== stride; ++i) {
 +
buffer[dstOffset + i] = buffer[srcOffset + i];
 +
}
 +
}
 +
}
 +
 +
_slerp(buffer, dstOffset, srcOffset, t) {
 +
Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t);
 +
}
 +
 +
_slerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
 +
const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset
 +
 +
Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); // Slerp to the intermediate result
 +
 +
Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t);
 +
}
 +
 +
_lerp(buffer, dstOffset, srcOffset, t, stride) {
 +
const s = 1 - t;
 +
 +
for (let i = 0; i !== stride; ++i) {
 +
const j = dstOffset + i;
 +
buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t;
 +
}
 +
}
 +
 +
_lerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
 +
for (let i = 0; i !== stride; ++i) {
 +
const j = dstOffset + i;
 +
buffer[j] = buffer[j] + buffer[srcOffset + i] * t;
 +
}
 +
}
 +
 +
}
 +
 +
// Characters [].:/ are reserved for track binding syntax.
 +
const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';
 +
 +
const _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g'); // Attempts to allow node names from any language. ES5's `\w` regexp matches
 +
// only latin characters, and the unicode \p{L} is not yet supported. So
 +
// instead, we exclude reserved characters and match everything else.
 +
 +
 +
const _wordChar = '[^' + _RESERVED_CHARS_RE + ']';
 +
 +
const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must
 +
// be matched to parse the rest of the track name.
 +
 +
 +
const _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
 +
 +
 +
const _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot); // Object on target node, and accessor. May not contain reserved
 +
// characters. Accessor may contain any character except closing bracket.
 +
 +
 +
const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar); // Property and accessor. May not contain reserved characters. Accessor may
 +
// contain any non-bracket characters.
 +
 +
 +
const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar);
 +
 +
const _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$');
 +
 +
const _supportedObjectNames = ['material', 'materials', 'bones'];
 +
 +
class Composite {
 +
constructor(targetGroup, path, optionalParsedPath) {
 +
const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path);
 +
this._targetGroup = targetGroup;
 +
this._bindings = targetGroup.subscribe_(path, parsedPath);
 +
}
 +
 +
getValue(array, offset) {
 +
this.bind(); // bind all binding
 +
 +
const firstValidIndex = this._targetGroup.nCachedObjects_,
 +
binding = this._bindings[firstValidIndex]; // and only call .getValue on the first
 +
 +
if (binding !== undefined) binding.getValue(array, offset);
 +
}
 +
 +
setValue(array, offset) {
 +
const bindings = this._bindings;
 +
 +
for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
 +
bindings[i].setValue(array, offset);
 +
}
 +
}
 +
 +
bind() {
 +
const bindings = this._bindings;
 +
 +
for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
 +
bindings[i].bind();
 +
}
 +
}
 +
 +
unbind() {
 +
const bindings = this._bindings;
 +
 +
for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
 +
bindings[i].unbind();
 +
}
 +
}
 +
 +
} // Note: This class uses a State pattern on a per-method basis:
 +
// 'bind' sets 'this.getValue' / 'setValue' and shadows the
 +
// prototype version of these methods with one that represents
 +
// the bound state. When the property is not found, the methods
 +
// become no-ops.
 +
 +
 +
class PropertyBinding {
 +
constructor(rootNode, path, parsedPath) {
 +
this.path = path;
 +
this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path);
 +
this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode;
 +
this.rootNode = rootNode; // initial state of these methods that calls 'bind'
 +
 +
this.getValue = this._getValue_unbound;
 +
this.setValue = this._setValue_unbound;
 +
}
 +
 +
static create(root, path, parsedPath) {
 +
if (!(root && root.isAnimationObjectGroup)) {
 +
return new PropertyBinding(root, path, parsedPath);
 +
} else {
 +
return new PropertyBinding.Composite(root, path, parsedPath);
 +
}
 +
}
 +
/**
 +
* Replaces spaces with underscores and removes unsupported characters from
 +
* node names, to ensure compatibility with parseTrackName().
 +
*
 +
* @param {string} name Node name to be sanitized.
 +
* @return {string}
 +
*/
 +
 +
 +
static sanitizeNodeName(name) {
 +
return name.replace(/\s/g, '_').replace(_reservedRe, '');
 +
}
 +
 +
static parseTrackName(trackName) {
 +
const matches = _trackRe.exec(trackName);
 +
 +
if (!matches) {
 +
throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName);
 +
}
 +
 +
const results = {
 +
// directoryName: matches[ 1 ], // (tschw) currently unused
 +
nodeName: matches[2],
 +
objectName: matches[3],
 +
objectIndex: matches[4],
 +
propertyName: matches[5],
 +
// required
 +
propertyIndex: matches[6]
 +
};
 +
const lastDot = results.nodeName && results.nodeName.lastIndexOf('.');
 +
 +
if (lastDot !== undefined && lastDot !== -1) {
 +
const objectName = results.nodeName.substring(lastDot + 1); // Object names must be checked against an allowlist. Otherwise, there
 +
// is no way to parse 'foo.bar.baz': 'baz' must be a property, but
 +
// 'bar' could be the objectName, or part of a nodeName (which can
 +
// include '.' characters).
 +
 +
if (_supportedObjectNames.indexOf(objectName) !== -1) {
 +
results.nodeName = results.nodeName.substring(0, lastDot);
 +
results.objectName = objectName;
 +
}
 +
}
 +
 +
if (results.propertyName === null || results.propertyName.length === 0) {
 +
throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName);
 +
}
 +
 +
return results;
 +
}
 +
 +
static findNode(root, nodeName) {
 +
if (!nodeName || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) {
 +
return root;
 +
} // search into skeleton bones.
 +
 +
 +
if (root.skeleton) {
 +
const bone = root.skeleton.getBoneByName(nodeName);
 +
 +
if (bone !== undefined) {
 +
return bone;
 +
}
 +
} // search into node subtree.
 +
 +
 +
if (root.children) {
 +
const searchNodeSubtree = function (children) {
 +
for (let i = 0; i < children.length; i++) {
 +
const childNode = children[i];
 +
 +
if (childNode.name === nodeName || childNode.uuid === nodeName) {
 +
return childNode;
 +
}
 +
 +
const result = searchNodeSubtree(childNode.children);
 +
if (result) return result;
 +
}
 +
 +
return null;
 +
};
 +
 +
const subTreeNode = searchNodeSubtree(root.children);
 +
 +
if (subTreeNode) {
 +
return subTreeNode;
 +
}
 +
}
 +
 +
return null;
 +
} // these are used to "bind" a nonexistent property
 +
 +
 +
_getValue_unavailable() {}
 +
 +
_setValue_unavailable() {} // Getters
 +
 +
 +
_getValue_direct(buffer, offset) {
 +
buffer[offset] = this.node[this.propertyName];
 +
}
 +
 +
_getValue_array(buffer, offset) {
 +
const source = this.resolvedProperty;
 +
 +
for (let i = 0, n = source.length; i !== n; ++i) {
 +
buffer[offset++] = source[i];
 +
}
 +
}
 +
 +
_getValue_arrayElement(buffer, offset) {
 +
buffer[offset] = this.resolvedProperty[this.propertyIndex];
 +
}
 +
 +
_getValue_toArray(buffer, offset) {
 +
this.resolvedProperty.toArray(buffer, offset);
 +
} // Direct
 +
 +
 +
_setValue_direct(buffer, offset) {
 +
this.targetObject[this.propertyName] = buffer[offset];
 +
}
 +
 +
_setValue_direct_setNeedsUpdate(buffer, offset) {
 +
this.targetObject[this.propertyName] = buffer[offset];
 +
this.targetObject.needsUpdate = true;
 +
}
 +
 +
_setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) {
 +
this.targetObject[this.propertyName] = buffer[offset];
 +
this.targetObject.matrixWorldNeedsUpdate = true;
 +
} // EntireArray
 +
 +
 +
_setValue_array(buffer, offset) {
 +
const dest = this.resolvedProperty;
 +
 +
for (let i = 0, n = dest.length; i !== n; ++i) {
 +
dest[i] = buffer[offset++];
 +
}
 +
}
 +
 +
_setValue_array_setNeedsUpdate(buffer, offset) {
 +
const dest = this.resolvedProperty;
 +
 +
for (let i = 0, n = dest.length; i !== n; ++i) {
 +
dest[i] = buffer[offset++];
 +
}
 +
 +
this.targetObject.needsUpdate = true;
 +
}
 +
 +
_setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) {
 +
const dest = this.resolvedProperty;
 +
 +
for (let i = 0, n = dest.length; i !== n; ++i) {
 +
dest[i] = buffer[offset++];
 +
}
 +
 +
this.targetObject.matrixWorldNeedsUpdate = true;
 +
} // ArrayElement
 +
 +
 +
_setValue_arrayElement(buffer, offset) {
 +
this.resolvedProperty[this.propertyIndex] = buffer[offset];
 +
}
 +
 +
_setValue_arrayElement_setNeedsUpdate(buffer, offset) {
 +
this.resolvedProperty[this.propertyIndex] = buffer[offset];
 +
this.targetObject.needsUpdate = true;
 +
}
 +
 +
_setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) {
 +
this.resolvedProperty[this.propertyIndex] = buffer[offset];
 +
this.targetObject.matrixWorldNeedsUpdate = true;
 +
} // HasToFromArray
 +
 +
 +
_setValue_fromArray(buffer, offset) {
 +
this.resolvedProperty.fromArray(buffer, offset);
 +
}
 +
 +
_setValue_fromArray_setNeedsUpdate(buffer, offset) {
 +
this.resolvedProperty.fromArray(buffer, offset);
 +
this.targetObject.needsUpdate = true;
 +
}
 +
 +
_setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) {
 +
this.resolvedProperty.fromArray(buffer, offset);
 +
this.targetObject.matrixWorldNeedsUpdate = true;
 +
}
 +
 +
_getValue_unbound(targetArray, offset) {
 +
this.bind();
 +
this.getValue(targetArray, offset);
 +
}
 +
 +
_setValue_unbound(sourceArray, offset) {
 +
this.bind();
 +
this.setValue(sourceArray, offset);
 +
} // create getter / setter pair for a property in the scene graph
 +
 +
 +
bind() {
 +
let targetObject = this.node;
 +
const parsedPath = this.parsedPath;
 +
const objectName = parsedPath.objectName;
 +
const propertyName = parsedPath.propertyName;
 +
let propertyIndex = parsedPath.propertyIndex;
 +
 +
if (!targetObject) {
 +
targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode;
 +
this.node = targetObject;
 +
} // set fail state so we can just 'return' on error
 +
 +
 +
this.getValue = this._getValue_unavailable;
 +
this.setValue = this._setValue_unavailable; // ensure there is a value node
 +
 +
if (!targetObject) {
 +
console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.');
 +
return;
 +
}
 +
 +
if (objectName) {
 +
let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials....
 +
 +
switch (objectName) {
 +
case 'materials':
 +
if (!targetObject.material) {
 +
console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this);
 +
return;
 +
}
 +
 +
if (!targetObject.material.materials) {
 +
console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this);
 +
return;
 +
}
 +
 +
targetObject = targetObject.material.materials;
 +
break;
 +
 +
case 'bones':
 +
if (!targetObject.skeleton) {
 +
console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this);
 +
return;
 +
} // potential future optimization: skip this if propertyIndex is already an integer
 +
// and convert the integer string to a true integer.
 +
 +
 +
targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices.
 +
 +
for (let i = 0; i < targetObject.length; i++) {
 +
if (targetObject[i].name === objectIndex) {
 +
objectIndex = i;
 +
break;
 +
}
 +
}
 +
 +
break;
 +
 +
default:
 +
if (targetObject[objectName] === undefined) {
 +
console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this);
 +
return;
 +
}
 +
 +
targetObject = targetObject[objectName];
 +
}
 +
 +
if (objectIndex !== undefined) {
 +
if (targetObject[objectIndex] === undefined) {
 +
console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject);
 +
return;
 +
}
 +
 +
targetObject = targetObject[objectIndex];
 +
}
 +
} // resolve property
 +
 +
 +
const nodeProperty = targetObject[propertyName];
 +
 +
if (nodeProperty === undefined) {
 +
const nodeName = parsedPath.nodeName;
 +
console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject);
 +
return;
 +
} // determine versioning scheme
 +
 +
 +
let versioning = this.Versioning.None;
 +
this.targetObject = targetObject;
 +
 +
if (targetObject.needsUpdate !== undefined) {
 +
// material
 +
versioning = this.Versioning.NeedsUpdate;
 +
} else if (targetObject.matrixWorldNeedsUpdate !== undefined) {
 +
// node transform
 +
versioning = this.Versioning.MatrixWorldNeedsUpdate;
 +
} // determine how the property gets bound
 +
 +
 +
let bindingType = this.BindingType.Direct;
 +
 +
if (propertyIndex !== undefined) {
 +
// access a sub element of the property array (only primitives are supported right now)
 +
if (propertyName === 'morphTargetInfluences') {
 +
// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
 +
// support resolving morphTarget names into indices.
 +
if (!targetObject.geometry) {
 +
console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this);
 +
return;
 +
}
 +
 +
if (targetObject.geometry.isBufferGeometry) {
 +
if (!targetObject.geometry.morphAttributes) {
 +
console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this);
 +
return;
 +
}
 +
 +
if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) {
 +
propertyIndex = targetObject.morphTargetDictionary[propertyIndex];
 +
}
 +
} else {
 +
console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this);
 +
return;
 +
}
 +
}
 +
 +
bindingType = this.BindingType.ArrayElement;
 +
this.resolvedProperty = nodeProperty;
 +
this.propertyIndex = propertyIndex;
 +
} else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) {
 +
// must use copy for Object3D.Euler/Quaternion
 +
bindingType = this.BindingType.HasFromToArray;
 +
this.resolvedProperty = nodeProperty;
 +
} else if (Array.isArray(nodeProperty)) {
 +
bindingType = this.BindingType.EntireArray;
 +
this.resolvedProperty = nodeProperty;
 +
} else {
 +
this.propertyName = propertyName;
 +
} // select getter / setter
 +
 +
 +
this.getValue = this.GetterByBindingType[bindingType];
 +
this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning];
 +
}
 +
 +
unbind() {
 +
this.node = null; // back to the prototype version of getValue / setValue
 +
// note: avoiding to mutate the shape of 'this' via 'delete'
 +
 +
this.getValue = this._getValue_unbound;
 +
this.setValue = this._setValue_unbound;
 +
}
 +
 +
}
 +
 +
PropertyBinding.Composite = Composite;
 +
PropertyBinding.prototype.BindingType = {
 +
Direct: 0,
 +
EntireArray: 1,
 +
ArrayElement: 2,
 +
HasFromToArray: 3
 +
};
 +
PropertyBinding.prototype.Versioning = {
 +
None: 0,
 +
NeedsUpdate: 1,
 +
MatrixWorldNeedsUpdate: 2
 +
};
 +
PropertyBinding.prototype.GetterByBindingType = [PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray];
 +
PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [[// Direct
 +
PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate], [// EntireArray
 +
PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate], [// ArrayElement
 +
PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate], [// HasToFromArray
 +
PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate]];
 +
 +
/**
 +
*
 +
* A group of objects that receives a shared animation state.
 +
*
 +
* Usage:
 +
*
 +
* - Add objects you would otherwise pass as 'root' to the
 +
* constructor or the .clipAction method of AnimationMixer.
 +
*
 +
* - Instead pass this object as 'root'.
 +
*
 +
* - You can also add and remove objects later when the mixer
 +
* is running.
 +
*
 +
* Note:
 +
*
 +
* Objects of this class appear as one object to the mixer,
 +
* so cache control of the individual objects must be done
 +
* on the group.
 +
*
 +
* Limitation:
 +
*
 +
* - The animated properties must be compatible among the
 +
* all objects in the group.
 +
*
 +
* - A single property can either be controlled through a
 +
* target group or directly, but not both.
 +
*/
 +
 +
class AnimationObjectGroup {
 +
constructor() {
 +
this.uuid = generateUUID(); // cached objects followed by the active ones
 +
 +
this._objects = Array.prototype.slice.call(arguments);
 +
this.nCachedObjects_ = 0; // threshold
 +
// note: read by PropertyBinding.Composite
 +
 +
const indices = {};
 +
this._indicesByUUID = indices; // for bookkeeping
 +
 +
for (let i = 0, n = arguments.length; i !== n; ++i) {
 +
indices[arguments[i].uuid] = i;
 +
}
 +
 +
this._paths = []; // inside: string
 +
 +
this._parsedPaths = []; // inside: { we don't care, here }
 +
 +
this._bindings = []; // inside: Array< PropertyBinding >
 +
 +
this._bindingsIndicesByPath = {}; // inside: indices in these arrays
 +
 +
const scope = this;
 +
this.stats = {
 +
objects: {
 +
get total() {
 +
return scope._objects.length;
 +
},
 +
 +
get inUse() {
 +
return this.total - scope.nCachedObjects_;
 +
}
 +
 +
},
 +
 +
get bindingsPerObject() {
 +
return scope._bindings.length;
 +
}
 +
 +
};
 +
}
 +
 +
add() {
 +
const objects = this._objects,
 +
indicesByUUID = this._indicesByUUID,
 +
paths = this._paths,
 +
parsedPaths = this._parsedPaths,
 +
bindings = this._bindings,
 +
nBindings = bindings.length;
 +
let knownObject = undefined,
 +
nObjects = objects.length,
 +
nCachedObjects = this.nCachedObjects_;
 +
 +
for (let i = 0, n = arguments.length; i !== n; ++i) {
 +
const object = arguments[i],
 +
uuid = object.uuid;
 +
let index = indicesByUUID[uuid];
 +
 +
if (index === undefined) {
 +
// unknown object -> add it to the ACTIVE region
 +
index = nObjects++;
 +
indicesByUUID[uuid] = index;
 +
objects.push(object); // accounting is done, now do the same for all bindings
 +
 +
for (let j = 0, m = nBindings; j !== m; ++j) {
 +
bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j]));
 +
}
 +
} else if (index < nCachedObjects) {
 +
knownObject = objects[index]; // move existing object to the ACTIVE region
 +
 +
const firstActiveIndex = --nCachedObjects,
 +
lastCachedObject = objects[firstActiveIndex];
 +
indicesByUUID[lastCachedObject.uuid] = index;
 +
objects[index] = lastCachedObject;
 +
indicesByUUID[uuid] = firstActiveIndex;
 +
objects[firstActiveIndex] = object; // accounting is done, now do the same for all bindings
 +
 +
for (let j = 0, m = nBindings; j !== m; ++j) {
 +
const bindingsForPath = bindings[j],
 +
lastCached = bindingsForPath[firstActiveIndex];
 +
let binding = bindingsForPath[index];
 +
bindingsForPath[index] = lastCached;
 +
 +
if (binding === undefined) {
 +
// since we do not bother to create new bindings
 +
// for objects that are cached, the binding may
 +
// or may not exist
 +
binding = new PropertyBinding(object, paths[j], parsedPaths[j]);
 +
}
 +
 +
bindingsForPath[firstActiveIndex] = binding;
 +
}
 +
} else if (objects[index] !== knownObject) {
 +
console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.');
 +
} // else the object is already where we want it to be
 +
 +
} // for arguments
 +
 +
 +
this.nCachedObjects_ = nCachedObjects;
 +
}
 +
 +
remove() {
 +
const objects = this._objects,
 +
indicesByUUID = this._indicesByUUID,
 +
bindings = this._bindings,
 +
nBindings = bindings.length;
 +
let nCachedObjects = this.nCachedObjects_;
 +
 +
for (let i = 0, n = arguments.length; i !== n; ++i) {
 +
const object = arguments[i],
 +
uuid = object.uuid,
 +
index = indicesByUUID[uuid];
 +
 +
if (index !== undefined && index >= nCachedObjects) {
 +
// move existing object into the CACHED region
 +
const lastCachedIndex = nCachedObjects++,
 +
firstActiveObject = objects[lastCachedIndex];
 +
indicesByUUID[firstActiveObject.uuid] = index;
 +
objects[index] = firstActiveObject;
 +
indicesByUUID[uuid] = lastCachedIndex;
 +
objects[lastCachedIndex] = object; // accounting is done, now do the same for all bindings
 +
 +
for (let j = 0, m = nBindings; j !== m; ++j) {
 +
const bindingsForPath = bindings[j],
 +
firstActive = bindingsForPath[lastCachedIndex],
 +
binding = bindingsForPath[index];
 +
bindingsForPath[index] = firstActive;
 +
bindingsForPath[lastCachedIndex] = binding;
 +
}
 +
}
 +
} // for arguments
 +
 +
 +
this.nCachedObjects_ = nCachedObjects;
 +
} // remove & forget
 +
 +
 +
uncache() {
 +
const objects = this._objects,
 +
indicesByUUID = this._indicesByUUID,
 +
bindings = this._bindings,
 +
nBindings = bindings.length;
 +
let nCachedObjects = this.nCachedObjects_,
 +
nObjects = objects.length;
 +
 +
for (let i = 0, n = arguments.length; i !== n; ++i) {
 +
const object = arguments[i],
 +
uuid = object.uuid,
 +
index = indicesByUUID[uuid];
 +
 +
if (index !== undefined) {
 +
delete indicesByUUID[uuid];
 +
 +
if (index < nCachedObjects) {
 +
// object is cached, shrink the CACHED region
 +
const firstActiveIndex = --nCachedObjects,
 +
lastCachedObject = objects[firstActiveIndex],
 +
lastIndex = --nObjects,
 +
lastObject = objects[lastIndex]; // last cached object takes this object's place
 +
 +
indicesByUUID[lastCachedObject.uuid] = index;
 +
objects[index] = lastCachedObject; // last object goes to the activated slot and pop
 +
 +
indicesByUUID[lastObject.uuid] = firstActiveIndex;
 +
objects[firstActiveIndex] = lastObject;
 +
objects.pop(); // accounting is done, now do the same for all bindings
 +
 +
for (let j = 0, m = nBindings; j !== m; ++j) {
 +
const bindingsForPath = bindings[j],
 +
lastCached = bindingsForPath[firstActiveIndex],
 +
last = bindingsForPath[lastIndex];
 +
bindingsForPath[index] = lastCached;
 +
bindingsForPath[firstActiveIndex] = last;
 +
bindingsForPath.pop();
 +
}
 +
} else {
 +
// object is active, just swap with the last and pop
 +
const lastIndex = --nObjects,
 +
lastObject = objects[lastIndex];
 +
 +
if (lastIndex > 0) {
 +
indicesByUUID[lastObject.uuid] = index;
 +
}
 +
 +
objects[index] = lastObject;
 +
objects.pop(); // accounting is done, now do the same for all bindings
 +
 +
for (let j = 0, m = nBindings; j !== m; ++j) {
 +
const bindingsForPath = bindings[j];
 +
bindingsForPath[index] = bindingsForPath[lastIndex];
 +
bindingsForPath.pop();
 +
}
 +
} // cached or active
 +
 +
} // if object is known
 +
 +
} // for arguments
 +
 +
 +
this.nCachedObjects_ = nCachedObjects;
 +
} // Internal interface used by befriended PropertyBinding.Composite:
 +
 +
 +
subscribe_(path, parsedPath) {
 +
// returns an array of bindings for the given path that is changed
 +
// according to the contained objects in the group
 +
const indicesByPath = this._bindingsIndicesByPath;
 +
let index = indicesByPath[path];
 +
const bindings = this._bindings;
 +
if (index !== undefined) return bindings[index];
 +
const paths = this._paths,
 +
parsedPaths = this._parsedPaths,
 +
objects = this._objects,
 +
nObjects = objects.length,
 +
nCachedObjects = this.nCachedObjects_,
 +
bindingsForPath = new Array(nObjects);
 +
index = bindings.length;
 +
indicesByPath[path] = index;
 +
paths.push(path);
 +
parsedPaths.push(parsedPath);
 +
bindings.push(bindingsForPath);
 +
 +
for (let i = nCachedObjects, n = objects.length; i !== n; ++i) {
 +
const object = objects[i];
 +
bindingsForPath[i] = new PropertyBinding(object, path, parsedPath);
 +
}
 +
 +
return bindingsForPath;
 +
}
 +
 +
unsubscribe_(path) {
 +
// tells the group to forget about a property path and no longer
 +
// update the array previously obtained with 'subscribe_'
 +
const indicesByPath = this._bindingsIndicesByPath,
 +
index = indicesByPath[path];
 +
 +
if (index !== undefined) {
 +
const paths = this._paths,
 +
parsedPaths = this._parsedPaths,
 +
bindings = this._bindings,
 +
lastBindingsIndex = bindings.length - 1,
 +
lastBindings = bindings[lastBindingsIndex],
 +
lastBindingsPath = path[lastBindingsIndex];
 +
indicesByPath[lastBindingsPath] = index;
 +
bindings[index] = lastBindings;
 +
bindings.pop();
 +
parsedPaths[index] = parsedPaths[lastBindingsIndex];
 +
parsedPaths.pop();
 +
paths[index] = paths[lastBindingsIndex];
 +
paths.pop();
 +
}
 +
}
 +
 +
}
 +
 +
AnimationObjectGroup.prototype.isAnimationObjectGroup = true;
 +
 +
class AnimationAction {
 +
constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) {
 +
this._mixer = mixer;
 +
this._clip = clip;
 +
this._localRoot = localRoot;
 +
this.blendMode = blendMode;
 +
const tracks = clip.tracks,
 +
nTracks = tracks.length,
 +
interpolants = new Array(nTracks);
 +
const interpolantSettings = {
 +
endingStart: ZeroCurvatureEnding,
 +
endingEnd: ZeroCurvatureEnding
 +
};
 +
 +
for (let i = 0; i !== nTracks; ++i) {
 +
const interpolant = tracks[i].createInterpolant(null);
 +
interpolants[i] = interpolant;
 +
interpolant.settings = interpolantSettings;
 +
}
 +
 +
this._interpolantSettings = interpolantSettings;
 +
this._interpolants = interpolants; // bound by the mixer
 +
// inside: PropertyMixer (managed by the mixer)
 +
 +
this._propertyBindings = new Array(nTracks);
 +
this._cacheIndex = null; // for the memory manager
 +
 +
this._byClipCacheIndex = null; // for the memory manager
 +
 +
this._timeScaleInterpolant = null;
 +
this._weightInterpolant = null;
 +
this.loop = LoopRepeat;
 +
this._loopCount = -1; // global mixer time when the action is to be started
 +
// it's set back to 'null' upon start of the action
 +
 +
this._startTime = null; // scaled local time of the action
 +
// gets clamped or wrapped to 0..clip.duration according to loop
 +
 +
this.time = 0;
 +
this.timeScale = 1;
 +
this._effectiveTimeScale = 1;
 +
this.weight = 1;
 +
this._effectiveWeight = 1;
 +
this.repetitions = Infinity; // no. of repetitions when looping
 +
 +
this.paused = false; // true -> zero effective time scale
 +
 +
this.enabled = true; // false -> zero effective weight
 +
 +
this.clampWhenFinished = false; // keep feeding the last frame?
 +
 +
this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate
 +
 +
this.zeroSlopeAtEnd = true; // clips for start, loop and end
 +
} // State & Scheduling
 +
 +
 +
play() {
 +
this._mixer._activateAction(this);
 +
 +
return this;
 +
}
 +
 +
stop() {
 +
this._mixer._deactivateAction(this);
 +
 +
return this.reset();
 +
}
 +
 +
reset() {
 +
this.paused = false;
 +
this.enabled = true;
 +
this.time = 0; // restart clip
 +
 +
this._loopCount = -1; // forget previous loops
 +
 +
this._startTime = null; // forget scheduling
 +
 +
return this.stopFading().stopWarping();
 +
}
 +
 +
isRunning() {
 +
return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this);
 +
} // return true when play has been called
 +
 +
 +
isScheduled() {
 +
return this._mixer._isActiveAction(this);
 +
}
 +
 +
startAt(time) {
 +
this._startTime = time;
 +
return this;
 +
}
 +
 +
setLoop(mode, repetitions) {
 +
this.loop = mode;
 +
this.repetitions = repetitions;
 +
return this;
 +
} // Weight
 +
// set the weight stopping any scheduled fading
 +
// although .enabled = false yields an effective weight of zero, this
 +
// method does *not* change .enabled, because it would be confusing
 +
 +
 +
setEffectiveWeight(weight) {
 +
this.weight = weight; // note: same logic as when updated at runtime
 +
 +
this._effectiveWeight = this.enabled ? weight : 0;
 +
return this.stopFading();
 +
} // return the weight considering fading and .enabled
 +
 +
 +
getEffectiveWeight() {
 +
return this._effectiveWeight;
 +
}
 +
 +
fadeIn(duration) {
 +
return this._scheduleFading(duration, 0, 1);
 +
}
 +
 +
fadeOut(duration) {
 +
return this._scheduleFading(duration, 1, 0);
 +
}
 +
 +
crossFadeFrom(fadeOutAction, duration, warp) {
 +
fadeOutAction.fadeOut(duration);
 +
this.fadeIn(duration);
 +
 +
if (warp) {
 +
const fadeInDuration = this._clip.duration,
 +
fadeOutDuration = fadeOutAction._clip.duration,
 +
startEndRatio = fadeOutDuration / fadeInDuration,
 +
endStartRatio = fadeInDuration / fadeOutDuration;
 +
fadeOutAction.warp(1.0, startEndRatio, duration);
 +
this.warp(endStartRatio, 1.0, duration);
 +
}
 +
 +
return this;
 +
}
 +
 +
crossFadeTo(fadeInAction, duration, warp) {
 +
return fadeInAction.crossFadeFrom(this, duration, warp);
 +
}
 +
 +
stopFading() {
 +
const weightInterpolant = this._weightInterpolant;
 +
 +
if (weightInterpolant !== null) {
 +
this._weightInterpolant = null;
 +
 +
this._mixer._takeBackControlInterpolant(weightInterpolant);
 +
}
 +
 +
return this;
 +
} // Time Scale Control
 +
// set the time scale stopping any scheduled warping
 +
// although .paused = true yields an effective time scale of zero, this
 +
// method does *not* change .paused, because it would be confusing
 +
 +
 +
setEffectiveTimeScale(timeScale) {
 +
this.timeScale = timeScale;
 +
this._effectiveTimeScale = this.paused ? 0 : timeScale;
 +
return this.stopWarping();
 +
} // return the time scale considering warping and .paused
 +
 +
 +
getEffectiveTimeScale() {
 +
return this._effectiveTimeScale;
 +
}
 +
 +
setDuration(duration) {
 +
this.timeScale = this._clip.duration / duration;
 +
return this.stopWarping();
 +
}
 +
 +
syncWith(action) {
 +
this.time = action.time;
 +
this.timeScale = action.timeScale;
 +
return this.stopWarping();
 +
}
 +
 +
halt(duration) {
 +
return this.warp(this._effectiveTimeScale, 0, duration);
 +
}
 +
 +
warp(startTimeScale, endTimeScale, duration) {
 +
const mixer = this._mixer,
 +
now = mixer.time,
 +
timeScale = this.timeScale;
 +
let interpolant = this._timeScaleInterpolant;
 +
 +
if (interpolant === null) {
 +
interpolant = mixer._lendControlInterpolant();
 +
this._timeScaleInterpolant = interpolant;
 +
}
 +
 +
const times = interpolant.parameterPositions,
 +
values = interpolant.sampleValues;
 +
times[0] = now;
 +
times[1] = now + duration;
 +
values[0] = startTimeScale / timeScale;
 +
values[1] = endTimeScale / timeScale;
 +
return this;
 +
}
 +
 +
stopWarping() {
 +
const timeScaleInterpolant = this._timeScaleInterpolant;
 +
 +
if (timeScaleInterpolant !== null) {
 +
this._timeScaleInterpolant = null;
 +
 +
this._mixer._takeBackControlInterpolant(timeScaleInterpolant);
 +
}
 +
 +
return this;
 +
} // Object Accessors
 +
 +
 +
getMixer() {
 +
return this._mixer;
 +
}
 +
 +
getClip() {
 +
return this._clip;
 +
}
 +
 +
getRoot() {
 +
return this._localRoot || this._mixer._root;
 +
} // Interna
 +
 +
 +
_update(time, deltaTime, timeDirection, accuIndex) {
 +
// called by the mixer
 +
if (!this.enabled) {
 +
// call ._updateWeight() to update ._effectiveWeight
 +
this._updateWeight(time);
 +
 +
return;
 +
}
 +
 +
const startTime = this._startTime;
 +
 +
if (startTime !== null) {
 +
// check for scheduled start of action
 +
const timeRunning = (time - startTime) * timeDirection;
 +
 +
if (timeRunning < 0 || timeDirection === 0) {
 +
return; // yet to come / don't decide when delta = 0
 +
} // start
 +
 +
 +
this._startTime = null; // unschedule
 +
 +
deltaTime = timeDirection * timeRunning;
 +
} // apply time scale and advance time
 +
 +
 +
deltaTime *= this._updateTimeScale(time);
 +
 +
const clipTime = this._updateTime(deltaTime); // note: _updateTime may disable the action resulting in
 +
// an effective weight of 0
 +
 +
 +
const weight = this._updateWeight(time);
 +
 +
if (weight > 0) {
 +
const interpolants = this._interpolants;
 +
const propertyMixers = this._propertyBindings;
 +
 +
switch (this.blendMode) {
 +
case AdditiveAnimationBlendMode:
 +
for (let j = 0, m = interpolants.length; j !== m; ++j) {
 +
interpolants[j].evaluate(clipTime);
 +
propertyMixers[j].accumulateAdditive(weight);
 +
}
 +
 +
break;
 +
 +
case NormalAnimationBlendMode:
 +
default:
 +
for (let j = 0, m = interpolants.length; j !== m; ++j) {
 +
interpolants[j].evaluate(clipTime);
 +
propertyMixers[j].accumulate(accuIndex, weight);
 +
}
 +
 +
}
 +
}
 +
}
 +
 +
_updateWeight(time) {
 +
let weight = 0;
 +
 +
if (this.enabled) {
 +
weight = this.weight;
 +
const interpolant = this._weightInterpolant;
 +
 +
if (interpolant !== null) {
 +
const interpolantValue = interpolant.evaluate(time)[0];
 +
weight *= interpolantValue;
 +
 +
if (time > interpolant.parameterPositions[1]) {
 +
this.stopFading();
 +
 +
if (interpolantValue === 0) {
 +
// faded out, disable
 +
this.enabled = false;
 +
}
 +
}
 +
}
 +
}
 +
 +
this._effectiveWeight = weight;
 +
return weight;
 +
}
 +
 +
_updateTimeScale(time) {
 +
let timeScale = 0;
 +
 +
if (!this.paused) {
 +
timeScale = this.timeScale;
 +
const interpolant = this._timeScaleInterpolant;
 +
 +
if (interpolant !== null) {
 +
const interpolantValue = interpolant.evaluate(time)[0];
 +
timeScale *= interpolantValue;
 +
 +
if (time > interpolant.parameterPositions[1]) {
 +
this.stopWarping();
 +
 +
if (timeScale === 0) {
 +
// motion has halted, pause
 +
this.paused = true;
 +
} else {
 +
// warp done - apply final time scale
 +
this.timeScale = timeScale;
 +
}
 +
}
 +
}
 +
}
 +
 +
this._effectiveTimeScale = timeScale;
 +
return timeScale;
 +
}
 +
 +
_updateTime(deltaTime) {
 +
const duration = this._clip.duration;
 +
const loop = this.loop;
 +
let time = this.time + deltaTime;
 +
let loopCount = this._loopCount;
 +
const pingPong = loop === LoopPingPong;
 +
 +
if (deltaTime === 0) {
 +
if (loopCount === -1) return time;
 +
return pingPong && (loopCount & 1) === 1 ? duration - time : time;
 +
}
 +
 +
if (loop === LoopOnce) {
 +
if (loopCount === -1) {
 +
// just started
 +
this._loopCount = 0;
 +
 +
this._setEndings(true, true, false);
 +
}
 +
 +
handle_stop: {
 +
if (time >= duration) {
 +
time = duration;
 +
} else if (time < 0) {
 +
time = 0;
 +
} else {
 +
this.time = time;
 +
break handle_stop;
 +
}
 +
 +
if (this.clampWhenFinished) this.paused = true;else this.enabled = false;
 +
this.time = time;
 +
 +
this._mixer.dispatchEvent({
 +
type: 'finished',
 +
action: this,
 +
direction: deltaTime < 0 ? -1 : 1
 +
});
 +
}
 +
} else {
 +
// repetitive Repeat or PingPong
 +
if (loopCount === -1) {
 +
// just started
 +
if (deltaTime >= 0) {
 +
loopCount = 0;
 +
 +
this._setEndings(true, this.repetitions === 0, pingPong);
 +
} else {
 +
// when looping in reverse direction, the initial
 +
// transition through zero counts as a repetition,
 +
// so leave loopCount at -1
 +
this._setEndings(this.repetitions === 0, true, pingPong);
 +
}
 +
}
 +
 +
if (time >= duration || time < 0) {
 +
// wrap around
 +
const loopDelta = Math.floor(time / duration); // signed
 +
 +
time -= duration * loopDelta;
 +
loopCount += Math.abs(loopDelta);
 +
const pending = this.repetitions - loopCount;
 +
 +
if (pending <= 0) {
 +
// have to stop (switch state, clamp time, fire event)
 +
if (this.clampWhenFinished) this.paused = true;else this.enabled = false;
 +
time = deltaTime > 0 ? duration : 0;
 +
this.time = time;
 +
 +
this._mixer.dispatchEvent({
 +
type: 'finished',
 +
action: this,
 +
direction: deltaTime > 0 ? 1 : -1
 +
});
 +
} else {
 +
// keep running
 +
if (pending === 1) {
 +
// entering the last round
 +
const atStart = deltaTime < 0;
 +
 +
this._setEndings(atStart, !atStart, pingPong);
 +
} else {
 +
this._setEndings(false, false, pingPong);
 +
}
 +
 +
this._loopCount = loopCount;
 +
this.time = time;
 +
 +
this._mixer.dispatchEvent({
 +
type: 'loop',
 +
action: this,
 +
loopDelta: loopDelta
 +
});
 +
}
 +
} else {
 +
this.time = time;
 +
}
 +
 +
if (pingPong && (loopCount & 1) === 1) {
 +
// invert time for the "pong round"
 +
return duration - time;
 +
}
 +
}
 +
 +
return time;
 +
}
 +
 +
_setEndings(atStart, atEnd, pingPong) {
 +
const settings = this._interpolantSettings;
 +
 +
if (pingPong) {
 +
settings.endingStart = ZeroSlopeEnding;
 +
settings.endingEnd = ZeroSlopeEnding;
 +
} else {
 +
// assuming for LoopOnce atStart == atEnd == true
 +
if (atStart) {
 +
settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;
 +
} else {
 +
settings.endingStart = WrapAroundEnding;
 +
}
 +
 +
if (atEnd) {
 +
settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;
 +
} else {
 +
settings.endingEnd = WrapAroundEnding;
 +
}
 +
}
 +
}
 +
 +
_scheduleFading(duration, weightNow, weightThen) {
 +
const mixer = this._mixer,
 +
now = mixer.time;
 +
let interpolant = this._weightInterpolant;
 +
 +
if (interpolant === null) {
 +
interpolant = mixer._lendControlInterpolant();
 +
this._weightInterpolant = interpolant;
 +
}
 +
 +
const times = interpolant.parameterPositions,
 +
values = interpolant.sampleValues;
 +
times[0] = now;
 +
values[0] = weightNow;
 +
times[1] = now + duration;
 +
values[1] = weightThen;
 +
return this;
 +
}
 +
 +
}
 +
 +
class AnimationMixer extends EventDispatcher {
 +
constructor(root) {
 +
super();
 +
this._root = root;
 +
 +
this._initMemoryManager();
 +
 +
this._accuIndex = 0;
 +
this.time = 0;
 +
this.timeScale = 1.0;
 +
}
 +
 +
_bindAction(action, prototypeAction) {
 +
const root = action._localRoot || this._root,
 +
tracks = action._clip.tracks,
 +
nTracks = tracks.length,
 +
bindings = action._propertyBindings,
 +
interpolants = action._interpolants,
 +
rootUuid = root.uuid,
 +
bindingsByRoot = this._bindingsByRootAndName;
 +
let bindingsByName = bindingsByRoot[rootUuid];
 +
 +
if (bindingsByName === undefined) {
 +
bindingsByName = {};
 +
bindingsByRoot[rootUuid] = bindingsByName;
 +
}
 +
 +
for (let i = 0; i !== nTracks; ++i) {
 +
const track = tracks[i],
 +
trackName = track.name;
 +
let binding = bindingsByName[trackName];
 +
 +
if (binding !== undefined) {
 +
bindings[i] = binding;
 +
} else {
 +
binding = bindings[i];
 +
 +
if (binding !== undefined) {
 +
// existing binding, make sure the cache knows
 +
if (binding._cacheIndex === null) {
 +
++binding.referenceCount;
 +
 +
this._addInactiveBinding(binding, rootUuid, trackName);
 +
}
 +
 +
continue;
 +
}
 +
 +
const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath;
 +
binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize());
 +
++binding.referenceCount;
 +
 +
this._addInactiveBinding(binding, rootUuid, trackName);
 +
 +
bindings[i] = binding;
 +
}
 +
 +
interpolants[i].resultBuffer = binding.buffer;
 +
}
 +
}
 +
 +
_activateAction(action) {
 +
if (!this._isActiveAction(action)) {
 +
if (action._cacheIndex === null) {
 +
// this action has been forgotten by the cache, but the user
 +
// appears to be still using it -> rebind
 +
const rootUuid = (action._localRoot || this._root).uuid,
 +
clipUuid = action._clip.uuid,
 +
actionsForClip = this._actionsByClip[clipUuid];
 +
 +
this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]);
 +
 +
this._addInactiveAction(action, clipUuid, rootUuid);
 +
}
 +
 +
const bindings = action._propertyBindings; // increment reference counts / sort out state
 +
 +
for (let i = 0, n = bindings.length; i !== n; ++i) {
 +
const binding = bindings[i];
 +
 +
if (binding.useCount++ === 0) {
 +
this._lendBinding(binding);
 +
 +
binding.saveOriginalState();
 +
}
 +
}
 +
 +
this._lendAction(action);
 +
}
 +
}
 +
 +
_deactivateAction(action) {
 +
if (this._isActiveAction(action)) {
 +
const bindings = action._propertyBindings; // decrement reference counts / sort out state
 +
 +
for (let i = 0, n = bindings.length; i !== n; ++i) {
 +
const binding = bindings[i];
 +
 +
if (--binding.useCount === 0) {
 +
binding.restoreOriginalState();
 +
 +
this._takeBackBinding(binding);
 +
}
 +
}
 +
 +
this._takeBackAction(action);
 +
}
 +
} // Memory manager
 +
 +
 +
_initMemoryManager() {
 +
this._actions = []; // 'nActiveActions' followed by inactive ones
 +
 +
this._nActiveActions = 0;
 +
this._actionsByClip = {}; // inside:
 +
// {
 +
// knownActions: Array< AnimationAction > - used as prototypes
 +
// actionByRoot: AnimationAction - lookup
 +
// }
 +
 +
this._bindings = []; // 'nActiveBindings' followed by inactive ones
 +
 +
this._nActiveBindings = 0;
 +
this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
 +
 +
this._controlInterpolants = []; // same game as above
 +
 +
this._nActiveControlInterpolants = 0;
 +
const scope = this;
 +
this.stats = {
 +
actions: {
 +
get total() {
 +
return scope._actions.length;
 +
},
 +
 +
get inUse() {
 +
return scope._nActiveActions;
 +
}
 +
 +
},
 +
bindings: {
 +
get total() {
 +
return scope._bindings.length;
 +
},
 +
 +
get inUse() {
 +
return scope._nActiveBindings;
 +
}
 +
 +
},
 +
controlInterpolants: {
 +
get total() {
 +
return scope._controlInterpolants.length;
 +
},
 +
 +
get inUse() {
 +
return scope._nActiveControlInterpolants;
 +
}
 +
 +
}
 +
};
 +
} // Memory management for AnimationAction objects
 +
 +
 +
_isActiveAction(action) {
 +
const index = action._cacheIndex;
 +
return index !== null && index < this._nActiveActions;
 +
}
 +
 +
_addInactiveAction(action, clipUuid, rootUuid) {
 +
const actions = this._actions,
 +
actionsByClip = this._actionsByClip;
 +
let actionsForClip = actionsByClip[clipUuid];
 +
 +
if (actionsForClip === undefined) {
 +
actionsForClip = {
 +
knownActions: [action],
 +
actionByRoot: {}
 +
};
 +
action._byClipCacheIndex = 0;
 +
actionsByClip[clipUuid] = actionsForClip;
 +
} else {
 +
const knownActions = actionsForClip.knownActions;
 +
action._byClipCacheIndex = knownActions.length;
 +
knownActions.push(action);
 +
}
 +
 +
action._cacheIndex = actions.length;
 +
actions.push(action);
 +
actionsForClip.actionByRoot[rootUuid] = action;
 +
}
 +
 +
_removeInactiveAction(action) {
 +
const actions = this._actions,
 +
lastInactiveAction = actions[actions.length - 1],
 +
cacheIndex = action._cacheIndex;
 +
lastInactiveAction._cacheIndex = cacheIndex;
 +
actions[cacheIndex] = lastInactiveAction;
 +
actions.pop();
 +
action._cacheIndex = null;
 +
const clipUuid = action._clip.uuid,
 +
actionsByClip = this._actionsByClip,
 +
actionsForClip = actionsByClip[clipUuid],
 +
knownActionsForClip = actionsForClip.knownActions,
 +
lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1],
 +
byClipCacheIndex = action._byClipCacheIndex;
 +
lastKnownAction._byClipCacheIndex = byClipCacheIndex;
 +
knownActionsForClip[byClipCacheIndex] = lastKnownAction;
 +
knownActionsForClip.pop();
 +
action._byClipCacheIndex = null;
 +
const actionByRoot = actionsForClip.actionByRoot,
 +
rootUuid = (action._localRoot || this._root).uuid;
 +
delete actionByRoot[rootUuid];
 +
 +
if (knownActionsForClip.length === 0) {
 +
delete actionsByClip[clipUuid];
 +
}
 +
 +
this._removeInactiveBindingsForAction(action);
 +
}
 +
 +
_removeInactiveBindingsForAction(action) {
 +
const bindings = action._propertyBindings;
 +
 +
for (let i = 0, n = bindings.length; i !== n; ++i) {
 +
const binding = bindings[i];
 +
 +
if (--binding.referenceCount === 0) {
 +
this._removeInactiveBinding(binding);
 +
}
 +
}
 +
}
 +
 +
_lendAction(action) {
 +
// [ active actions | inactive actions ]
 +
// [ active actions >| inactive actions ]
 +
// s a
 +
// <-swap->
 +
// a s
 +
const actions = this._actions,
 +
prevIndex = action._cacheIndex,
 +
lastActiveIndex = this._nActiveActions++,
 +
firstInactiveAction = actions[lastActiveIndex];
 +
action._cacheIndex = lastActiveIndex;
 +
actions[lastActiveIndex] = action;
 +
firstInactiveAction._cacheIndex = prevIndex;
 +
actions[prevIndex] = firstInactiveAction;
 +
}
 +
 +
_takeBackAction(action) {
 +
// [ active actions | inactive actions ]
 +
// [ active actions |< inactive actions ]
 +
// a s
 +
// <-swap->
 +
// s a
 +
const actions = this._actions,
 +
prevIndex = action._cacheIndex,
 +
firstInactiveIndex = --this._nActiveActions,
 +
lastActiveAction = actions[firstInactiveIndex];
 +
action._cacheIndex = firstInactiveIndex;
 +
actions[firstInactiveIndex] = action;
 +
lastActiveAction._cacheIndex = prevIndex;
 +
actions[prevIndex] = lastActiveAction;
 +
} // Memory management for PropertyMixer objects
 +
 +
 +
_addInactiveBinding(binding, rootUuid, trackName) {
 +
const bindingsByRoot = this._bindingsByRootAndName,
 +
bindings = this._bindings;
 +
let bindingByName = bindingsByRoot[rootUuid];
 +
 +
if (bindingByName === undefined) {
 +
bindingByName = {};
 +
bindingsByRoot[rootUuid] = bindingByName;
 +
}
 +
 +
bindingByName[trackName] = binding;
 +
binding._cacheIndex = bindings.length;
 +
bindings.push(binding);
 +
}
 +
 +
_removeInactiveBinding(binding) {
 +
const bindings = this._bindings,
 +
propBinding = binding.binding,
 +
rootUuid = propBinding.rootNode.uuid,
 +
trackName = propBinding.path,
 +
bindingsByRoot = this._bindingsByRootAndName,
 +
bindingByName = bindingsByRoot[rootUuid],
 +
lastInactiveBinding = bindings[bindings.length - 1],
 +
cacheIndex = binding._cacheIndex;
 +
lastInactiveBinding._cacheIndex = cacheIndex;
 +
bindings[cacheIndex] = lastInactiveBinding;
 +
bindings.pop();
 +
delete bindingByName[trackName];
 +
 +
if (Object.keys(bindingByName).length === 0) {
 +
delete bindingsByRoot[rootUuid];
 +
}
 +
}
 +
 +
_lendBinding(binding) {
 +
const bindings = this._bindings,
 +
prevIndex = binding._cacheIndex,
 +
lastActiveIndex = this._nActiveBindings++,
 +
firstInactiveBinding = bindings[lastActiveIndex];
 +
binding._cacheIndex = lastActiveIndex;
 +
bindings[lastActiveIndex] = binding;
 +
firstInactiveBinding._cacheIndex = prevIndex;
 +
bindings[prevIndex] = firstInactiveBinding;
 +
}
 +
 +
_takeBackBinding(binding) {
 +
const bindings = this._bindings,
 +
prevIndex = binding._cacheIndex,
 +
firstInactiveIndex = --this._nActiveBindings,
 +
lastActiveBinding = bindings[firstInactiveIndex];
 +
binding._cacheIndex = firstInactiveIndex;
 +
bindings[firstInactiveIndex] = binding;
 +
lastActiveBinding._cacheIndex = prevIndex;
 +
bindings[prevIndex] = lastActiveBinding;
 +
} // Memory management of Interpolants for weight and time scale
 +
 +
 +
_lendControlInterpolant() {
 +
const interpolants = this._controlInterpolants,
 +
lastActiveIndex = this._nActiveControlInterpolants++;
 +
let interpolant = interpolants[lastActiveIndex];
 +
 +
if (interpolant === undefined) {
 +
interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer);
 +
interpolant.__cacheIndex = lastActiveIndex;
 +
interpolants[lastActiveIndex] = interpolant;
 +
}
 +
 +
return interpolant;
 +
}
 +
 +
_takeBackControlInterpolant(interpolant) {
 +
const interpolants = this._controlInterpolants,
 +
prevIndex = interpolant.__cacheIndex,
 +
firstInactiveIndex = --this._nActiveControlInterpolants,
 +
lastActiveInterpolant = interpolants[firstInactiveIndex];
 +
interpolant.__cacheIndex = firstInactiveIndex;
 +
interpolants[firstInactiveIndex] = interpolant;
 +
lastActiveInterpolant.__cacheIndex = prevIndex;
 +
interpolants[prevIndex] = lastActiveInterpolant;
 +
} // return an action for a clip optionally using a custom root target
 +
// object (this method allocates a lot of dynamic memory in case a
 +
// previously unknown clip/root combination is specified)
 +
 +
 +
clipAction(clip, optionalRoot, blendMode) {
 +
const root = optionalRoot || this._root,
 +
rootUuid = root.uuid;
 +
let clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip;
 +
const clipUuid = clipObject !== null ? clipObject.uuid : clip;
 +
const actionsForClip = this._actionsByClip[clipUuid];
 +
let prototypeAction = null;
 +
 +
if (blendMode === undefined) {
 +
if (clipObject !== null) {
 +
blendMode = clipObject.blendMode;
 +
} else {
 +
blendMode = NormalAnimationBlendMode;
 +
}
 +
}
 +
 +
if (actionsForClip !== undefined) {
 +
const existingAction = actionsForClip.actionByRoot[rootUuid];
 +
 +
if (existingAction !== undefined && existingAction.blendMode === blendMode) {
 +
return existingAction;
 +
} // we know the clip, so we don't have to parse all
 +
// the bindings again but can just copy
 +
 +
 +
prototypeAction = actionsForClip.knownActions[0]; // also, take the clip from the prototype action
 +
 +
if (clipObject === null) clipObject = prototypeAction._clip;
 +
} // clip must be known when specified via string
 +
 +
 +
if (clipObject === null) return null; // allocate all resources required to run it
 +
 +
const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode);
 +
 +
this._bindAction(newAction, prototypeAction); // and make the action known to the memory manager
 +
 +
 +
this._addInactiveAction(newAction, clipUuid, rootUuid);
 +
 +
return newAction;
 +
} // get an existing action
 +
 +
 +
existingAction(clip, optionalRoot) {
 +
const root = optionalRoot || this._root,
 +
rootUuid = root.uuid,
 +
clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip,
 +
clipUuid = clipObject ? clipObject.uuid : clip,
 +
actionsForClip = this._actionsByClip[clipUuid];
 +
 +
if (actionsForClip !== undefined) {
 +
return actionsForClip.actionByRoot[rootUuid] || null;
 +
}
 +
 +
return null;
 +
} // deactivates all previously scheduled actions
 +
 +
 +
stopAllAction() {
 +
const actions = this._actions,
 +
nActions = this._nActiveActions;
 +
 +
for (let i = nActions - 1; i >= 0; --i) {
 +
actions[i].stop();
 +
}
 +
 +
return this;
 +
} // advance the time and update apply the animation
 +
 +
 +
update(deltaTime) {
 +
deltaTime *= this.timeScale;
 +
const actions = this._actions,
 +
nActions = this._nActiveActions,
 +
time = this.time += deltaTime,
 +
timeDirection = Math.sign(deltaTime),
 +
accuIndex = this._accuIndex ^= 1; // run active actions
 +
 +
for (let i = 0; i !== nActions; ++i) {
 +
const action = actions[i];
 +
 +
action._update(time, deltaTime, timeDirection, accuIndex);
 +
} // update scene graph
 +
 +
 +
const bindings = this._bindings,
 +
nBindings = this._nActiveBindings;
 +
 +
for (let i = 0; i !== nBindings; ++i) {
 +
bindings[i].apply(accuIndex);
 +
}
 +
 +
return this;
 +
} // Allows you to seek to a specific time in an animation.
 +
 +
 +
setTime(timeInSeconds) {
 +
this.time = 0; // Zero out time attribute for AnimationMixer object;
 +
 +
for (let i = 0; i < this._actions.length; i++) {
 +
this._actions[i].time = 0; // Zero out time attribute for all associated AnimationAction objects.
 +
}
 +
 +
return this.update(timeInSeconds); // Update used to set exact time. Returns "this" AnimationMixer object.
 +
} // return this mixer's root target object
 +
 +
 +
getRoot() {
 +
return this._root;
 +
} // free all resources specific to a particular clip
 +
 +
 +
uncacheClip(clip) {
 +
const actions = this._actions,
 +
clipUuid = clip.uuid,
 +
actionsByClip = this._actionsByClip,
 +
actionsForClip = actionsByClip[clipUuid];
 +
 +
if (actionsForClip !== undefined) {
 +
// note: just calling _removeInactiveAction would mess up the
 +
// iteration state and also require updating the state we can
 +
// just throw away
 +
const actionsToRemove = actionsForClip.knownActions;
 +
 +
for (let i = 0, n = actionsToRemove.length; i !== n; ++i) {
 +
const action = actionsToRemove[i];
 +
 +
this._deactivateAction(action);
 +
 +
const cacheIndex = action._cacheIndex,
 +
lastInactiveAction = actions[actions.length - 1];
 +
action._cacheIndex = null;
 +
action._byClipCacheIndex = null;
 +
lastInactiveAction._cacheIndex = cacheIndex;
 +
actions[cacheIndex] = lastInactiveAction;
 +
actions.pop();
 +
 +
this._removeInactiveBindingsForAction(action);
 +
}
 +
 +
delete actionsByClip[clipUuid];
 +
}
 +
} // free all resources specific to a particular root target object
 +
 +
 +
uncacheRoot(root) {
 +
const rootUuid = root.uuid,
 +
actionsByClip = this._actionsByClip;
 +
 +
for (const clipUuid in actionsByClip) {
 +
const actionByRoot = actionsByClip[clipUuid].actionByRoot,
 +
action = actionByRoot[rootUuid];
 +
 +
if (action !== undefined) {
 +
this._deactivateAction(action);
 +
 +
this._removeInactiveAction(action);
 +
}
 +
}
 +
 +
const bindingsByRoot = this._bindingsByRootAndName,
 +
bindingByName = bindingsByRoot[rootUuid];
 +
 +
if (bindingByName !== undefined) {
 +
for (const trackName in bindingByName) {
 +
const binding = bindingByName[trackName];
 +
binding.restoreOriginalState();
 +
 +
this._removeInactiveBinding(binding);
 +
}
 +
}
 +
} // remove a targeted clip from the cache
 +
 +
 +
uncacheAction(clip, optionalRoot) {
 +
const action = this.existingAction(clip, optionalRoot);
 +
 +
if (action !== null) {
 +
this._deactivateAction(action);
 +
 +
this._removeInactiveAction(action);
 +
}
 +
}
 +
 +
}
 +
 +
AnimationMixer.prototype._controlInterpolantsResultBuffer = new Float32Array(1);
 +
 +
class Uniform {
 +
constructor(value) {
 +
if (typeof value === 'string') {
 +
console.warn('THREE.Uniform: Type parameter is no longer needed.');
 +
value = arguments[1];
 +
}
 +
 +
this.value = value;
 +
}
 +
 +
clone() {
 +
return new Uniform(this.value.clone === undefined ? this.value : this.value.clone());
 +
}
 +
 +
}
 +
 +
class InstancedInterleavedBuffer extends InterleavedBuffer {
 +
constructor(array, stride, meshPerAttribute = 1) {
 +
super(array, stride);
 +
this.meshPerAttribute = meshPerAttribute;
 +
}
 +
 +
copy(source) {
 +
super.copy(source);
 +
this.meshPerAttribute = source.meshPerAttribute;
 +
return this;
 +
}
 +
 +
clone(data) {
 +
const ib = super.clone(data);
 +
ib.meshPerAttribute = this.meshPerAttribute;
 +
return ib;
 +
}
 +
 +
toJSON(data) {
 +
const json = super.toJSON(data);
 +
json.isInstancedInterleavedBuffer = true;
 +
json.meshPerAttribute = this.meshPerAttribute;
 +
return json;
 +
}
 +
 +
}
 +
 +
InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true;
 +
 +
class GLBufferAttribute {
 +
constructor(buffer, type, itemSize, elementSize, count) {
 +
this.buffer = buffer;
 +
this.type = type;
 +
this.itemSize = itemSize;
 +
this.elementSize = elementSize;
 +
this.count = count;
 +
this.version = 0;
 +
}
 +
 +
set needsUpdate(value) {
 +
if (value === true) this.version++;
 +
}
 +
 +
setBuffer(buffer) {
 +
this.buffer = buffer;
 +
return this;
 +
}
 +
 +
setType(type, elementSize) {
 +
this.type = type;
 +
this.elementSize = elementSize;
 +
return this;
 +
}
 +
 +
setItemSize(itemSize) {
 +
this.itemSize = itemSize;
 +
return this;
 +
}
 +
 +
setCount(count) {
 +
this.count = count;
 +
return this;
 +
}
 +
 +
}
 +
 +
GLBufferAttribute.prototype.isGLBufferAttribute = true;
 +
 +
class Raycaster {
 +
constructor(origin, direction, near = 0, far = Infinity) {
 +
this.ray = new Ray(origin, direction); // direction is assumed to be normalized (for accurate distance calculations)
 +
 +
this.near = near;
 +
this.far = far;
 +
this.camera = null;
 +
this.layers = new Layers();
 +
this.params = {
 +
Mesh: {},
 +
Line: {
 +
threshold: 1
 +
},
 +
LOD: {},
 +
Points: {
 +
threshold: 1
 +
},
 +
Sprite: {}
 +
};
 +
}
 +
 +
set(origin, direction) {
 +
// direction is assumed to be normalized (for accurate distance calculations)
 +
this.ray.set(origin, direction);
 +
}
 +
 +
setFromCamera(coords, camera) {
 +
if (camera && camera.isPerspectiveCamera) {
 +
this.ray.origin.setFromMatrixPosition(camera.matrixWorld);
 +
this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize();
 +
this.camera = camera;
 +
} else if (camera && camera.isOrthographicCamera) {
 +
this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); // set origin in plane of camera
 +
 +
this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld);
 +
this.camera = camera;
 +
} else {
 +
console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type);
 +
}
 +
}
 +
 +
intersectObject(object, recursive = false, intersects = []) {
 +
intersectObject(object, this, intersects, recursive);
 +
intersects.sort(ascSort);
 +
return intersects;
 +
}
 +
 +
intersectObjects(objects, recursive = false, intersects = []) {
 +
for (let i = 0, l = objects.length; i < l; i++) {
 +
intersectObject(objects[i], this, intersects, recursive);
 +
}
 +
 +
intersects.sort(ascSort);
 +
return intersects;
 +
}
 +
 +
}
 +
 +
function ascSort(a, b) {
 +
return a.distance - b.distance;
 +
}
 +
 +
function intersectObject(object, raycaster, intersects, recursive) {
 +
if (object.layers.test(raycaster.layers)) {
 +
object.raycast(raycaster, intersects);
 +
}
 +
 +
if (recursive === true) {
 +
const children = object.children;
 +
 +
for (let i = 0, l = children.length; i < l; i++) {
 +
intersectObject(children[i], raycaster, intersects, true);
 +
}
 +
}
 +
}
 +
 +
/**
 +
* Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
 +
*
 +
* The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up.
 +
* The azimuthal angle (theta) is measured from the positive z-axis.
 +
*/
 +
 +
class Spherical {
 +
constructor(radius = 1, phi = 0, theta = 0) {
 +
this.radius = radius;
 +
this.phi = phi; // polar angle
 +
 +
this.theta = theta; // azimuthal angle
 +
 +
return this;
 +
}
 +
 +
set(radius, phi, theta) {
 +
this.radius = radius;
 +
this.phi = phi;
 +
this.theta = theta;
 +
return this;
 +
}
 +
 +
copy(other) {
 +
this.radius = other.radius;
 +
this.phi = other.phi;
 +
this.theta = other.theta;
 +
return this;
 +
} // restrict phi to be betwee EPS and PI-EPS
 +
 +
 +
makeSafe() {
 +
const EPS = 0.000001;
 +
this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi));
 +
return this;
 +
}
 +
 +
setFromVector3(v) {
 +
return this.setFromCartesianCoords(v.x, v.y, v.z);
 +
}
 +
 +
setFromCartesianCoords(x, y, z) {
 +
this.radius = Math.sqrt(x * x + y * y + z * z);
 +
 +
if (this.radius === 0) {
 +
this.theta = 0;
 +
this.phi = 0;
 +
} else {
 +
this.theta = Math.atan2(x, z);
 +
this.phi = Math.acos(clamp(y / this.radius, -1, 1));
 +
}
 +
 +
return this;
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
}
 +
 +
/**
 +
* Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
 +
*/
 +
class Cylindrical {
 +
constructor(radius = 1, theta = 0, y = 0) {
 +
this.radius = radius; // distance from the origin to a point in the x-z plane
 +
 +
this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
 +
 +
this.y = y; // height above the x-z plane
 +
 +
return this;
 +
}
 +
 +
set(radius, theta, y) {
 +
this.radius = radius;
 +
this.theta = theta;
 +
this.y = y;
 +
return this;
 +
}
 +
 +
copy(other) {
 +
this.radius = other.radius;
 +
this.theta = other.theta;
 +
this.y = other.y;
 +
return this;
 +
}
 +
 +
setFromVector3(v) {
 +
return this.setFromCartesianCoords(v.x, v.y, v.z);
 +
}
 +
 +
setFromCartesianCoords(x, y, z) {
 +
this.radius = Math.sqrt(x * x + z * z);
 +
this.theta = Math.atan2(x, z);
 +
this.y = y;
 +
return this;
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
}
 +
 +
const _vector$4 = /*@__PURE__*/new Vector2();
 +
 +
class Box2 {
 +
constructor(min = new Vector2(+Infinity, +Infinity), max = new Vector2(-Infinity, -Infinity)) {
 +
this.min = min;
 +
this.max = max;
 +
}
 +
 +
set(min, max) {
 +
this.min.copy(min);
 +
this.max.copy(max);
 +
return this;
 +
}
 +
 +
setFromPoints(points) {
 +
this.makeEmpty();
 +
 +
for (let i = 0, il = points.length; i < il; i++) {
 +
this.expandByPoint(points[i]);
 +
}
 +
 +
return this;
 +
}
 +
 +
setFromCenterAndSize(center, size) {
 +
const halfSize = _vector$4.copy(size).multiplyScalar(0.5);
 +
 +
this.min.copy(center).sub(halfSize);
 +
this.max.copy(center).add(halfSize);
 +
return this;
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
copy(box) {
 +
this.min.copy(box.min);
 +
this.max.copy(box.max);
 +
return this;
 +
}
 +
 +
makeEmpty() {
 +
this.min.x = this.min.y = +Infinity;
 +
this.max.x = this.max.y = -Infinity;
 +
return this;
 +
}
 +
 +
isEmpty() {
 +
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
 +
return this.max.x < this.min.x || this.max.y < this.min.y;
 +
}
 +
 +
getCenter(target) {
 +
return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
 +
}
 +
 +
getSize(target) {
 +
return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min);
 +
}
 +
 +
expandByPoint(point) {
 +
this.min.min(point);
 +
this.max.max(point);
 +
return this;
 +
}
 +
 +
expandByVector(vector) {
 +
this.min.sub(vector);
 +
this.max.add(vector);
 +
return this;
 +
}
 +
 +
expandByScalar(scalar) {
 +
this.min.addScalar(-scalar);
 +
this.max.addScalar(scalar);
 +
return this;
 +
}
 +
 +
containsPoint(point) {
 +
return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true;
 +
}
 +
 +
containsBox(box) {
 +
return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y;
 +
}
 +
 +
getParameter(point, target) {
 +
// This can potentially have a divide by zero if the box
 +
// has a size dimension of 0.
 +
return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y));
 +
}
 +
 +
intersectsBox(box) {
 +
// using 4 splitting planes to rule out intersections
 +
return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true;
 +
}
 +
 +
clampPoint(point, target) {
 +
return target.copy(point).clamp(this.min, this.max);
 +
}
 +
 +
distanceToPoint(point) {
 +
const clampedPoint = _vector$4.copy(point).clamp(this.min, this.max);
 +
 +
return clampedPoint.sub(point).length();
 +
}
 +
 +
intersect(box) {
 +
this.min.max(box.min);
 +
this.max.min(box.max);
 +
return this;
 +
}
 +
 +
union(box) {
 +
this.min.min(box.min);
 +
this.max.max(box.max);
 +
return this;
 +
}
 +
 +
translate(offset) {
 +
this.min.add(offset);
 +
this.max.add(offset);
 +
return this;
 +
}
 +
 +
equals(box) {
 +
return box.min.equals(this.min) && box.max.equals(this.max);
 +
}
 +
 +
}
 +
 +
Box2.prototype.isBox2 = true;
 +
 +
const _startP = /*@__PURE__*/new Vector3();
 +
 +
const _startEnd = /*@__PURE__*/new Vector3();
 +
 +
class Line3 {
 +
constructor(start = new Vector3(), end = new Vector3()) {
 +
this.start = start;
 +
this.end = end;
 +
}
 +
 +
set(start, end) {
 +
this.start.copy(start);
 +
this.end.copy(end);
 +
return this;
 +
}
 +
 +
copy(line) {
 +
this.start.copy(line.start);
 +
this.end.copy(line.end);
 +
return this;
 +
}
 +
 +
getCenter(target) {
 +
return target.addVectors(this.start, this.end).multiplyScalar(0.5);
 +
}
 +
 +
delta(target) {
 +
return target.subVectors(this.end, this.start);
 +
}
 +
 +
distanceSq() {
 +
return this.start.distanceToSquared(this.end);
 +
}
 +
 +
distance() {
 +
return this.start.distanceTo(this.end);
 +
}
 +
 +
at(t, target) {
 +
return this.delta(target).multiplyScalar(t).add(this.start);
 +
}
 +
 +
closestPointToPointParameter(point, clampToLine) {
 +
_startP.subVectors(point, this.start);
 +
 +
_startEnd.subVectors(this.end, this.start);
 +
 +
const startEnd2 = _startEnd.dot(_startEnd);
 +
 +
const startEnd_startP = _startEnd.dot(_startP);
 +
 +
let t = startEnd_startP / startEnd2;
 +
 +
if (clampToLine) {
 +
t = clamp(t, 0, 1);
 +
}
 +
 +
return t;
 +
}
 +
 +
closestPointToPoint(point, clampToLine, target) {
 +
const t = this.closestPointToPointParameter(point, clampToLine);
 +
return this.delta(target).multiplyScalar(t).add(this.start);
 +
}
 +
 +
applyMatrix4(matrix) {
 +
this.start.applyMatrix4(matrix);
 +
this.end.applyMatrix4(matrix);
 +
return this;
 +
}
 +
 +
equals(line) {
 +
return line.start.equals(this.start) && line.end.equals(this.end);
 +
}
 +
 +
clone() {
 +
return new this.constructor().copy(this);
 +
}
 +
 +
}
 +
 +
class ImmediateRenderObject extends Object3D {
 +
constructor(material) {
 +
super();
 +
this.material = material;
 +
 +
this.render = function ()
 +
/* renderCallback */
 +
{};
 +
 +
this.hasPositions = false;
 +
this.hasNormals = false;
 +
this.hasColors = false;
 +
this.hasUvs = false;
 +
this.positionArray = null;
 +
this.normalArray = null;
 +
this.colorArray = null;
 +
this.uvArray = null;
 +
this.count = 0;
 +
}
 +
 +
}
 +
 +
ImmediateRenderObject.prototype.isImmediateRenderObject = true;
 +
 +
const _vector$3 = /*@__PURE__*/new Vector3();
 +
 +
class SpotLightHelper extends Object3D {
 +
constructor(light, color) {
 +
super();
 +
this.light = light;
 +
this.light.updateMatrixWorld();
 +
this.matrix = light.matrixWorld;
 +
this.matrixAutoUpdate = false;
 +
this.color = color;
 +
const geometry = new BufferGeometry();
 +
const positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1];
 +
 +
for (let i = 0, j = 1, l = 32; i < l; i++, j++) {
 +
const p1 = i / l * Math.PI * 2;
 +
const p2 = j / l * Math.PI * 2;
 +
positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1);
 +
}
 +
 +
geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
 +
const material = new LineBasicMaterial({
 +
fog: false,
 +
toneMapped: false
 +
});
 +
this.cone = new LineSegments(geometry, material);
 +
this.add(this.cone);
 +
this.update();
 +
}
 +
 +
dispose() {
 +
this.cone.geometry.dispose();
 +
this.cone.material.dispose();
 +
}
 +
 +
update() {
 +
this.light.updateMatrixWorld();
 +
const coneLength = this.light.distance ? this.light.distance : 1000;
 +
const coneWidth = coneLength * Math.tan(this.light.angle);
 +
this.cone.scale.set(coneWidth, coneWidth, coneLength);
 +
 +
_vector$3.setFromMatrixPosition(this.light.target.matrixWorld);
 +
 +
this.cone.lookAt(_vector$3);
 +
 +
if (this.color !== undefined) {
 +
this.cone.material.color.set(this.color);
 +
} else {
 +
this.cone.material.color.copy(this.light.color);
 +
}
 +
}
 +
 +
}
 +
 +
const _vector$2 = /*@__PURE__*/new Vector3();
 +
 +
const _boneMatrix = /*@__PURE__*/new Matrix4();
 +
 +
const _matrixWorldInv = /*@__PURE__*/new Matrix4();
 +
 +
class SkeletonHelper extends LineSegments {
 +
constructor(object) {
 +
const bones = getBoneList(object);
 +
const geometry = new BufferGeometry();
 +
const vertices = [];
 +
const colors = [];
 +
const color1 = new Color(0, 0, 1);
 +
const color2 = new Color(0, 1, 0);
 +
 +
for (let i = 0; i < bones.length; i++) {
 +
const bone = bones[i];
 +
 +
if (bone.parent && bone.parent.isBone) {
 +
vertices.push(0, 0, 0);
 +
vertices.push(0, 0, 0);
 +
colors.push(color1.r, color1.g, color1.b);
 +
colors.push(color2.r, color2.g, color2.b);
 +
}
 +
}
 +
 +
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
 +
const material = new LineBasicMaterial({
 +
vertexColors: true,
 +
depthTest: false,
 +
depthWrite: false,
 +
toneMapped: false,
 +
transparent: true
 +
});
 +
super(geometry, material);
 +
this.type = 'SkeletonHelper';
 +
this.isSkeletonHelper = true;
 +
this.root = object;
 +
this.bones = bones;
 +
this.matrix = object.matrixWorld;
 +
this.matrixAutoUpdate = false;
 +
}
 +
 +
updateMatrixWorld(force) {
 +
const bones = this.bones;
 +
const geometry = this.geometry;
 +
const position = geometry.getAttribute('position');
 +
 +
_matrixWorldInv.copy(this.root.matrixWorld).invert();
 +
 +
for (let i = 0, j = 0; i < bones.length; i++) {
 +
const bone = bones[i];
 +
 +
if (bone.parent && bone.parent.isBone) {
 +
_boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld);
 +
 +
_vector$2.setFromMatrixPosition(_boneMatrix);
 +
 +
position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z);
 +
 +
_boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld);
 +
 +
_vector$2.setFromMatrixPosition(_boneMatrix);
 +
 +
position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z);
 +
j += 2;
 +
}
 +
}
 +
 +
geometry.getAttribute('position').needsUpdate = true;
 +
super.updateMatrixWorld(force);
 +
}
 +
 +
}
 +
 +
function getBoneList(object) {
 +
const boneList = [];
 +
 +
if (object && object.isBone) {
 +
boneList.push(object);
 +
}
 +
 +
for (let i = 0; i < object.children.length; i++) {
 +
boneList.push.apply(boneList, getBoneList(object.children[i]));
 +
}
 +
 +
return boneList;
 +
}
 +
 +
class PointLightHelper extends Mesh {
 +
constructor(light, sphereSize, color) {
 +
const geometry = new SphereGeometry(sphereSize, 4, 2);
 +
const material = new MeshBasicMaterial({
 +
wireframe: true,
 +
fog: false,
 +
toneMapped: false
 +
});
 +
super(geometry, material);
 +
this.light = light;
 +
this.light.updateMatrixWorld();
 +
this.color = color;
 +
this.type = 'PointLightHelper';
 +
this.matrix = this.light.matrixWorld;
 +
this.matrixAutoUpdate = false;
 +
this.update();
 +
/*
 +
// TODO: delete this comment?
 +
const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 );
 +
const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );
 +
this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
 +
this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );
 +
const d = light.distance;
 +
if ( d === 0.0 ) {
 +
this.lightDistance.visible = false;
 +
} else {
 +
this.lightDistance.scale.set( d, d, d );
 +
}
 +
this.add( this.lightDistance );
 +
*/
 +
}
 +
 +
dispose() {
 +
this.geometry.dispose();
 +
this.material.dispose();
 +
}
 +
 +
update() {
 +
if (this.color !== undefined) {
 +
this.material.color.set(this.color);
 +
} else {
 +
this.material.color.copy(this.light.color);
 +
}
 +
/*
 +
const d = this.light.distance;
 +
if ( d === 0.0 ) {
 +
this.lightDistance.visible = false;
 +
} else {
 +
this.lightDistance.visible = true;
 +
this.lightDistance.scale.set( d, d, d );
 +
}
 +
*/
 +
 +
}
 +
 +
}
 +
 +
const _vector$1 = /*@__PURE__*/new Vector3();
 +
 +
const _color1 = /*@__PURE__*/new Color();
 +
 +
const _color2 = /*@__PURE__*/new Color();
 +
 +
class HemisphereLightHelper extends Object3D {
 +
constructor(light, size, color) {
 +
super();
 +
this.light = light;
 +
this.light.updateMatrixWorld();
 +
this.matrix = light.matrixWorld;
 +
this.matrixAutoUpdate = false;
 +
this.color = color;
 +
const geometry = new OctahedronGeometry(size);
 +
geometry.rotateY(Math.PI * 0.5);
 +
this.material = new MeshBasicMaterial({
 +
wireframe: true,
 +
fog: false,
 +
toneMapped: false
 +
});
 +
if (this.color === undefined) this.material.vertexColors = true;
 +
const position = geometry.getAttribute('position');
 +
const colors = new Float32Array(position.count * 3);
 +
geometry.setAttribute('color', new BufferAttribute(colors, 3));
 +
this.add(new Mesh(geometry, this.material));
 +
this.update();
 +
}
 +
 +
dispose() {
 +
this.children[0].geometry.dispose();
 +
this.children[0].material.dispose();
 +
}
 +
 +
update() {
 +
const mesh = this.children[0];
 +
 +
if (this.color !== undefined) {
 +
this.material.color.set(this.color);
 +
} else {
 +
const colors = mesh.geometry.getAttribute('color');
 +
 +
_color1.copy(this.light.color);
 +
 +
_color2.copy(this.light.groundColor);
 +
 +
for (let i = 0, l = colors.count; i < l; i++) {
 +
const color = i < l / 2 ? _color1 : _color2;
 +
colors.setXYZ(i, color.r, color.g, color.b);
 +
}
 +
 +
colors.needsUpdate = true;
 +
}
 +
 +
mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate());
 +
}
 +
 +
}
 +
 +
class GridHelper extends LineSegments {
 +
constructor(size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888) {
 +
color1 = new Color(color1);
 +
color2 = new Color(color2);
 +
const center = divisions / 2;
 +
const step = size / divisions;
 +
const halfSize = size / 2;
 +
const vertices = [],
 +
colors = [];
 +
 +
for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) {
 +
vertices.push(-halfSize, 0, k, halfSize, 0, k);
 +
vertices.push(k, 0, -halfSize, k, 0, halfSize);
 +
const color = i === center ? color1 : color2;
 +
color.toArray(colors, j);
 +
j += 3;
 +
color.toArray(colors, j);
 +
j += 3;
 +
color.toArray(colors, j);
 +
j += 3;
 +
color.toArray(colors, j);
 +
j += 3;
 +
}
 +
 +
const geometry = new BufferGeometry();
 +
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
 +
const material = new LineBasicMaterial({
 +
vertexColors: true,
 +
toneMapped: false
 +
});
 +
super(geometry, material);
 +
this.type = 'GridHelper';
 +
}
 +
 +
}
 +
 +
class PolarGridHelper extends LineSegments {
 +
constructor(radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888) {
 +
color1 = new Color(color1);
 +
color2 = new Color(color2);
 +
const vertices = [];
 +
const colors = []; // create the radials
 +
 +
for (let i = 0; i <= radials; i++) {
 +
const v = i / radials * (Math.PI * 2);
 +
const x = Math.sin(v) * radius;
 +
const z = Math.cos(v) * radius;
 +
vertices.push(0, 0, 0);
 +
vertices.push(x, 0, z);
 +
const color = i & 1 ? color1 : color2;
 +
colors.push(color.r, color.g, color.b);
 +
colors.push(color.r, color.g, color.b);
 +
} // create the circles
 +
 +
 +
for (let i = 0; i <= circles; i++) {
 +
const color = i & 1 ? color1 : color2;
 +
const r = radius - radius / circles * i;
 +
 +
for (let j = 0; j < divisions; j++) {
 +
// first vertex
 +
let v = j / divisions * (Math.PI * 2);
 +
let x = Math.sin(v) * r;
 +
let z = Math.cos(v) * r;
 +
vertices.push(x, 0, z);
 +
colors.push(color.r, color.g, color.b); // second vertex
 +
 +
v = (j + 1) / divisions * (Math.PI * 2);
 +
x = Math.sin(v) * r;
 +
z = Math.cos(v) * r;
 +
vertices.push(x, 0, z);
 +
colors.push(color.r, color.g, color.b);
 +
}
 +
}
 +
 +
const geometry = new BufferGeometry();
 +
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
 +
const material = new LineBasicMaterial({
 +
vertexColors: true,
 +
toneMapped: false
 +
});
 +
super(geometry, material);
 +
this.type = 'PolarGridHelper';
 +
}
 +
 +
}
 +
 +
const _v1 = /*@__PURE__*/new Vector3();
 +
 +
const _v2 = /*@__PURE__*/new Vector3();
 +
 +
const _v3 = /*@__PURE__*/new Vector3();
 +
 +
class DirectionalLightHelper extends Object3D {
 +
constructor(light, size, color) {
 +
super();
 +
this.light = light;
 +
this.light.updateMatrixWorld();
 +
this.matrix = light.matrixWorld;
 +
this.matrixAutoUpdate = false;
 +
this.color = color;
 +
if (size === undefined) size = 1;
 +
let geometry = new BufferGeometry();
 +
geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3));
 +
const material = new LineBasicMaterial({
 +
fog: false,
 +
toneMapped: false
 +
});
 +
this.lightPlane = new Line(geometry, material);
 +
this.add(this.lightPlane);
 +
geometry = new BufferGeometry();
 +
geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3));
 +
this.targetLine = new Line(geometry, material);
 +
this.add(this.targetLine);
 +
this.update();
 +
}
 +
 +
dispose() {
 +
this.lightPlane.geometry.dispose();
 +
this.lightPlane.material.dispose();
 +
this.targetLine.geometry.dispose();
 +
this.targetLine.material.dispose();
 +
}
 +
 +
update() {
 +
_v1.setFromMatrixPosition(this.light.matrixWorld);
 +
 +
_v2.setFromMatrixPosition(this.light.target.matrixWorld);
 +
 +
_v3.subVectors(_v2, _v1);
 +
 +
this.lightPlane.lookAt(_v2);
 +
 +
if (this.color !== undefined) {
 +
this.lightPlane.material.color.set(this.color);
 +
this.targetLine.material.color.set(this.color);
 +
} else {
 +
this.lightPlane.material.color.copy(this.light.color);
 +
this.targetLine.material.color.copy(this.light.color);
 +
}
 +
 +
this.targetLine.lookAt(_v2);
 +
this.targetLine.scale.z = _v3.length();
 +
}
 +
 +
}
 +
 +
const _vector = /*@__PURE__*/new Vector3();
 +
 +
const _camera = /*@__PURE__*/new Camera();
 +
/**
 +
* - shows frustum, line of sight and up of the camera
 +
* - suitable for fast updates
 +
* - based on frustum visualization in lightgl.js shadowmap example
 +
* http://evanw.github.com/lightgl.js/tests/shadowmap.html
 +
*/
 +
 +
 +
class CameraHelper extends LineSegments {
 +
constructor(camera) {
 +
const geometry = new BufferGeometry();
 +
const material = new LineBasicMaterial({
 +
color: 0xffffff,
 +
vertexColors: true,
 +
toneMapped: false
 +
});
 +
const vertices = [];
 +
const colors = [];
 +
const pointMap = {}; // colors
 +
 +
const colorFrustum = new Color(0xffaa00);
 +
const colorCone = new Color(0xff0000);
 +
const colorUp = new Color(0x00aaff);
 +
const colorTarget = new Color(0xffffff);
 +
const colorCross = new Color(0x333333); // near
 +
 +
addLine('n1', 'n2', colorFrustum);
 +
addLine('n2', 'n4', colorFrustum);
 +
addLine('n4', 'n3', colorFrustum);
 +
addLine('n3', 'n1', colorFrustum); // far
 +
 +
addLine('f1', 'f2', colorFrustum);
 +
addLine('f2', 'f4', colorFrustum);
 +
addLine('f4', 'f3', colorFrustum);
 +
addLine('f3', 'f1', colorFrustum); // sides
 +
 +
addLine('n1', 'f1', colorFrustum);
 +
addLine('n2', 'f2', colorFrustum);
 +
addLine('n3', 'f3', colorFrustum);
 +
addLine('n4', 'f4', colorFrustum); // cone
 +
 +
addLine('p', 'n1', colorCone);
 +
addLine('p', 'n2', colorCone);
 +
addLine('p', 'n3', colorCone);
 +
addLine('p', 'n4', colorCone); // up
 +
 +
addLine('u1', 'u2', colorUp);
 +
addLine('u2', 'u3', colorUp);
 +
addLine('u3', 'u1', colorUp); // target
 +
 +
addLine('c', 't', colorTarget);
 +
addLine('p', 'c', colorCross); // cross
 +
 +
addLine('cn1', 'cn2', colorCross);
 +
addLine('cn3', 'cn4', colorCross);
 +
addLine('cf1', 'cf2', colorCross);
 +
addLine('cf3', 'cf4', colorCross);
 +
 +
function addLine(a, b, color) {
 +
addPoint(a, color);
 +
addPoint(b, color);
 +
}
 +
 +
function addPoint(id, color) {
 +
vertices.push(0, 0, 0);
 +
colors.push(color.r, color.g, color.b);
 +
 +
if (pointMap[id] === undefined) {
 +
pointMap[id] = [];
 +
}
 +
 +
pointMap[id].push(vertices.length / 3 - 1);
 +
}
 +
 +
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
 +
super(geometry, material);
 +
this.type = 'CameraHelper';
 +
this.camera = camera;
 +
if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix();
 +
this.matrix = camera.matrixWorld;
 +
this.matrixAutoUpdate = false;
 +
this.pointMap = pointMap;
 +
this.update();
 +
}
 +
 +
update() {
 +
const geometry = this.geometry;
 +
const pointMap = this.pointMap;
 +
const w = 1,
 +
h = 1; // we need just camera projection matrix inverse
 +
// world matrix must be identity
 +
 +
_camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); // center / target
 +
 +
 +
setPoint('c', pointMap, geometry, _camera, 0, 0, -1);
 +
setPoint('t', pointMap, geometry, _camera, 0, 0, 1); // near
 +
 +
setPoint('n1', pointMap, geometry, _camera, -w, -h, -1);
 +
setPoint('n2', pointMap, geometry, _camera, w, -h, -1);
 +
setPoint('n3', pointMap, geometry, _camera, -w, h, -1);
 +
setPoint('n4', pointMap, geometry, _camera, w, h, -1); // far
 +
 +
setPoint('f1', pointMap, geometry, _camera, -w, -h, 1);
 +
setPoint('f2', pointMap, geometry, _camera, w, -h, 1);
 +
setPoint('f3', pointMap, geometry, _camera, -w, h, 1);
 +
setPoint('f4', pointMap, geometry, _camera, w, h, 1); // up
 +
 +
setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1);
 +
setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1);
 +
setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1); // cross
 +
 +
setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1);
 +
setPoint('cf2', pointMap, geometry, _camera, w, 0, 1);
 +
setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1);
 +
setPoint('cf4', pointMap, geometry, _camera, 0, h, 1);
 +
setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1);
 +
setPoint('cn2', pointMap, geometry, _camera, w, 0, -1);
 +
setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1);
 +
setPoint('cn4', pointMap, geometry, _camera, 0, h, -1);
 +
geometry.getAttribute('position').needsUpdate = true;
 +
}
 +
 +
dispose() {
 +
this.geometry.dispose();
 +
this.material.dispose();
 +
}
 +
 +
}
 +
 +
function setPoint(point, pointMap, geometry, camera, x, y, z) {
 +
_vector.set(x, y, z).unproject(camera);
 +
 +
const points = pointMap[point];
 +
 +
if (points !== undefined) {
 +
const position = geometry.getAttribute('position');
 +
 +
for (let i = 0, l = points.length; i < l; i++) {
 +
position.setXYZ(points[i], _vector.x, _vector.y, _vector.z);
 +
}
 +
}
 +
}
 +
 +
const _box = /*@__PURE__*/new Box3();
 +
 +
class BoxHelper extends LineSegments {
 +
constructor(object, color = 0xffff00) {
 +
const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
 +
const positions = new Float32Array(8 * 3);
 +
const geometry = new BufferGeometry();
 +
geometry.setIndex(new BufferAttribute(indices, 1));
 +
geometry.setAttribute('position', new BufferAttribute(positions, 3));
 +
super(geometry, new LineBasicMaterial({
 +
color: color,
 +
toneMapped: false
 +
}));
 +
this.object = object;
 +
this.type = 'BoxHelper';
 +
this.matrixAutoUpdate = false;
 +
this.update();
 +
}
 +
 +
update(object) {
 +
if (object !== undefined) {
 +
console.warn('THREE.BoxHelper: .update() has no longer arguments.');
 +
}
 +
 +
if (this.object !== undefined) {
 +
_box.setFromObject(this.object);
 +
}
 +
 +
if (_box.isEmpty()) return;
 +
const min = _box.min;
 +
const max = _box.max;
 +
/*
 +
5____4
 +
1/___0/|
 +
| 6__|_7
 +
2/___3/
 +
0: max.x, max.y, max.z
 +
1: min.x, max.y, max.z
 +
2: min.x, min.y, max.z
 +
3: max.x, min.y, max.z
 +
4: max.x, max.y, min.z
 +
5: min.x, max.y, min.z
 +
6: min.x, min.y, min.z
 +
7: max.x, min.y, min.z
 +
*/
 +
 +
const position = this.geometry.attributes.position;
 +
const array = position.array;
 +
array[0] = max.x;
 +
array[1] = max.y;
 +
array[2] = max.z;
 +
array[3] = min.x;
 +
array[4] = max.y;
 +
array[5] = max.z;
 +
array[6] = min.x;
 +
array[7] = min.y;
 +
array[8] = max.z;
 +
array[9] = max.x;
 +
array[10] = min.y;
 +
array[11] = max.z;
 +
array[12] = max.x;
 +
array[13] = max.y;
 +
array[14] = min.z;
 +
array[15] = min.x;
 +
array[16] = max.y;
 +
array[17] = min.z;
 +
array[18] = min.x;
 +
array[19] = min.y;
 +
array[20] = min.z;
 +
array[21] = max.x;
 +
array[22] = min.y;
 +
array[23] = min.z;
 +
position.needsUpdate = true;
 +
this.geometry.computeBoundingSphere();
 +
}
 +
 +
setFromObject(object) {
 +
this.object = object;
 +
this.update();
 +
return this;
 +
}
 +
 +
copy(source) {
 +
LineSegments.prototype.copy.call(this, source);
 +
this.object = source.object;
 +
return this;
 +
}
 +
 +
}
 +
 +
class Box3Helper extends LineSegments {
 +
constructor(box, color = 0xffff00) {
 +
const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
 +
const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1];
 +
const geometry = new BufferGeometry();
 +
geometry.setIndex(new BufferAttribute(indices, 1));
 +
geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
 +
super(geometry, new LineBasicMaterial({
 +
color: color,
 +
toneMapped: false
 +
}));
 +
this.box = box;
 +
this.type = 'Box3Helper';
 +
this.geometry.computeBoundingSphere();
 +
}
 +
 +
updateMatrixWorld(force) {
 +
const box = this.box;
 +
if (box.isEmpty()) return;
 +
box.getCenter(this.position);
 +
box.getSize(this.scale);
 +
this.scale.multiplyScalar(0.5);
 +
super.updateMatrixWorld(force);
 +
}
 +
 +
}
 +
 +
class PlaneHelper extends Line {
 +
constructor(plane, size = 1, hex = 0xffff00) {
 +
const color = hex;
 +
const positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0];
 +
const geometry = new BufferGeometry();
 +
geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
 +
geometry.computeBoundingSphere();
 +
super(geometry, new LineBasicMaterial({
 +
color: color,
 +
toneMapped: false
 +
}));
 +
this.type = 'PlaneHelper';
 +
this.plane = plane;
 +
this.size = size;
 +
const positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1];
 +
const geometry2 = new BufferGeometry();
 +
geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3));
 +
geometry2.computeBoundingSphere();
 +
this.add(new Mesh(geometry2, new MeshBasicMaterial({
 +
color: color,
 +
opacity: 0.2,
 +
transparent: true,
 +
depthWrite: false,
 +
toneMapped: false
 +
})));
 +
}
 +
 +
updateMatrixWorld(force) {
 +
let scale = -this.plane.constant;
 +
if (Math.abs(scale) < 1e-8) scale = 1e-8; // sign does not matter
 +
 +
this.scale.set(0.5 * this.size, 0.5 * this.size, scale);
 +
this.children[0].material.side = scale < 0 ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here
 +
 +
this.lookAt(this.plane.normal);
 +
super.updateMatrixWorld(force);
 +
}
 +
 +
}
 +
 +
const _axis = /*@__PURE__*/new Vector3();
 +
 +
let _lineGeometry, _coneGeometry;
 +
 +
class ArrowHelper extends Object3D {
 +
// dir is assumed to be normalized
 +
constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2) {
 +
super();
 +
this.type = 'ArrowHelper';
 +
 +
if (_lineGeometry === undefined) {
 +
_lineGeometry = new BufferGeometry();
 +
 +
_lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3));
 +
 +
_coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1);
 +
 +
_coneGeometry.translate(0, -0.5, 0);
 +
}
 +
 +
this.position.copy(origin);
 +
this.line = new Line(_lineGeometry, new LineBasicMaterial({
 +
color: color,
 +
toneMapped: false
 +
}));
 +
this.line.matrixAutoUpdate = false;
 +
this.add(this.line);
 +
this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({
 +
color: color,
 +
toneMapped: false
 +
}));
 +
this.cone.matrixAutoUpdate = false;
 +
this.add(this.cone);
 +
this.setDirection(dir);
 +
this.setLength(length, headLength, headWidth);
 +
}
 +
 +
setDirection(dir) {
 +
// dir is assumed to be normalized
 +
if (dir.y > 0.99999) {
 +
this.quaternion.set(0, 0, 0, 1);
 +
} else if (dir.y < -0.99999) {
 +
this.quaternion.set(1, 0, 0, 0);
 +
} else {
 +
_axis.set(dir.z, 0, -dir.x).normalize();
 +
 +
const radians = Math.acos(dir.y);
 +
this.quaternion.setFromAxisAngle(_axis, radians);
 +
}
 +
}
 +
 +
setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) {
 +
this.line.scale.set(1, Math.max(0.0001, length - headLength), 1); // see #17458
 +
 +
this.line.updateMatrix();
 +
this.cone.scale.set(headWidth, headLength, headWidth);
 +
this.cone.position.y = length;
 +
this.cone.updateMatrix();
 +
}
 +
 +
setColor(color) {
 +
this.line.material.color.set(color);
 +
this.cone.material.color.set(color);
 +
}
 +
 +
copy(source) {
 +
super.copy(source, false);
 +
this.line.copy(source.line);
 +
this.cone.copy(source.cone);
 +
return this;
 +
}
 +
 +
}
 +
 +
class AxesHelper extends LineSegments {
 +
constructor(size = 1) {
 +
const vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size];
 +
const colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1];
 +
const geometry = new BufferGeometry();
 +
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
 +
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
 +
const material = new LineBasicMaterial({
 +
vertexColors: true,
 +
toneMapped: false
 +
});
 +
super(geometry, material);
 +
this.type = 'AxesHelper';
 +
}
 +
 +
setColors(xAxisColor, yAxisColor, zAxisColor) {
 +
const color = new Color();
 +
const array = this.geometry.attributes.color.array;
 +
color.set(xAxisColor);
 +
color.toArray(array, 0);
 +
color.toArray(array, 3);
 +
color.set(yAxisColor);
 +
color.toArray(array, 6);
 +
color.toArray(array, 9);
 +
color.set(zAxisColor);
 +
color.toArray(array, 12);
 +
color.toArray(array, 15);
 +
this.geometry.attributes.color.needsUpdate = true;
 +
return this;
 +
}
 +
 +
dispose() {
 +
this.geometry.dispose();
 +
this.material.dispose();
 +
}
 +
 +
}
 +
 +
const _floatView = new Float32Array(1);
 +
 +
const _int32View = new Int32Array(_floatView.buffer);
 +
 +
class DataUtils {
 +
// Converts float32 to float16 (stored as uint16 value).
 +
static toHalfFloat(val) {
 +
// Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
 +
 +
/* This method is faster than the OpenEXR implementation (very often
 +
* used, eg. in Ogre), with the additional benefit of rounding, inspired
 +
* by James Tursa?s half-precision code. */
 +
_floatView[0] = val;
 +
const x = _int32View[0];
 +
let bits = x >> 16 & 0x8000;
 +
/* Get the sign */
 +
 +
let m = x >> 12 & 0x07ff;
 +
/* Keep one extra bit for rounding */
 +
 +
const e = x >> 23 & 0xff;
 +
/* Using int is faster here */
 +
 +
/* If zero, or denormal, or exponent underflows too much for a denormal
 +
* half, return signed zero. */
 +
 +
if (e < 103) return bits;
 +
/* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
 +
 +
if (e > 142) {
 +
bits |= 0x7c00;
 +
/* If exponent was 0xff and one mantissa bit was set, it means NaN,
 +
* not Inf, so make sure we set one mantissa bit too. */
 +
 +
bits |= (e == 255 ? 0 : 1) && x & 0x007fffff;
 +
return bits;
 +
}
 +
/* If exponent underflows but not too much, return a denormal */
 +
 +
 +
if (e < 113) {
 +
m |= 0x0800;
 +
/* Extra rounding may overflow and set mantissa to 0 and exponent
 +
* to 1, which is OK. */
 +
 +
bits |= (m >> 114 - e) + (m >> 113 - e & 1);
 +
return bits;
 +
}
 +
 +
bits |= e - 112 << 10 | m >> 1;
 +
/* Extra rounding. An overflow will set mantissa to 0 and increment
 +
* the exponent, which is OK. */
 +
 +
bits += m & 1;
 +
return bits;
 +
}
 +
 +
}
 +
 +
const LOD_MIN = 4;
 +
const LOD_MAX = 8;
 +
const SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are
 +
// chosen to approximate a Trowbridge-Reitz distribution function times the
 +
// geometric shadowing function. These sigma values squared must match the
 +
// variance #defines in cube_uv_reflection_fragment.glsl.js.
 +
 +
const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582];
 +
const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer
 +
// samples and exit early, but not recompile the shader.
 +
 +
const MAX_SAMPLES = 20;
 +
const ENCODINGS = {
 +
[LinearEncoding]: 0,
 +
[sRGBEncoding]: 1,
 +
[RGBEEncoding]: 2,
 +
[RGBM7Encoding]: 3,
 +
[RGBM16Encoding]: 4,
 +
[RGBDEncoding]: 5,
 +
[GammaEncoding]: 6
 +
};
 +
const backgroundMaterial = new MeshBasicMaterial({
 +
side: BackSide,
 +
depthWrite: false,
 +
depthTest: false
 +
});
 +
const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial);
 +
 +
const _flatCamera = /*@__PURE__*/new OrthographicCamera();
 +
 +
const {
 +
_lodPlanes,
 +
_sizeLods,
 +
_sigmas
 +
} = /*@__PURE__*/_createPlanes();
 +
 +
const _clearColor = /*@__PURE__*/new Color();
 +
 +
let _oldTarget = null; // Golden Ratio
 +
 +
const PHI = (1 + Math.sqrt(5)) / 2;
 +
const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the
 +
// same axis), used as axis directions evenly spread on a sphere.
 +
 +
const _axisDirections = [/*@__PURE__*/new Vector3(1, 1, 1), /*@__PURE__*/new Vector3(-1, 1, 1), /*@__PURE__*/new Vector3(1, 1, -1), /*@__PURE__*/new Vector3(-1, 1, -1), /*@__PURE__*/new Vector3(0, PHI, INV_PHI), /*@__PURE__*/new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/new Vector3(-PHI, INV_PHI, 0)];
 +
/**
 +
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
 +
* (PMREM) from a cubeMap environment texture. This allows different levels of
 +
* blur to be quickly accessed based on material roughness. It is packed into a
 +
* special CubeUV format that allows us to perform custom interpolation so that
 +
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
 +
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
 +
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
 +
* higher roughness levels. In this way we maintain resolution to smoothly
 +
* interpolate diffuse lighting while limiting sampling computation.
 +
*
 +
* Paper: Fast, Accurate Image-Based Lighting
 +
* https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
 +
*/
 +
 +
function convertLinearToRGBE(color) {
 +
const maxComponent = Math.max(color.r, color.g, color.b);
 +
const fExp = Math.min(Math.max(Math.ceil(Math.log2(maxComponent)), -128.0), 127.0);
 +
color.multiplyScalar(Math.pow(2.0, -fExp));
 +
const alpha = (fExp + 128.0) / 255.0;
 +
return alpha;
 +
}
 +
 +
class PMREMGenerator {
 +
constructor(renderer) {
 +
this._renderer = renderer;
 +
this._pingPongRenderTarget = null;
 +
this._blurMaterial = _getBlurShader(MAX_SAMPLES);
 +
this._equirectShader = null;
 +
this._cubemapShader = null;
 +
 +
this._compileMaterial(this._blurMaterial);
 +
}
 +
/**
 +
* Generates a PMREM from a supplied Scene, which can be faster than using an
 +
* image if networking bandwidth is low. Optional sigma specifies a blur radius
 +
* in radians to be applied to the scene before PMREM generation. Optional near
 +
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
 +
* is placed at the origin).
 +
*/
 +
 +
 +
fromScene(scene, sigma = 0, near = 0.1, far = 100) {
 +
_oldTarget = this._renderer.getRenderTarget();
 +
 +
const cubeUVRenderTarget = this._allocateTargets();
 +
 +
this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget);
 +
 +
if (sigma > 0) {
 +
this._blur(cubeUVRenderTarget, 0, 0, sigma);
 +
}
 +
 +
this._applyPMREM(cubeUVRenderTarget);
 +
 +
this._cleanup(cubeUVRenderTarget);
 +
 +
return cubeUVRenderTarget;
 +
}
 +
/**
 +
* Generates a PMREM from an equirectangular texture, which can be either LDR
 +
* (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
 +
* as this matches best with the 256 x 256 cubemap output.
 +
*/
 +
 +
 +
fromEquirectangular(equirectangular) {
 +
return this._fromTexture(equirectangular);
 +
}
 +
/**
 +
* Generates a PMREM from an cubemap texture, which can be either LDR
 +
* (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
 +
* as this matches best with the 256 x 256 cubemap output.
 +
*/
 +
 +
 +
fromCubemap(cubemap) {
 +
return this._fromTexture(cubemap);
 +
}
 +
/**
 +
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
 +
* your texture's network fetch for increased concurrency.
 +
*/
 +
 +
 +
compileCubemapShader() {
 +
if (this._cubemapShader === null) {
 +
this._cubemapShader = _getCubemapShader();
 +
 +
this._compileMaterial(this._cubemapShader);
 +
}
 +
}
 +
/**
 +
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
 +
* your texture's network fetch for increased concurrency.
 +
*/
 +
 +
 +
compileEquirectangularShader() {
 +
if (this._equirectShader === null) {
 +
this._equirectShader = _getEquirectShader();
 +
 +
this._compileMaterial(this._equirectShader);
 +
}
 +
}
 +
/**
 +
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
 +
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
 +
* one of them will cause any others to also become unusable.
 +
*/
 +
 +
 +
dispose() {
 +
this._blurMaterial.dispose();
 +
 +
if (this._cubemapShader !== null) this._cubemapShader.dispose();
 +
if (this._equirectShader !== null) this._equirectShader.dispose();
 +
 +
for (let i = 0; i < _lodPlanes.length; i++) {
 +
_lodPlanes[i].dispose();
 +
}
 +
} // private interface
 +
 +
 +
_cleanup(outputTarget) {
 +
this._pingPongRenderTarget.dispose();
 +
 +
this._renderer.setRenderTarget(_oldTarget);
 +
 +
outputTarget.scissorTest = false;
 +
 +
_setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height);
 +
}
 +
 +
_fromTexture(texture) {
 +
_oldTarget = this._renderer.getRenderTarget();
 +
 +
const cubeUVRenderTarget = this._allocateTargets(texture);
 +
 +
this._textureToCubeUV(texture, cubeUVRenderTarget);
 +
 +
this._applyPMREM(cubeUVRenderTarget);
 +
 +
this._cleanup(cubeUVRenderTarget);
 +
 +
return cubeUVRenderTarget;
 +
}
 +
 +
_allocateTargets(texture) {
 +
// warning: null texture is valid
 +
const params = {
 +
magFilter: NearestFilter,
 +
minFilter: NearestFilter,
 +
generateMipmaps: false,
 +
type: UnsignedByteType,
 +
format: RGBEFormat,
 +
encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding,
 +
depthBuffer: false
 +
};
 +
 +
const cubeUVRenderTarget = _createRenderTarget(params);
 +
 +
cubeUVRenderTarget.depthBuffer = texture ? false : true;
 +
this._pingPongRenderTarget = _createRenderTarget(params);
 +
return cubeUVRenderTarget;
 +
}
 +
 +
_compileMaterial(material) {
 +
const tmpMesh = new Mesh(_lodPlanes[0], material);
 +
 +
this._renderer.compile(tmpMesh, _flatCamera);
 +
}
 +
 +
_sceneToCubeUV(scene, near, far, cubeUVRenderTarget) {
 +
const fov = 90;
 +
const aspect = 1;
 +
const cubeCamera = new PerspectiveCamera(fov, aspect, near, far);
 +
const upSign = [1, -1, 1, 1, 1, 1];
 +
const forwardSign = [1, 1, 1, -1, -1, -1];
 +
const renderer = this._renderer;
 +
const originalAutoClear = renderer.autoClear;
 +
const outputEncoding = renderer.outputEncoding;
 +
const toneMapping = renderer.toneMapping;
 +
renderer.getClearColor(_clearColor);
 +
renderer.toneMapping = NoToneMapping;
 +
renderer.outputEncoding = LinearEncoding;
 +
renderer.autoClear = false;
 +
let useSolidColor = false;
 +
const background = scene.background;
 +
 +
if (background) {
 +
if (background.isColor) {
 +
backgroundMaterial.color.copy(background).convertSRGBToLinear();
 +
scene.background = null;
 +
const alpha = convertLinearToRGBE(backgroundMaterial.color);
 +
backgroundMaterial.opacity = alpha;
 +
useSolidColor = true;
 +
}
 +
} else {
 +
backgroundMaterial.color.copy(_clearColor).convertSRGBToLinear();
 +
const alpha = convertLinearToRGBE(backgroundMaterial.color);
 +
backgroundMaterial.opacity = alpha;
 +
useSolidColor = true;
 +
}
 +
 +
for (let i = 0; i < 6; i++) {
 +
const col = i % 3;
 +
 +
if (col == 0) {
 +
cubeCamera.up.set(0, upSign[i], 0);
 +
cubeCamera.lookAt(forwardSign[i], 0, 0);
 +
} else if (col == 1) {
 +
cubeCamera.up.set(0, 0, upSign[i]);
 +
cubeCamera.lookAt(0, forwardSign[i], 0);
 +
} else {
 +
cubeCamera.up.set(0, upSign[i], 0);
 +
cubeCamera.lookAt(0, 0, forwardSign[i]);
 +
}
 +
 +
_setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX);
 +
 +
renderer.setRenderTarget(cubeUVRenderTarget);
 +
 +
if (useSolidColor) {
 +
renderer.render(backgroundBox, cubeCamera);
 +
}
 +
 +
renderer.render(scene, cubeCamera);
 +
}
 +
 +
renderer.toneMapping = toneMapping;
 +
renderer.outputEncoding = outputEncoding;
 +
renderer.autoClear = originalAutoClear;
 +
}
 +
 +
_textureToCubeUV(texture, cubeUVRenderTarget) {
 +
const renderer = this._renderer;
 +
 +
if (texture.isCubeTexture) {
 +
if (this._cubemapShader == null) {
 +
this._cubemapShader = _getCubemapShader();
 +
}
 +
} else {
 +
if (this._equirectShader == null) {
 +
this._equirectShader = _getEquirectShader();
 +
}
 +
}
 +
 +
const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
 +
const mesh = new Mesh(_lodPlanes[0], material);
 +
const uniforms = material.uniforms;
 +
uniforms['envMap'].value = texture;
 +
 +
if (!texture.isCubeTexture) {
 +
uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height);
 +
}
 +
 +
uniforms['inputEncoding'].value = ENCODINGS[texture.encoding];
 +
uniforms['outputEncoding'].value = ENCODINGS[cubeUVRenderTarget.texture.encoding];
 +
 +
_setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX);
 +
 +
renderer.setRenderTarget(cubeUVRenderTarget);
 +
renderer.render(mesh, _flatCamera);
 +
}
 +
 +
_applyPMREM(cubeUVRenderTarget) {
 +
const renderer = this._renderer;
 +
const autoClear = renderer.autoClear;
 +
renderer.autoClear = false;
 +
 +
for (let i = 1; i < TOTAL_LODS; i++) {
 +
const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]);
 +
const poleAxis = _axisDirections[(i - 1) % _axisDirections.length];
 +
 +
this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis);
 +
}
 +
 +
renderer.autoClear = autoClear;
 +
}
 +
/**
 +
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
 +
* vertically and horizontally, but this breaks down on a cube. Here we apply
 +
* the blur latitudinally (around the poles), and then longitudinally (towards
 +
* the poles) to approximate the orthogonally-separable blur. It is least
 +
* accurate at the poles, but still does a decent job.
 +
*/
 +
 +
 +
_blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) {
 +
const pingPongRenderTarget = this._pingPongRenderTarget;
 +
 +
this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis);
 +
 +
this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis);
 +
}
 +
 +
_halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) {
 +
const renderer = this._renderer;
 +
const blurMaterial = this._blurMaterial;
 +
 +
if (direction !== 'latitudinal' && direction !== 'longitudinal') {
 +
console.error('blur direction must be either latitudinal or longitudinal!');
 +
} // Number of standard deviations at which to cut off the discrete approximation.
 +
 +
 +
const STANDARD_DEVIATIONS = 3;
 +
const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial);
 +
const blurUniforms = blurMaterial.uniforms;
 +
const pixels = _sizeLods[lodIn] - 1;
 +
const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1);
 +
const sigmaPixels = sigmaRadians / radiansPerPixel;
 +
const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES;
 +
 +
if (samples > MAX_SAMPLES) {
 +
console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`);
 +
}
 +
 +
const weights = [];
 +
let sum = 0;
 +
 +
for (let i = 0; i < MAX_SAMPLES; ++i) {
 +
const x = i / sigmaPixels;
 +
const weight = Math.exp(-x * x / 2);
 +
weights.push(weight);
 +
 +
if (i == 0) {
 +
sum += weight;
 +
} else if (i < samples) {
 +
sum += 2 * weight;
 +
}
 +
}
 +
 +
for (let i = 0; i < weights.length; i++) {
 +
weights[i] = weights[i] / sum;
 +
}
 +
 +
blurUniforms['envMap'].value = targetIn.texture;
 +
blurUniforms['samples'].value = samples;
 +
blurUniforms['weights'].value = weights;
 +
blurUniforms['latitudinal'].value = direction === 'latitudinal';
 +
 +
if (poleAxis) {
 +
blurUniforms['poleAxis'].value = poleAxis;
 +
}
 +
 +
blurUniforms['dTheta'].value = radiansPerPixel;
 +
blurUniforms['mipInt'].value = LOD_MAX - lodIn;
 +
blurUniforms['inputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
 +
blurUniforms['outputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
 +
const outputSize = _sizeLods[lodOut];
 +
const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize);
 +
const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0);
 +
 +
_setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize);
 +
 +
renderer.setRenderTarget(targetOut);
 +
renderer.render(blurMesh, _flatCamera);
 +
}
 +
 +
}
 +
 +
function _isLDR(texture) {
 +
if (texture === undefined || texture.type !== UnsignedByteType) return false;
 +
return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
 +
}
 +
 +
function _createPlanes() {
 +
const _lodPlanes = [];
 +
const _sizeLods = [];
 +
const _sigmas = [];
 +
let lod = LOD_MAX;
 +
 +
for (let i = 0; i < TOTAL_LODS; i++) {
 +
const sizeLod = Math.pow(2, lod);
 +
 +
_sizeLods.push(sizeLod);
 +
 +
let sigma = 1.0 / sizeLod;
 +
 +
if (i > LOD_MAX - LOD_MIN) {
 +
sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1];
 +
} else if (i == 0) {
 +
sigma = 0;
 +
}
 +
 +
_sigmas.push(sigma);
 +
 +
const texelSize = 1.0 / (sizeLod - 1);
 +
const min = -texelSize / 2;
 +
const max = 1 + texelSize / 2;
 +
const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max];
 +
const cubeFaces = 6;
 +
const vertices = 6;
 +
const positionSize = 3;
 +
const uvSize = 2;
 +
const faceIndexSize = 1;
 +
const position = new Float32Array(positionSize * vertices * cubeFaces);
 +
const uv = new Float32Array(uvSize * vertices * cubeFaces);
 +
const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces);
 +
 +
for (let face = 0; face < cubeFaces; face++) {
 +
const x = face % 3 * 2 / 3 - 1;
 +
const y = face > 2 ? 0 : -1;
 +
const coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0];
 +
position.set(coordinates, positionSize * vertices * face);
 +
uv.set(uv1, uvSize * vertices * face);
 +
const fill = [face, face, face, face, face, face];
 +
faceIndex.set(fill, faceIndexSize * vertices * face);
 +
}
 +
 +
const planes = new BufferGeometry();
 +
planes.setAttribute('position', new BufferAttribute(position, positionSize));
 +
planes.setAttribute('uv', new BufferAttribute(uv, uvSize));
 +
planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize));
 +
 +
_lodPlanes.push(planes);
 +
 +
if (lod > LOD_MIN) {
 +
lod--;
 +
}
 +
}
 +
 +
return {
 +
_lodPlanes,
 +
_sizeLods,
 +
_sigmas
 +
};
 +
}
 +
 +
function _createRenderTarget(params) {
 +
const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params);
 +
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
 +
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
 +
cubeUVRenderTarget.scissorTest = true;
 +
return cubeUVRenderTarget;
 +
}
 +
 +
function _setViewport(target, x, y, width, height) {
 +
target.viewport.set(x, y, width, height);
 +
target.scissor.set(x, y, width, height);
 +
}
 +
 +
function _getBlurShader(maxSamples) {
 +
const weights = new Float32Array(maxSamples);
 +
const poleAxis = new Vector3(0, 1, 0);
 +
const shaderMaterial = new RawShaderMaterial({
 +
name: 'SphericalGaussianBlur',
 +
defines: {
 +
'n': maxSamples
 +
},
 +
uniforms: {
 +
'envMap': {
 +
value: null
 +
},
 +
'samples': {
 +
value: 1
 +
},
 +
'weights': {
 +
value: weights
 +
},
 +
'latitudinal': {
 +
value: false
 +
},
 +
'dTheta': {
 +
value: 0
 +
},
 +
'mipInt': {
 +
value: 0
 +
},
 +
'poleAxis': {
 +
value: poleAxis
 +
},
 +
'inputEncoding': {
 +
value: ENCODINGS[LinearEncoding]
 +
},
 +
'outputEncoding': {
 +
value: ENCODINGS[LinearEncoding]
 +
}
 +
},
 +
vertexShader: _getCommonVertexShader(),
 +
fragmentShader:
 +
/* glsl */
 +
`
 +
 +
precision mediump float;
 +
precision mediump int;
 +
 +
varying vec3 vOutputDirection;
 +
 +
uniform sampler2D envMap;
 +
uniform int samples;
 +
uniform float weights[ n ];
 +
uniform bool latitudinal;
 +
uniform float dTheta;
 +
uniform float mipInt;
 +
uniform vec3 poleAxis;
 +
 +
${_getEncodings()}
 +
 +
#define ENVMAP_TYPE_CUBE_UV
 +
#include <cube_uv_reflection_fragment>
 +
 +
vec3 getSample( float theta, vec3 axis ) {
 +
 +
float cosTheta = cos( theta );
 +
// Rodrigues' axis-angle rotation
 +
vec3 sampleDirection = vOutputDirection * cosTheta
 +
+ cross( axis, vOutputDirection ) * sin( theta )
 +
+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
 +
 +
return bilinearCubeUV( envMap, sampleDirection, mipInt );
 +
 +
}
 +
 +
void main() {
 +
 +
vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
 +
 +
if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
 +
 +
axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
 +
 +
}
 +
 +
axis = normalize( axis );
 +
 +
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
 +
gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
 +
 +
for ( int i = 1; i < n; i++ ) {
 +
 +
if ( i >= samples ) {
 +
 +
break;
 +
 +
}
 +
 +
float theta = dTheta * float( i );
 +
gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
 +
gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
 +
 +
}
 +
 +
gl_FragColor = linearToOutputTexel( gl_FragColor );
 +
 +
}
 +
`,
 +
blending: NoBlending,
 +
depthTest: false,
 +
depthWrite: false
 +
});
 +
return shaderMaterial;
 +
}
 +
 +
function _getEquirectShader() {
 +
const texelSize = new Vector2(1, 1);
 +
const shaderMaterial = new RawShaderMaterial({
 +
name: 'EquirectangularToCubeUV',
 +
uniforms: {
 +
'envMap': {
 +
value: null
 +
},
 +
'texelSize': {
 +
value: texelSize
 +
},
 +
'inputEncoding': {
 +
value: ENCODINGS[LinearEncoding]
 +
},
 +
'outputEncoding': {
 +
value: ENCODINGS[LinearEncoding]
 +
}
 +
},
 +
vertexShader: _getCommonVertexShader(),
 +
fragmentShader:
 +
/* glsl */
 +
`
 +
 +
precision mediump float;
 +
precision mediump int;
 +
 +
varying vec3 vOutputDirection;
 +
 +
uniform sampler2D envMap;
 +
uniform vec2 texelSize;
 +
 +
${_getEncodings()}
 +
 +
#include <common>
 +
 +
void main() {
 +
 +
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
 +
 +
vec3 outputDirection = normalize( vOutputDirection );
 +
vec2 uv = equirectUv( outputDirection );
 +
 +
vec2 f = fract( uv / texelSize - 0.5 );
 +
uv -= f * texelSize;
 +
vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
 +
uv.x += texelSize.x;
 +
vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
 +
uv.y += texelSize.y;
 +
vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
 +
uv.x -= texelSize.x;
 +
vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
 +
 +
vec3 tm = mix( tl, tr, f.x );
 +
vec3 bm = mix( bl, br, f.x );
 +
gl_FragColor.rgb = mix( tm, bm, f.y );
 +
 +
gl_FragColor = linearToOutputTexel( gl_FragColor );
 +
 +
}
 +
`,
 +
blending: NoBlending,
 +
depthTest: false,
 +
depthWrite: false
 +
});
 +
return shaderMaterial;
 +
}
 +
 +
function _getCubemapShader() {
 +
const shaderMaterial = new RawShaderMaterial({
 +
name: 'CubemapToCubeUV',
 +
uniforms: {
 +
'envMap': {
 +
value: null
 +
},
 +
'inputEncoding': {
 +
value: ENCODINGS[LinearEncoding]
 +
},
 +
'outputEncoding': {
 +
value: ENCODINGS[LinearEncoding]
 +
}
 +
},
 +
vertexShader: _getCommonVertexShader(),
 +
fragmentShader:
 +
/* glsl */
 +
`
 +
 +
precision mediump float;
 +
precision mediump int;
 +
 +
varying vec3 vOutputDirection;
 +
 +
uniform samplerCube envMap;
 +
 +
${_getEncodings()}
 +
 +
void main() {
 +
 +
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
 +
gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;
 +
gl_FragColor = linearToOutputTexel( gl_FragColor );
 +
 +
}
 +
`,
 +
blending: NoBlending,
 +
depthTest: false,
 +
depthWrite: false
 +
});
 +
return shaderMaterial;
 +
}
 +
 +
function _getCommonVertexShader() {
 +
return (
 +
/* glsl */
 +
`
 +
 +
precision mediump float;
 +
precision mediump int;
 +
 +
attribute vec3 position;
 +
attribute vec2 uv;
 +
attribute float faceIndex;
 +
 +
varying vec3 vOutputDirection;
 +
 +
// RH coordinate system; PMREM face-indexing convention
 +
vec3 getDirection( vec2 uv, float face ) {
 +
 +
uv = 2.0 * uv - 1.0;
 +
 +
vec3 direction = vec3( uv, 1.0 );
 +
 +
if ( face == 0.0 ) {
 +
 +
direction = direction.zyx; // ( 1, v, u ) pos x
 +
 +
} else if ( face == 1.0 ) {
 +
 +
direction = direction.xzy;
 +
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
 +
 +
} else if ( face == 2.0 ) {
 +
 +
direction.x *= -1.0; // ( -u, v, 1 ) pos z
 +
 +
} else if ( face == 3.0 ) {
 +
 +
direction = direction.zyx;
 +
direction.xz *= -1.0; // ( -1, v, -u ) neg x
 +
 +
} else if ( face == 4.0 ) {
 +
 +
direction = direction.xzy;
 +
direction.xy *= -1.0; // ( -u, -1, v ) neg y
 +
 +
} else if ( face == 5.0 ) {
 +
 +
direction.z *= -1.0; // ( u, v, -1 ) neg z
 +
 +
}
 +
 +
return direction;
 +
 +
}
 +
 +
void main() {
 +
 +
vOutputDirection = getDirection( uv, faceIndex );
 +
gl_Position = vec4( position, 1.0 );
 +
 +
}
 +
`
 +
);
 +
}
 +
 +
function _getEncodings() {
 +
return (
 +
/* glsl */
 +
`
 +
 +
uniform int inputEncoding;
 +
uniform int outputEncoding;
 +
 +
#include <encodings_pars_fragment>
 +
 +
vec4 inputTexelToLinear( vec4 value ) {
 +
 +
if ( inputEncoding == 0 ) {
 +
 +
return value;
 +
 +
} else if ( inputEncoding == 1 ) {
 +
 +
return sRGBToLinear( value );
 +
 +
} else if ( inputEncoding == 2 ) {
 +
 +
return RGBEToLinear( value );
 +
 +
} else if ( inputEncoding == 3 ) {
 +
 +
return RGBMToLinear( value, 7.0 );
 +
 +
} else if ( inputEncoding == 4 ) {
 +
 +
return RGBMToLinear( value, 16.0 );
 +
 +
} else if ( inputEncoding == 5 ) {
 +
 +
return RGBDToLinear( value, 256.0 );
 +
 +
} else {
 +
 +
return GammaToLinear( value, 2.2 );
 +
 +
}
 +
 +
}
 +
 +
vec4 linearToOutputTexel( vec4 value ) {
 +
 +
if ( outputEncoding == 0 ) {
 +
 +
return value;
 +
 +
} else if ( outputEncoding == 1 ) {
 +
 +
return LinearTosRGB( value );
 +
 +
} else if ( outputEncoding == 2 ) {
 +
 +
return LinearToRGBE( value );
 +
 +
} else if ( outputEncoding == 3 ) {
 +
 +
return LinearToRGBM( value, 7.0 );
 +
 +
} else if ( outputEncoding == 4 ) {
 +
 +
return LinearToRGBM( value, 16.0 );
 +
 +
} else if ( outputEncoding == 5 ) {
 +
 +
return LinearToRGBD( value, 256.0 );
 +
 +
} else {
 +
 +
return LinearToGamma( value, 2.2 );
 +
 +
}
 +
 +
}
 +
 +
vec4 envMapTexelToLinear( vec4 color ) {
 +
 +
return inputTexelToLinear( color );
 +
 +
}
 +
`
 +
);
 +
}
 +
 +
const LineStrip = 0;
 +
const LinePieces = 1;
 +
const NoColors = 0;
 +
const FaceColors = 1;
 +
const VertexColors = 2;
 +
function MeshFaceMaterial(materials) {
 +
console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.');
 +
return materials;
 +
}
 +
function MultiMaterial(materials = []) {
 +
console.warn('THREE.MultiMaterial has been removed. Use an Array instead.');
 +
materials.isMultiMaterial = true;
 +
materials.materials = materials;
 +
 +
materials.clone = function () {
 +
return materials.slice();
 +
};
 +
 +
return materials;
 +
}
 +
function PointCloud(geometry, material) {
 +
console.warn('THREE.PointCloud has been renamed to THREE.Points.');
 +
return new Points(geometry, material);
 +
}
 +
function Particle(material) {
 +
console.warn('THREE.Particle has been renamed to THREE.Sprite.');
 +
return new Sprite(material);
 +
}
 +
function ParticleSystem(geometry, material) {
 +
console.warn('THREE.ParticleSystem has been renamed to THREE.Points.');
 +
return new Points(geometry, material);
 +
}
 +
function PointCloudMaterial(parameters) {
 +
console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.');
 +
return new PointsMaterial(parameters);
 +
}
 +
function ParticleBasicMaterial(parameters) {
 +
console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.');
 +
return new PointsMaterial(parameters);
 +
}
 +
function ParticleSystemMaterial(parameters) {
 +
console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.');
 +
return new PointsMaterial(parameters);
 +
}
 +
function Vertex(x, y, z) {
 +
console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.');
 +
return new Vector3(x, y, z);
 +
} //
 +
 +
function DynamicBufferAttribute(array, itemSize) {
 +
console.warn('THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.');
 +
return new BufferAttribute(array, itemSize).setUsage(DynamicDrawUsage);
 +
}
 +
function Int8Attribute(array, itemSize) {
 +
console.warn('THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.');
 +
return new Int8BufferAttribute(array, itemSize);
 +
}
 +
function Uint8Attribute(array, itemSize) {
 +
console.warn('THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.');
 +
return new Uint8BufferAttribute(array, itemSize);
 +
}
 +
function Uint8ClampedAttribute(array, itemSize) {
 +
console.warn('THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.');
 +
return new Uint8ClampedBufferAttribute(array, itemSize);
 +
}
 +
function Int16Attribute(array, itemSize) {
 +
console.warn('THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.');
 +
return new Int16BufferAttribute(array, itemSize);
 +
}
 +
function Uint16Attribute(array, itemSize) {
 +
console.warn('THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.');
 +
return new Uint16BufferAttribute(array, itemSize);
 +
}
 +
function Int32Attribute(array, itemSize) {
 +
console.warn('THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.');
 +
return new Int32BufferAttribute(array, itemSize);
 +
}
 +
function Uint32Attribute(array, itemSize) {
 +
console.warn('THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.');
 +
return new Uint32BufferAttribute(array, itemSize);
 +
}
 +
function Float32Attribute(array, itemSize) {
 +
console.warn('THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.');
 +
return new Float32BufferAttribute(array, itemSize);
 +
}
 +
function Float64Attribute(array, itemSize) {
 +
console.warn('THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.');
 +
return new Float64BufferAttribute(array, itemSize);
 +
} //
 +
 +
Curve.create = function (construct, getPoint) {
 +
console.log('THREE.Curve.create() has been deprecated');
 +
construct.prototype = Object.create(Curve.prototype);
 +
construct.prototype.constructor = construct;
 +
construct.prototype.getPoint = getPoint;
 +
return construct;
 +
}; //
 +
 +
 +
Path.prototype.fromPoints = function (points) {
 +
console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().');
 +
return this.setFromPoints(points);
 +
}; //
 +
 +
 +
function AxisHelper(size) {
 +
console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.');
 +
return new AxesHelper(size);
 +
}
 +
function BoundingBoxHelper(object, color) {
 +
console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.');
 +
return new BoxHelper(object, color);
 +
}
 +
function EdgesHelper(object, hex) {
 +
console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.');
 +
return new LineSegments(new EdgesGeometry(object.geometry), new LineBasicMaterial({
 +
color: hex !== undefined ? hex : 0xffffff
 +
}));
 +
}
 +
 +
GridHelper.prototype.setColors = function () {
 +
console.error('THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.');
 +
};
 +
 +
SkeletonHelper.prototype.update = function () {
 +
console.error('THREE.SkeletonHelper: update() no longer needs to be called.');
 +
};
 +
 +
function WireframeHelper(object, hex) {
 +
console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.');
 +
return new LineSegments(new WireframeGeometry(object.geometry), new LineBasicMaterial({
 +
color: hex !== undefined ? hex : 0xffffff
 +
}));
 +
} //
 +
 +
Loader.prototype.extractUrlBase = function (url) {
 +
console.warn('THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.');
 +
return LoaderUtils.extractUrlBase(url);
 +
};
 +
 +
Loader.Handlers = {
 +
add: function ()
 +
/* regex, loader */
 +
{
 +
console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.');
 +
},
 +
get: function ()
 +
/* file */
 +
{
 +
console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.');
 +
}
 +
};
 +
function XHRLoader(manager) {
 +
console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.');
 +
return new FileLoader(manager);
 +
}
 +
function BinaryTextureLoader(manager) {
 +
console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.');
 +
return new DataTextureLoader(manager);
 +
} //
 +
 +
Box2.prototype.center = function (optionalTarget) {
 +
console.warn('THREE.Box2: .center() has been renamed to .getCenter().');
 +
return this.getCenter(optionalTarget);
 +
};
 +
 +
Box2.prototype.empty = function () {
 +
console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().');
 +
return this.isEmpty();
 +
};
 +
 +
Box2.prototype.isIntersectionBox = function (box) {
 +
console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().');
 +
return this.intersectsBox(box);
 +
};
 +
 +
Box2.prototype.size = function (optionalTarget) {
 +
console.warn('THREE.Box2: .size() has been renamed to .getSize().');
 +
return this.getSize(optionalTarget);
 +
}; //
 +
 +
 +
Box3.prototype.center = function (optionalTarget) {
 +
console.warn('THREE.Box3: .center() has been renamed to .getCenter().');
 +
return this.getCenter(optionalTarget);
 +
};
 +
 +
Box3.prototype.empty = function () {
 +
console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().');
 +
return this.isEmpty();
 +
};
 +
 +
Box3.prototype.isIntersectionBox = function (box) {
 +
console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().');
 +
return this.intersectsBox(box);
 +
};
 +
 +
Box3.prototype.isIntersectionSphere = function (sphere) {
 +
console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().');
 +
return this.intersectsSphere(sphere);
 +
};
 +
 +
Box3.prototype.size = function (optionalTarget) {
 +
console.warn('THREE.Box3: .size() has been renamed to .getSize().');
 +
return this.getSize(optionalTarget);
 +
}; //
 +
 +
 +
Sphere.prototype.empty = function () {
 +
console.warn('THREE.Sphere: .empty() has been renamed to .isEmpty().');
 +
return this.isEmpty();
 +
}; //
 +
 +
 +
Frustum.prototype.setFromMatrix = function (m) {
 +
console.warn('THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().');
 +
return this.setFromProjectionMatrix(m);
 +
}; //
 +
 +
 +
Line3.prototype.center = function (optionalTarget) {
 +
console.warn('THREE.Line3: .center() has been renamed to .getCenter().');
 +
return this.getCenter(optionalTarget);
 +
}; //
 +
 +
 +
Matrix3.prototype.flattenToArrayOffset = function (array, offset) {
 +
console.warn('THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
 +
return this.toArray(array, offset);
 +
};
 +
 +
Matrix3.prototype.multiplyVector3 = function (vector) {
 +
console.warn('THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.');
 +
return vector.applyMatrix3(this);
 +
};
 +
 +
Matrix3.prototype.multiplyVector3Array = function ()
 +
/* a */
 +
{
 +
console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.');
 +
};
 +
 +
Matrix3.prototype.applyToBufferAttribute = function (attribute) {
 +
console.warn('THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.');
 +
return attribute.applyMatrix3(this);
 +
};
 +
 +
Matrix3.prototype.applyToVector3Array = function ()
 +
/* array, offset, length */
 +
{
 +
console.error('THREE.Matrix3: .applyToVector3Array() has been removed.');
 +
};
 +
 +
Matrix3.prototype.getInverse = function (matrix) {
 +
console.warn('THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
 +
return this.copy(matrix).invert();
 +
}; //
 +
 +
 +
Matrix4.prototype.extractPosition = function (m) {
 +
console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().');
 +
return this.copyPosition(m);
 +
};
 +
 +
Matrix4.prototype.flattenToArrayOffset = function (array, offset) {
 +
console.warn('THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
 +
return this.toArray(array, offset);
 +
};
 +
 +
Matrix4.prototype.getPosition = function () {
 +
console.warn('THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.');
 +
return new Vector3().setFromMatrixColumn(this, 3);
 +
};
 +
 +
Matrix4.prototype.setRotationFromQuaternion = function (q) {
 +
console.warn('THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().');
 +
return this.makeRotationFromQuaternion(q);
 +
};
 +
 +
Matrix4.prototype.multiplyToArray = function () {
 +
console.warn('THREE.Matrix4: .multiplyToArray() has been removed.');
 +
};
 +
 +
Matrix4.prototype.multiplyVector3 = function (vector) {
 +
console.warn('THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.');
 +
return vector.applyMatrix4(this);
 +
};
 +
 +
Matrix4.prototype.multiplyVector4 = function (vector) {
 +
console.warn('THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.');
 +
return vector.applyMatrix4(this);
 +
};
 +
 +
Matrix4.prototype.multiplyVector3Array = function ()
 +
/* a */
 +
{
 +
console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.');
 +
};
 +
 +
Matrix4.prototype.rotateAxis = function (v) {
 +
console.warn('THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.');
 +
v.transformDirection(this);
 +
};
 +
 +
Matrix4.prototype.crossVector = function (vector) {
 +
console.warn('THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.');
 +
return vector.applyMatrix4(this);
 +
};
 +
 +
Matrix4.prototype.translate = function () {
 +
console.error('THREE.Matrix4: .translate() has been removed.');
 +
};
 +
 +
Matrix4.prototype.rotateX = function () {
 +
console.error('THREE.Matrix4: .rotateX() has been removed.');
 +
};
 +
 +
Matrix4.prototype.rotateY = function () {
 +
console.error('THREE.Matrix4: .rotateY() has been removed.');
 +
};
 +
 +
Matrix4.prototype.rotateZ = function () {
 +
console.error('THREE.Matrix4: .rotateZ() has been removed.');
 +
};
 +
 +
Matrix4.prototype.rotateByAxis = function () {
 +
console.error('THREE.Matrix4: .rotateByAxis() has been removed.');
 +
};
 +
 +
Matrix4.prototype.applyToBufferAttribute = function (attribute) {
 +
console.warn('THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.');
 +
return attribute.applyMatrix4(this);
 +
};
 +
 +
Matrix4.prototype.applyToVector3Array = function ()
 +
/* array, offset, length */
 +
{
 +
console.error('THREE.Matrix4: .applyToVector3Array() has been removed.');
 +
};
 +
 +
Matrix4.prototype.makeFrustum = function (left, right, bottom, top, near, far) {
 +
console.warn('THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.');
 +
return this.makePerspective(left, right, top, bottom, near, far);
 +
};
 +
 +
Matrix4.prototype.getInverse = function (matrix) {
 +
console.warn('THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
 +
return this.copy(matrix).invert();
 +
}; //
 +
 +
 +
Plane.prototype.isIntersectionLine = function (line) {
 +
console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().');
 +
return this.intersectsLine(line);
 +
}; //
 +
 +
 +
Quaternion.prototype.multiplyVector3 = function (vector) {
 +
console.warn('THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.');
 +
return vector.applyQuaternion(this);
 +
};
 +
 +
Quaternion.prototype.inverse = function () {
 +
console.warn('THREE.Quaternion: .inverse() has been renamed to invert().');
 +
return this.invert();
 +
}; //
 +
 +
 +
Ray.prototype.isIntersectionBox = function (box) {
 +
console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().');
 +
return this.intersectsBox(box);
 +
};
 +
 +
Ray.prototype.isIntersectionPlane = function (plane) {
 +
console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().');
 +
return this.intersectsPlane(plane);
 +
};
 +
 +
Ray.prototype.isIntersectionSphere = function (sphere) {
 +
console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().');
 +
return this.intersectsSphere(sphere);
 +
}; //
 +
 +
 +
Triangle.prototype.area = function () {
 +
console.warn('THREE.Triangle: .area() has been renamed to .getArea().');
 +
return this.getArea();
 +
};
 +
 +
Triangle.prototype.barycoordFromPoint = function (point, target) {
 +
console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
 +
return this.getBarycoord(point, target);
 +
};
 +
 +
Triangle.prototype.midpoint = function (target) {
 +
console.warn('THREE.Triangle: .midpoint() has been renamed to .getMidpoint().');
 +
return this.getMidpoint(target);
 +
};
 +
 +
Triangle.prototypenormal = function (target) {
 +
console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
 +
return this.getNormal(target);
 +
};
 +
 +
Triangle.prototype.plane = function (target) {
 +
console.warn('THREE.Triangle: .plane() has been renamed to .getPlane().');
 +
return this.getPlane(target);
 +
};
 +
 +
Triangle.barycoordFromPoint = function (point, a, b, c, target) {
 +
console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
 +
return Triangle.getBarycoord(point, a, b, c, target);
 +
};
 +
 +
Triangle.normal = function (a, b, c, target) {
 +
console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
 +
return Triangle.getNormal(a, b, c, target);
 +
}; //
 +
 +
 +
Shape.prototype.extractAllPoints = function (divisions) {
 +
console.warn('THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.');
 +
return this.extractPoints(divisions);
 +
};
 +
 +
Shape.prototype.extrude = function (options) {
 +
console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.');
 +
return new ExtrudeGeometry(this, options);
 +
};
 +
 +
Shape.prototype.makeGeometry = function (options) {
 +
console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.');
 +
return new ShapeGeometry(this, options);
 +
}; //
 +
 +
 +
Vector2.prototype.fromAttribute = function (attribute, index, offset) {
 +
console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().');
 +
return this.fromBufferAttribute(attribute, index, offset);
 +
};
 +
 +
Vector2.prototype.distanceToManhattan = function (v) {
 +
console.warn('THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
 +
return this.manhattanDistanceTo(v);
 +
};
 +
 +
Vector2.prototype.lengthManhattan = function () {
 +
console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().');
 +
return this.manhattanLength();
 +
}; //
 +
 +
 +
Vector3.prototype.setEulerFromRotationMatrix = function () {
 +
console.error('THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.');
 +
};
 +
 +
Vector3.prototype.setEulerFromQuaternion = function () {
 +
console.error('THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.');
 +
};
 +
 +
Vector3.prototype.getPositionFromMatrix = function (m) {
 +
console.warn('THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().');
 +
return this.setFromMatrixPosition(m);
 +
};
 +
 +
Vector3.prototype.getScaleFromMatrix = function (m) {
 +
console.warn('THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().');
 +
return this.setFromMatrixScale(m);
 +
};
 +
 +
Vector3.prototype.getColumnFromMatrix = function (index, matrix) {
 +
console.warn('THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().');
 +
return this.setFromMatrixColumn(matrix, index);
 +
};
 +
 +
Vector3.prototype.applyProjection = function (m) {
 +
console.warn('THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.');
 +
return this.applyMatrix4(m);
 +
};
 +
 +
Vector3.prototype.fromAttribute = function (attribute, index, offset) {
 +
console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().');
 +
return this.fromBufferAttribute(attribute, index, offset);
 +
};
 +
 +
Vector3.prototype.distanceToManhattan = function (v) {
 +
console.warn('THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
 +
return this.manhattanDistanceTo(v);
 +
};
 +
 +
Vector3.prototype.lengthManhattan = function () {
 +
console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().');
 +
return this.manhattanLength();
 +
}; //
 +
 +
 +
Vector4.prototype.fromAttribute = function (attribute, index, offset) {
 +
console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().');
 +
return this.fromBufferAttribute(attribute, index, offset);
 +
};
 +
 +
Vector4.prototype.lengthManhattan = function () {
 +
console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().');
 +
return this.manhattanLength();
 +
}; //
 +
 +
 +
Object3D.prototype.getChildByName = function (name) {
 +
console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().');
 +
return this.getObjectByName(name);
 +
};
 +
 +
Object3D.prototype.renderDepth = function () {
 +
console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.');
 +
};
 +
 +
Object3D.prototype.translate = function (distance, axis) {
 +
console.warn('THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.');
 +
return this.translateOnAxis(axis, distance);
 +
};
 +
 +
Object3D.prototype.getWorldRotation = function () {
 +
console.error('THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.');
 +
};
 +
 +
Object3D.prototype.applyMatrix = function (matrix) {
 +
console.warn('THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().');
 +
return this.applyMatrix4(matrix);
 +
};
 +
 +
Object.defineProperties(Object3D.prototype, {
 +
eulerOrder: {
 +
get: function () {
 +
console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
 +
return this.rotation.order;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
 +
this.rotation.order = value;
 +
}
 +
},
 +
useQuaternion: {
 +
get: function () {
 +
console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
 +
},
 +
set: function () {
 +
console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
 +
}
 +
}
 +
});
 +
 +
Mesh.prototype.setDrawMode = function () {
 +
console.error('THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
 +
};
 +
 +
Object.defineProperties(Mesh.prototype, {
 +
drawMode: {
 +
get: function () {
 +
console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.');
 +
return TrianglesDrawMode;
 +
},
 +
set: function () {
 +
console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
 +
}
 +
}
 +
});
 +
 +
SkinnedMesh.prototype.initBones = function () {
 +
console.error('THREE.SkinnedMesh: initBones() has been removed.');
 +
}; //
 +
 +
 +
PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) {
 +
console.warn('THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.');
 +
if (filmGauge !== undefined) this.filmGauge = filmGauge;
 +
this.setFocalLength(focalLength);
 +
}; //
 +
 +
 +
Object.defineProperties(Light.prototype, {
 +
onlyShadow: {
 +
set: function () {
 +
console.warn('THREE.Light: .onlyShadow has been removed.');
 +
}
 +
},
 +
shadowCameraFov: {
 +
set: function (value) {
 +
console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.');
 +
this.shadow.camera.fov = value;
 +
}
 +
},
 +
shadowCameraLeft: {
 +
set: function (value) {
 +
console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.');
 +
this.shadow.camera.left = value;
 +
}
 +
},
 +
shadowCameraRight: {
 +
set: function (value) {
 +
console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.');
 +
this.shadow.camera.right = value;
 +
}
 +
},
 +
shadowCameraTop: {
 +
set: function (value) {
 +
console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.');
 +
this.shadow.camera.top = value;
 +
}
 +
},
 +
shadowCameraBottom: {
 +
set: function (value) {
 +
console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.');
 +
this.shadow.camera.bottom = value;
 +
}
 +
},
 +
shadowCameraNear: {
 +
set: function (value) {
 +
console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.');
 +
this.shadow.camera.near = value;
 +
}
 +
},
 +
shadowCameraFar: {
 +
set: function (value) {
 +
console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.');
 +
this.shadow.camera.far = value;
 +
}
 +
},
 +
shadowCameraVisible: {
 +
set: function () {
 +
console.warn('THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.');
 +
}
 +
},
 +
shadowBias: {
 +
set: function (value) {
 +
console.warn('THREE.Light: .shadowBias is now .shadow.bias.');
 +
this.shadow.bias = value;
 +
}
 +
},
 +
shadowDarkness: {
 +
set: function () {
 +
console.warn('THREE.Light: .shadowDarkness has been removed.');
 +
}
 +
},
 +
shadowMapWidth: {
 +
set: function (value) {
 +
console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.');
 +
this.shadow.mapSize.width = value;
 +
}
 +
},
 +
shadowMapHeight: {
 +
set: function (value) {
 +
console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.');
 +
this.shadow.mapSize.height = value;
 +
}
 +
}
 +
}); //
 +
 +
Object.defineProperties(BufferAttribute.prototype, {
 +
length: {
 +
get: function () {
 +
console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.');
 +
return this.array.length;
 +
}
 +
},
 +
dynamic: {
 +
get: function () {
 +
console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
 +
return this.usage === DynamicDrawUsage;
 +
},
 +
set: function ()
 +
/* value */
 +
{
 +
console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
 +
this.setUsage(DynamicDrawUsage);
 +
}
 +
}
 +
});
 +
 +
BufferAttribute.prototype.setDynamic = function (value) {
 +
console.warn('THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.');
 +
this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
 +
return this;
 +
};
 +
 +
BufferAttribute.prototype.copyIndicesArray = function ()
 +
/* indices */
 +
{
 +
console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.');
 +
}, BufferAttribute.prototype.setArray = function ()
 +
/* array */
 +
{
 +
console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
 +
}; //
 +
 +
BufferGeometry.prototype.addIndex = function (index) {
 +
console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().');
 +
this.setIndex(index);
 +
};
 +
 +
BufferGeometry.prototype.addAttribute = function (name, attribute) {
 +
console.warn('THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().');
 +
 +
if (!(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute)) {
 +
console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).');
 +
return this.setAttribute(name, new BufferAttribute(arguments[1], arguments[2]));
 +
}
 +
 +
if (name === 'index') {
 +
console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.');
 +
this.setIndex(attribute);
 +
return this;
 +
}
 +
 +
return this.setAttribute(name, attribute);
 +
};
 +
 +
BufferGeometry.prototype.addDrawCall = function (start, count, indexOffset) {
 +
if (indexOffset !== undefined) {
 +
console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.');
 +
}
 +
 +
console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().');
 +
this.addGroup(start, count);
 +
};
 +
 +
BufferGeometry.prototype.clearDrawCalls = function () {
 +
console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().');
 +
this.clearGroups();
 +
};
 +
 +
BufferGeometry.prototype.computeOffsets = function () {
 +
console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.');
 +
};
 +
 +
BufferGeometry.prototype.removeAttribute = function (name) {
 +
console.warn('THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().');
 +
return this.deleteAttribute(name);
 +
};
 +
 +
BufferGeometry.prototype.applyMatrix = function (matrix) {
 +
console.warn('THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().');
 +
return this.applyMatrix4(matrix);
 +
};
 +
 +
Object.defineProperties(BufferGeometry.prototype, {
 +
drawcalls: {
 +
get: function () {
 +
console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.');
 +
return this.groups;
 +
}
 +
},
 +
offsets: {
 +
get: function () {
 +
console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.');
 +
return this.groups;
 +
}
 +
}
 +
});
 +
 +
InterleavedBuffer.prototype.setDynamic = function (value) {
 +
console.warn('THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.');
 +
this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
 +
return this;
 +
};
 +
 +
InterleavedBuffer.prototype.setArray = function ()
 +
/* array */
 +
{
 +
console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
 +
}; //
 +
 +
 +
ExtrudeGeometry.prototype.getArrays = function () {
 +
console.error('THREE.ExtrudeGeometry: .getArrays() has been removed.');
 +
};
 +
 +
ExtrudeGeometry.prototype.addShapeList = function () {
 +
console.error('THREE.ExtrudeGeometry: .addShapeList() has been removed.');
 +
};
 +
 +
ExtrudeGeometry.prototype.addShape = function () {
 +
console.error('THREE.ExtrudeGeometry: .addShape() has been removed.');
 +
}; //
 +
 +
 +
Scene.prototype.dispose = function () {
 +
console.error('THREE.Scene: .dispose() has been removed.');
 +
}; //
 +
 +
 +
Uniform.prototype.onUpdate = function () {
 +
console.warn('THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.');
 +
return this;
 +
}; //
 +
 +
 +
Object.defineProperties(Material.prototype, {
 +
wrapAround: {
 +
get: function () {
 +
console.warn('THREE.Material: .wrapAround has been removed.');
 +
},
 +
set: function () {
 +
console.warn('THREE.Material: .wrapAround has been removed.');
 +
}
 +
},
 +
overdraw: {
 +
get: function () {
 +
console.warn('THREE.Material: .overdraw has been removed.');
 +
},
 +
set: function () {
 +
console.warn('THREE.Material: .overdraw has been removed.');
 +
}
 +
},
 +
wrapRGB: {
 +
get: function () {
 +
console.warn('THREE.Material: .wrapRGB has been removed.');
 +
return new Color();
 +
}
 +
},
 +
shading: {
 +
get: function () {
 +
console.error('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
 +
},
 +
set: function (value) {
 +
console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
 +
this.flatShading = value === FlatShading;
 +
}
 +
},
 +
stencilMask: {
 +
get: function () {
 +
console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
 +
return this.stencilFuncMask;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
 +
this.stencilFuncMask = value;
 +
}
 +
}
 +
});
 +
Object.defineProperties(ShaderMaterial.prototype, {
 +
derivatives: {
 +
get: function () {
 +
console.warn('THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
 +
return this.extensions.derivatives;
 +
},
 +
set: function (value) {
 +
console.warn('THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
 +
this.extensions.derivatives = value;
 +
}
 +
}
 +
}); //
 +
 +
WebGLRenderer.prototype.clearTarget = function (renderTarget, color, depth, stencil) {
 +
console.warn('THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.');
 +
this.setRenderTarget(renderTarget);
 +
this.clear(color, depth, stencil);
 +
};
 +
 +
WebGLRenderer.prototype.animate = function (callback) {
 +
console.warn('THREE.WebGLRenderer: .animate() is now .setAnimationLoop().');
 +
this.setAnimationLoop(callback);
 +
};
 +
 +
WebGLRenderer.prototype.getCurrentRenderTarget = function () {
 +
console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().');
 +
return this.getRenderTarget();
 +
};
 +
 +
WebGLRenderer.prototype.getMaxAnisotropy = function () {
 +
console.warn('THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().');
 +
return this.capabilities.getMaxAnisotropy();
 +
};
 +
 +
WebGLRenderer.prototype.getPrecision = function () {
 +
console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.');
 +
return this.capabilities.precision;
 +
};
 +
 +
WebGLRenderer.prototype.resetGLState = function () {
 +
console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().');
 +
return this.state.reset();
 +
};
 +
 +
WebGLRenderer.prototype.supportsFloatTextures = function () {
 +
console.warn('THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).');
 +
return this.extensions.get('OES_texture_float');
 +
};
 +
 +
WebGLRenderer.prototype.supportsHalfFloatTextures = function () {
 +
console.warn('THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).');
 +
return this.extensions.get('OES_texture_half_float');
 +
};
 +
 +
WebGLRenderer.prototype.supportsStandardDerivatives = function () {
 +
console.warn('THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).');
 +
return this.extensions.get('OES_standard_derivatives');
 +
};
 +
 +
WebGLRenderer.prototype.supportsCompressedTextureS3TC = function () {
 +
console.warn('THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).');
 +
return this.extensions.get('WEBGL_compressed_texture_s3tc');
 +
};
 +
 +
WebGLRenderer.prototype.supportsCompressedTexturePVRTC = function () {
 +
console.warn('THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).');
 +
return this.extensions.get('WEBGL_compressed_texture_pvrtc');
 +
};
 +
 +
WebGLRenderer.prototype.supportsBlendMinMax = function () {
 +
console.warn('THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).');
 +
return this.extensions.get('EXT_blend_minmax');
 +
};
 +
 +
WebGLRenderer.prototype.supportsVertexTextures = function () {
 +
console.warn('THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.');
 +
return this.capabilities.vertexTextures;
 +
};
 +
 +
WebGLRenderer.prototype.supportsInstancedArrays = function () {
 +
console.warn('THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).');
 +
return this.extensions.get('ANGLE_instanced_arrays');
 +
};
 +
 +
WebGLRenderer.prototype.enableScissorTest = function (boolean) {
 +
console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().');
 +
this.setScissorTest(boolean);
 +
};
 +
 +
WebGLRenderer.prototype.initMaterial = function () {
 +
console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.');
 +
};
 +
 +
WebGLRenderer.prototype.addPrePlugin = function () {
 +
console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.');
 +
};
 +
 +
WebGLRenderer.prototype.addPostPlugin = function () {
 +
console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.');
 +
};
 +
 +
WebGLRenderer.prototype.updateShadowMap = function () {
 +
console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.');
 +
};
 +
 +
WebGLRenderer.prototype.setFaceCulling = function () {
 +
console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.');
 +
};
 +
 +
WebGLRenderer.prototype.allocTextureUnit = function () {
 +
console.warn('THREE.WebGLRenderer: .allocTextureUnit() has been removed.');
 +
};
 +
 +
WebGLRenderer.prototype.setTexture = function () {
 +
console.warn('THREE.WebGLRenderer: .setTexture() has been removed.');
 +
};
 +
 +
WebGLRenderer.prototype.setTexture2D = function () {
 +
console.warn('THREE.WebGLRenderer: .setTexture2D() has been removed.');
 +
};
 +
 +
WebGLRenderer.prototype.setTextureCube = function () {
 +
console.warn('THREE.WebGLRenderer: .setTextureCube() has been removed.');
 +
};
 +
 +
WebGLRenderer.prototype.getActiveMipMapLevel = function () {
 +
console.warn('THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().');
 +
return this.getActiveMipmapLevel();
 +
};
 +
 +
Object.defineProperties(WebGLRenderer.prototype, {
 +
shadowMapEnabled: {
 +
get: function () {
 +
return this.shadowMap.enabled;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.');
 +
this.shadowMap.enabled = value;
 +
}
 +
},
 +
shadowMapType: {
 +
get: function () {
 +
return this.shadowMap.type;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.');
 +
this.shadowMap.type = value;
 +
}
 +
},
 +
shadowMapCullFace: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
 +
return undefined;
 +
},
 +
set: function ()
 +
/* value */
 +
{
 +
console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
 +
}
 +
},
 +
context: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.');
 +
return this.getContext();
 +
}
 +
},
 +
vr: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderer: .vr has been renamed to .xr');
 +
return this.xr;
 +
}
 +
},
 +
gammaInput: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
 +
return false;
 +
},
 +
set: function () {
 +
console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
 +
}
 +
},
 +
gammaOutput: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
 +
return false;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
 +
this.outputEncoding = value === true ? sRGBEncoding : LinearEncoding;
 +
}
 +
},
 +
toneMappingWhitePoint: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
 +
return 1.0;
 +
},
 +
set: function () {
 +
console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
 +
}
 +
}
 +
});
 +
Object.defineProperties(WebGLShadowMap.prototype, {
 +
cullFace: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
 +
return undefined;
 +
},
 +
set: function ()
 +
/* cullFace */
 +
{
 +
console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
 +
}
 +
},
 +
renderReverseSided: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
 +
return undefined;
 +
},
 +
set: function () {
 +
console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
 +
}
 +
},
 +
renderSingleSided: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
 +
return undefined;
 +
},
 +
set: function () {
 +
console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
 +
}
 +
}
 +
});
 +
function WebGLRenderTargetCube(width, height, options) {
 +
console.warn('THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).');
 +
return new WebGLCubeRenderTarget(width, options);
 +
} //
 +
 +
Object.defineProperties(WebGLRenderTarget.prototype, {
 +
wrapS: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
 +
return this.texture.wrapS;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
 +
this.texture.wrapS = value;
 +
}
 +
},
 +
wrapT: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
 +
return this.texture.wrapT;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
 +
this.texture.wrapT = value;
 +
}
 +
},
 +
magFilter: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
 +
return this.texture.magFilter;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
 +
this.texture.magFilter = value;
 +
}
 +
},
 +
minFilter: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
 +
return this.texture.minFilter;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
 +
this.texture.minFilter = value;
 +
}
 +
},
 +
anisotropy: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
 +
return this.texture.anisotropy;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
 +
this.texture.anisotropy = value;
 +
}
 +
},
 +
offset: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
 +
return this.texture.offset;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
 +
this.texture.offset = value;
 +
}
 +
},
 +
repeat: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
 +
return this.texture.repeat;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
 +
this.texture.repeat = value;
 +
}
 +
},
 +
format: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
 +
return this.texture.format;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
 +
this.texture.format = value;
 +
}
 +
},
 +
type: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
 +
return this.texture.type;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
 +
this.texture.type = value;
 +
}
 +
},
 +
generateMipmaps: {
 +
get: function () {
 +
console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
 +
return this.texture.generateMipmaps;
 +
},
 +
set: function (value) {
 +
console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
 +
this.texture.generateMipmaps = value;
 +
}
 +
}
 +
}); //
 +
 +
Audio.prototype.load = function (file) {
 +
console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.');
 +
const scope = this;
 +
const audioLoader = new AudioLoader();
 +
audioLoader.load(file, function (buffer) {
 +
scope.setBuffer(buffer);
 +
});
 +
return this;
 +
};
 +
 +
AudioAnalyser.prototype.getData = function () {
 +
console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().');
 +
return this.getFrequencyData();
 +
}; //
 +
 +
 +
CubeCamera.prototype.updateCubeMap = function (renderer, scene) {
 +
console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().');
 +
return this.update(renderer, scene);
 +
};
 +
 +
CubeCamera.prototype.clear = function (renderer, color, depth, stencil) {
 +
console.warn('THREE.CubeCamera: .clear() is now .renderTarget.clear().');
 +
return this.renderTarget.clear(renderer, color, depth, stencil);
 +
};
 +
 +
ImageUtils.crossOrigin = undefined;
 +
 +
ImageUtils.loadTexture = function (url, mapping, onLoad, onError) {
 +
console.warn('THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.');
 +
const loader = new TextureLoader();
 +
loader.setCrossOrigin(this.crossOrigin);
 +
const texture = loader.load(url, onLoad, undefined, onError);
 +
if (mapping) texture.mapping = mapping;
 +
return texture;
 +
};
 +
 +
ImageUtils.loadTextureCube = function (urls, mapping, onLoad, onError) {
 +
console.warn('THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.');
 +
const loader = new CubeTextureLoader();
 +
loader.setCrossOrigin(this.crossOrigin);
 +
const texture = loader.load(urls, onLoad, undefined, onError);
 +
if (mapping) texture.mapping = mapping;
 +
return texture;
 +
};
 +
 +
ImageUtils.loadCompressedTexture = function () {
 +
console.error('THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.');
 +
};
 +
 +
ImageUtils.loadCompressedTextureCube = function () {
 +
console.error('THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.');
 +
}; //
 +
 +
 +
function CanvasRenderer() {
 +
console.error('THREE.CanvasRenderer has been removed');
 +
} //
 +
 +
function JSONLoader() {
 +
console.error('THREE.JSONLoader has been removed.');
 +
} //
 +
 +
const SceneUtils = {
 +
createMultiMaterialObject: function ()
 +
/* geometry, materials */
 +
{
 +
console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
 +
},
 +
detach: function ()
 +
/* child, parent, scene */
 +
{
 +
console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
 +
},
 +
attach: function ()
 +
/* child, scene, parent */
 +
{
 +
console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
 +
}
 +
}; //
 +
 +
function LensFlare() {
 +
console.error('THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js');
 +
}
 +
 +
if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
 +
/* eslint-disable no-undef */
 +
__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('register', {
 +
detail: {
 +
revision: REVISION
 +
}
 +
}));
 +
/* eslint-enable no-undef */
 +
 +
}
 +
 +
if (typeof window !== 'undefined') {
 +
if (window.__THREE__) {
 +
console.warn('WARNING: Multiple instances of Three.js being imported.');
 +
} else {
 +
window.__THREE__ = REVISION;
 +
}
 +
}
 +
 +
exports.ACESFilmicToneMapping = ACESFilmicToneMapping;
 +
exports.AddEquation = AddEquation;
 +
exports.AddOperation = AddOperation;
 +
exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode;
 +
exports.AdditiveBlending = AdditiveBlending;
 +
exports.AlphaFormat = AlphaFormat;
 +
exports.AlwaysDepth = AlwaysDepth;
 +
exports.AlwaysStencilFunc = AlwaysStencilFunc;
 +
exports.AmbientLight = AmbientLight;
 +
exports.AmbientLightProbe = AmbientLightProbe;
 +
exports.AnimationClip = AnimationClip;
 +
exports.AnimationLoader = AnimationLoader;
 +
exports.AnimationMixer = AnimationMixer;
 +
exports.AnimationObjectGroup = AnimationObjectGroup;
 +
exports.AnimationUtils = AnimationUtils;
 +
exports.ArcCurve = ArcCurve;
 +
exports.ArrayCamera = ArrayCamera;
 +
exports.ArrowHelper = ArrowHelper;
 +
exports.Audio = Audio;
 +
exports.AudioAnalyser = AudioAnalyser;
 +
exports.AudioContext = AudioContext;
 +
exports.AudioListener = AudioListener;
 +
exports.AudioLoader = AudioLoader;
 +
exports.AxesHelper = AxesHelper;
 +
exports.AxisHelper = AxisHelper;
 +
exports.BackSide = BackSide;
 +
exports.BasicDepthPacking = BasicDepthPacking;
 +
exports.BasicShadowMap = BasicShadowMap;
 +
exports.BinaryTextureLoader = BinaryTextureLoader;
 +
exports.Bone = Bone;
 +
exports.BooleanKeyframeTrack = BooleanKeyframeTrack;
 +
exports.BoundingBoxHelper = BoundingBoxHelper;
 +
exports.Box2 = Box2;
 +
exports.Box3 = Box3;
 +
exports.Box3Helper = Box3Helper;
 +
exports.BoxBufferGeometry = BoxGeometry;
 +
exports.BoxGeometry = BoxGeometry;
 +
exports.BoxHelper = BoxHelper;
 +
exports.BufferAttribute = BufferAttribute;
 +
exports.BufferGeometry = BufferGeometry;
 +
exports.BufferGeometryLoader = BufferGeometryLoader;
 +
exports.ByteType = ByteType;
 +
exports.Cache = Cache;
 +
exports.Camera = Camera;
 +
exports.CameraHelper = CameraHelper;
 +
exports.CanvasRenderer = CanvasRenderer;
 +
exports.CanvasTexture = CanvasTexture;
 +
exports.CatmullRomCurve3 = CatmullRomCurve3;
 +
exports.CineonToneMapping = CineonToneMapping;
 +
exports.CircleBufferGeometry = CircleGeometry;
 +
exports.CircleGeometry = CircleGeometry;
 +
exports.ClampToEdgeWrapping = ClampToEdgeWrapping;
 +
exports.Clock = Clock;
 +
exports.Color = Color;
 +
exports.ColorKeyframeTrack = ColorKeyframeTrack;
 +
exports.CompressedTexture = CompressedTexture;
 +
exports.CompressedTextureLoader = CompressedTextureLoader;
 +
exports.ConeBufferGeometry = ConeGeometry;
 +
exports.ConeGeometry = ConeGeometry;
 +
exports.CubeCamera = CubeCamera;
 +
exports.CubeReflectionMapping = CubeReflectionMapping;
 +
exports.CubeRefractionMapping = CubeRefractionMapping;
 +
exports.CubeTexture = CubeTexture;
 +
exports.CubeTextureLoader = CubeTextureLoader;
 +
exports.CubeUVReflectionMapping = CubeUVReflectionMapping;
 +
exports.CubeUVRefractionMapping = CubeUVRefractionMapping;
 +
exports.CubicBezierCurve = CubicBezierCurve;
 +
exports.CubicBezierCurve3 = CubicBezierCurve3;
 +
exports.CubicInterpolant = CubicInterpolant;
 +
exports.CullFaceBack = CullFaceBack;
 +
exports.CullFaceFront = CullFaceFront;
 +
exports.CullFaceFrontBack = CullFaceFrontBack;
 +
exports.CullFaceNone = CullFaceNone;
 +
exports.Curve = Curve;
 +
exports.CurvePath = CurvePath;
 +
exports.CustomBlending = CustomBlending;
 +
exports.CustomToneMapping = CustomToneMapping;
 +
exports.CylinderBufferGeometry = CylinderGeometry;
 +
exports.CylinderGeometry = CylinderGeometry;
 +
exports.Cylindrical = Cylindrical;
 +
exports.DataTexture = DataTexture;
 +
exports.DataTexture2DArray = DataTexture2DArray;
 +
exports.DataTexture3D = DataTexture3D;
 +
exports.DataTextureLoader = DataTextureLoader;
 +
exports.DataUtils = DataUtils;
 +
exports.DecrementStencilOp = DecrementStencilOp;
 +
exports.DecrementWrapStencilOp = DecrementWrapStencilOp;
 +
exports.DefaultLoadingManager = DefaultLoadingManager;
 +
exports.DepthFormat = DepthFormat;
 +
exports.DepthStencilFormat = DepthStencilFormat;
 +
exports.DepthTexture = DepthTexture;
 +
exports.DirectionalLight = DirectionalLight;
 +
exports.DirectionalLightHelper = DirectionalLightHelper;
 +
exports.DiscreteInterpolant = DiscreteInterpolant;
 +
exports.DodecahedronBufferGeometry = DodecahedronGeometry;
 +
exports.DodecahedronGeometry = DodecahedronGeometry;
 +
exports.DoubleSide = DoubleSide;
 +
exports.DstAlphaFactor = DstAlphaFactor;
 +
exports.DstColorFactor = DstColorFactor;
 +
exports.DynamicBufferAttribute = DynamicBufferAttribute;
 +
exports.DynamicCopyUsage = DynamicCopyUsage;
 +
exports.DynamicDrawUsage = DynamicDrawUsage;
 +
exports.DynamicReadUsage = DynamicReadUsage;
 +
exports.EdgesGeometry = EdgesGeometry;
 +
exports.EdgesHelper = EdgesHelper;
 +
exports.EllipseCurve = EllipseCurve;
 +
exports.EqualDepth = EqualDepth;
 +
exports.EqualStencilFunc = EqualStencilFunc;
 +
exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping;
 +
exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping;
 +
exports.Euler = Euler;
 +
exports.EventDispatcher = EventDispatcher;
 +
exports.ExtrudeBufferGeometry = ExtrudeGeometry;
 +
exports.ExtrudeGeometry = ExtrudeGeometry;
 +
exports.FaceColors = FaceColors;
 +
exports.FileLoader = FileLoader;
 +
exports.FlatShading = FlatShading;
 +
exports.Float16BufferAttribute = Float16BufferAttribute;
 +
exports.Float32Attribute = Float32Attribute;
 +
exports.Float32BufferAttribute = Float32BufferAttribute;
 +
exports.Float64Attribute = Float64Attribute;
 +
exports.Float64BufferAttribute = Float64BufferAttribute;
 +
exports.FloatType = FloatType;
 +
exports.Fog = Fog;
 +
exports.FogExp2 = FogExp2;
 +
exports.Font = Font;
 +
exports.FontLoader = FontLoader;
 +
exports.FrontSide = FrontSide;
 +
exports.Frustum = Frustum;
 +
exports.GLBufferAttribute = GLBufferAttribute;
 +
exports.GLSL1 = GLSL1;
 +
exports.GLSL3 = GLSL3;
 +
exports.GammaEncoding = GammaEncoding;
 +
exports.GreaterDepth = GreaterDepth;
 +
exports.GreaterEqualDepth = GreaterEqualDepth;
 +
exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc;
 +
exports.GreaterStencilFunc = GreaterStencilFunc;
 +
exports.GridHelper = GridHelper;
 +
exports.Group = Group;
 +
exports.HalfFloatType = HalfFloatType;
 +
exports.HemisphereLight = HemisphereLight;
 +
exports.HemisphereLightHelper = HemisphereLightHelper;
 +
exports.HemisphereLightProbe = HemisphereLightProbe;
 +
exports.IcosahedronBufferGeometry = IcosahedronGeometry;
 +
exports.IcosahedronGeometry = IcosahedronGeometry;
 +
exports.ImageBitmapLoader = ImageBitmapLoader;
 +
exports.ImageLoader = ImageLoader;
 +
exports.ImageUtils = ImageUtils;
 +
exports.ImmediateRenderObject = ImmediateRenderObject;
 +
exports.IncrementStencilOp = IncrementStencilOp;
 +
exports.IncrementWrapStencilOp = IncrementWrapStencilOp;
 +
exports.InstancedBufferAttribute = InstancedBufferAttribute;
 +
exports.InstancedBufferGeometry = InstancedBufferGeometry;
 +
exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer;
 +
exports.InstancedMesh = InstancedMesh;
 +
exports.Int16Attribute = Int16Attribute;
 +
exports.Int16BufferAttribute = Int16BufferAttribute;
 +
exports.Int32Attribute = Int32Attribute;
 +
exports.Int32BufferAttribute = Int32BufferAttribute;
 +
exports.Int8Attribute = Int8Attribute;
 +
exports.Int8BufferAttribute = Int8BufferAttribute;
 +
exports.IntType = IntType;
 +
exports.InterleavedBuffer = InterleavedBuffer;
 +
exports.InterleavedBufferAttribute = InterleavedBufferAttribute;
 +
exports.Interpolant = Interpolant;
 +
exports.InterpolateDiscrete = InterpolateDiscrete;
 +
exports.InterpolateLinear = InterpolateLinear;
 +
exports.InterpolateSmooth = InterpolateSmooth;
 +
exports.InvertStencilOp = InvertStencilOp;
 +
exports.JSONLoader = JSONLoader;
 +
exports.KeepStencilOp = KeepStencilOp;
 +
exports.KeyframeTrack = KeyframeTrack;
 +
exports.LOD = LOD;
 +
exports.LatheBufferGeometry = LatheGeometry;
 +
exports.LatheGeometry = LatheGeometry;
 +
exports.Layers = Layers;
 +
exports.LensFlare = LensFlare;
 +
exports.LessDepth = LessDepth;
 +
exports.LessEqualDepth = LessEqualDepth;
 +
exports.LessEqualStencilFunc = LessEqualStencilFunc;
 +
exports.LessStencilFunc = LessStencilFunc;
 +
exports.Light = Light;
 +
exports.LightProbe = LightProbe;
 +
exports.Line = Line;
 +
exports.Line3 = Line3;
 +
exports.LineBasicMaterial = LineBasicMaterial;
 +
exports.LineCurve = LineCurve;
 +
exports.LineCurve3 = LineCurve3;
 +
exports.LineDashedMaterial = LineDashedMaterial;
 +
exports.LineLoop = LineLoop;
 +
exports.LinePieces = LinePieces;
 +
exports.LineSegments = LineSegments;
 +
exports.LineStrip = LineStrip;
 +
exports.LinearEncoding = LinearEncoding;
 +
exports.LinearFilter = LinearFilter;
 +
exports.LinearInterpolant = LinearInterpolant;
 +
exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter;
 +
exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter;
 +
exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter;
 +
exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter;
 +
exports.LinearToneMapping = LinearToneMapping;
 +
exports.Loader = Loader;
 +
exports.LoaderUtils = LoaderUtils;
 +
exports.LoadingManager = LoadingManager;
 +
exports.LogLuvEncoding = LogLuvEncoding;
 +
exports.LoopOnce = LoopOnce;
 +
exports.LoopPingPong = LoopPingPong;
 +
exports.LoopRepeat = LoopRepeat;
 +
exports.LuminanceAlphaFormat = LuminanceAlphaFormat;
 +
exports.LuminanceFormat = LuminanceFormat;
 +
exports.MOUSE = MOUSE;
 +
exports.Material = Material;
 +
exports.MaterialLoader = MaterialLoader;
 +
exports.Math = MathUtils;
 +
exports.MathUtils = MathUtils;
 +
exports.Matrix3 = Matrix3;
 +
exports.Matrix4 = Matrix4;
 +
exports.MaxEquation = MaxEquation;
 +
exports.Mesh = Mesh;
 +
exports.MeshBasicMaterial = MeshBasicMaterial;
 +
exports.MeshDepthMaterial = MeshDepthMaterial;
 +
exports.MeshDistanceMaterial = MeshDistanceMaterial;
 +
exports.MeshFaceMaterial = MeshFaceMaterial;
 +
exports.MeshLambertMaterial = MeshLambertMaterial;
 +
exports.MeshMatcapMaterial = MeshMatcapMaterial;
 +
exports.MeshNormalMaterial = MeshNormalMaterial;
 +
exports.MeshPhongMaterial = MeshPhongMaterial;
 +
exports.MeshPhysicalMaterial = MeshPhysicalMaterial;
 +
exports.MeshStandardMaterial = MeshStandardMaterial;
 +
exports.MeshToonMaterial = MeshToonMaterial;
 +
exports.MinEquation = MinEquation;
 +
exports.MirroredRepeatWrapping = MirroredRepeatWrapping;
 +
exports.MixOperation = MixOperation;
 +
exports.MultiMaterial = MultiMaterial;
 +
exports.MultiplyBlending = MultiplyBlending;
 +
exports.MultiplyOperation = MultiplyOperation;
 +
exports.NearestFilter = NearestFilter;
 +
exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter;
 +
exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter;
 +
exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter;
 +
exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter;
 +
exports.NeverDepth = NeverDepth;
 +
exports.NeverStencilFunc = NeverStencilFunc;
 +
exports.NoBlending = NoBlending;
 +
exports.NoColors = NoColors;
 +
exports.NoToneMapping = NoToneMapping;
 +
exports.NormalAnimationBlendMode = NormalAnimationBlendMode;
 +
exports.NormalBlending = NormalBlending;
 +
exports.NotEqualDepth = NotEqualDepth;
 +
exports.NotEqualStencilFunc = NotEqualStencilFunc;
 +
exports.NumberKeyframeTrack = NumberKeyframeTrack;
 +
exports.Object3D = Object3D;
 +
exports.ObjectLoader = ObjectLoader;
 +
exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap;
 +
exports.OctahedronBufferGeometry = OctahedronGeometry;
 +
exports.OctahedronGeometry = OctahedronGeometry;
 +
exports.OneFactor = OneFactor;
 +
exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor;
 +
exports.OneMinusDstColorFactor = OneMinusDstColorFactor;
 +
exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor;
 +
exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor;
 +
exports.OrthographicCamera = OrthographicCamera;
 +
exports.PCFShadowMap = PCFShadowMap;
 +
exports.PCFSoftShadowMap = PCFSoftShadowMap;
 +
exports.PMREMGenerator = PMREMGenerator;
 +
exports.ParametricBufferGeometry = ParametricGeometry;
 +
exports.ParametricGeometry = ParametricGeometry;
 +
exports.Particle = Particle;
 +
exports.ParticleBasicMaterial = ParticleBasicMaterial;
 +
exports.ParticleSystem = ParticleSystem;
 +
exports.ParticleSystemMaterial = ParticleSystemMaterial;
 +
exports.Path = Path;
 +
exports.PerspectiveCamera = PerspectiveCamera;
 +
exports.Plane = Plane;
 +
exports.PlaneBufferGeometry = PlaneGeometry;
 +
exports.PlaneGeometry = PlaneGeometry;
 +
exports.PlaneHelper = PlaneHelper;
 +
exports.PointCloud = PointCloud;
 +
exports.PointCloudMaterial = PointCloudMaterial;
 +
exports.PointLight = PointLight;
 +
exports.PointLightHelper = PointLightHelper;
 +
exports.Points = Points;
 +
exports.PointsMaterial = PointsMaterial;
 +
exports.PolarGridHelper = PolarGridHelper;
 +
exports.PolyhedronBufferGeometry = PolyhedronGeometry;
 +
exports.PolyhedronGeometry = PolyhedronGeometry;
 +
exports.PositionalAudio = PositionalAudio;
 +
exports.PropertyBinding = PropertyBinding;
 +
exports.PropertyMixer = PropertyMixer;
 +
exports.QuadraticBezierCurve = QuadraticBezierCurve;
 +
exports.QuadraticBezierCurve3 = QuadraticBezierCurve3;
 +
exports.Quaternion = Quaternion;
 +
exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack;
 +
exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant;
 +
exports.REVISION = REVISION;
 +
exports.RGBADepthPacking = RGBADepthPacking;
 +
exports.RGBAFormat = RGBAFormat;
 +
exports.RGBAIntegerFormat = RGBAIntegerFormat;
 +
exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format;
 +
exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format;
 +
exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format;
 +
exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format;
 +
exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format;
 +
exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format;
 +
exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format;
 +
exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format;
 +
exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format;
 +
exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format;
 +
exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format;
 +
exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format;
 +
exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format;
 +
exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format;
 +
exports.RGBA_BPTC_Format = RGBA_BPTC_Format;
 +
exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format;
 +
exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format;
 +
exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format;
 +
exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format;
 +
exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format;
 +
exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format;
 +
exports.RGBDEncoding = RGBDEncoding;
 +
exports.RGBEEncoding = RGBEEncoding;
 +
exports.RGBEFormat = RGBEFormat;
 +
exports.RGBFormat = RGBFormat;
 +
exports.RGBIntegerFormat = RGBIntegerFormat;
 +
exports.RGBM16Encoding = RGBM16Encoding;
 +
exports.RGBM7Encoding = RGBM7Encoding;
 +
exports.RGB_ETC1_Format = RGB_ETC1_Format;
 +
exports.RGB_ETC2_Format = RGB_ETC2_Format;
 +
exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format;
 +
exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format;
 +
exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format;
 +
exports.RGFormat = RGFormat;
 +
exports.RGIntegerFormat = RGIntegerFormat;
 +
exports.RawShaderMaterial = RawShaderMaterial;
 +
exports.Ray = Ray;
 +
exports.Raycaster = Raycaster;
 +
exports.RectAreaLight = RectAreaLight;
 +
exports.RedFormat = RedFormat;
 +
exports.RedIntegerFormat = RedIntegerFormat;
 +
exports.ReinhardToneMapping = ReinhardToneMapping;
 +
exports.RepeatWrapping = RepeatWrapping;
 +
exports.ReplaceStencilOp = ReplaceStencilOp;
 +
exports.ReverseSubtractEquation = ReverseSubtractEquation;
 +
exports.RingBufferGeometry = RingGeometry;
 +
exports.RingGeometry = RingGeometry;
 +
exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format;
 +
exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format;
 +
exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format;
 +
exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format;
 +
exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format;
 +
exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format;
 +
exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format;
 +
exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format;
 +
exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format;
 +
exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format;
 +
exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format;
 +
exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format;
 +
exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format;
 +
exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format;
 +
exports.Scene = Scene;
 +
exports.SceneUtils = SceneUtils;
 +
exports.ShaderChunk = ShaderChunk;
 +
exports.ShaderLib = ShaderLib;
 +
exports.ShaderMaterial = ShaderMaterial;
 +
exports.ShadowMaterial = ShadowMaterial;
 +
exports.Shape = Shape;
 +
exports.ShapeBufferGeometry = ShapeGeometry;
 +
exports.ShapeGeometry = ShapeGeometry;
 +
exports.ShapePath = ShapePath;
 +
exports.ShapeUtils = ShapeUtils;
 +
exports.ShortType = ShortType;
 +
exports.Skeleton = Skeleton;
 +
exports.SkeletonHelper = SkeletonHelper;
 +
exports.SkinnedMesh = SkinnedMesh;
 +
exports.SmoothShading = SmoothShading;
 +
exports.Sphere = Sphere;
 +
exports.SphereBufferGeometry = SphereGeometry;
 +
exports.SphereGeometry = SphereGeometry;
 +
exports.Spherical = Spherical;
 +
exports.SphericalHarmonics3 = SphericalHarmonics3;
 +
exports.SplineCurve = SplineCurve;
 +
exports.SpotLight = SpotLight;
 +
exports.SpotLightHelper = SpotLightHelper;
 +
exports.Sprite = Sprite;
 +
exports.SpriteMaterial = SpriteMaterial;
 +
exports.SrcAlphaFactor = SrcAlphaFactor;
 +
exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor;
 +
exports.SrcColorFactor = SrcColorFactor;
 +
exports.StaticCopyUsage = StaticCopyUsage;
 +
exports.StaticDrawUsage = StaticDrawUsage;
 +
exports.StaticReadUsage = StaticReadUsage;
 +
exports.StereoCamera = StereoCamera;
 +
exports.StreamCopyUsage = StreamCopyUsage;
 +
exports.StreamDrawUsage = StreamDrawUsage;
 +
exports.StreamReadUsage = StreamReadUsage;
 +
exports.StringKeyframeTrack = StringKeyframeTrack;
 +
exports.SubtractEquation = SubtractEquation;
 +
exports.SubtractiveBlending = SubtractiveBlending;
 +
exports.TOUCH = TOUCH;
 +
exports.TangentSpaceNormalMap = TangentSpaceNormalMap;
 +
exports.TetrahedronBufferGeometry = TetrahedronGeometry;
 +
exports.TetrahedronGeometry = TetrahedronGeometry;
 +
exports.TextBufferGeometry = TextGeometry;
 +
exports.TextGeometry = TextGeometry;
 +
exports.Texture = Texture;
 +
exports.TextureLoader = TextureLoader;
 +
exports.TorusBufferGeometry = TorusGeometry;
 +
exports.TorusGeometry = TorusGeometry;
 +
exports.TorusKnotBufferGeometry = TorusKnotGeometry;
 +
exports.TorusKnotGeometry = TorusKnotGeometry;
 +
exports.Triangle = Triangle;
 +
exports.TriangleFanDrawMode = TriangleFanDrawMode;
 +
exports.TriangleStripDrawMode = TriangleStripDrawMode;
 +
exports.TrianglesDrawMode = TrianglesDrawMode;
 +
exports.TubeBufferGeometry = TubeGeometry;
 +
exports.TubeGeometry = TubeGeometry;
 +
exports.UVMapping = UVMapping;
 +
exports.Uint16Attribute = Uint16Attribute;
 +
exports.Uint16BufferAttribute = Uint16BufferAttribute;
 +
exports.Uint32Attribute = Uint32Attribute;
 +
exports.Uint32BufferAttribute = Uint32BufferAttribute;
 +
exports.Uint8Attribute = Uint8Attribute;
 +
exports.Uint8BufferAttribute = Uint8BufferAttribute;
 +
exports.Uint8ClampedAttribute = Uint8ClampedAttribute;
 +
exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute;
 +
exports.Uniform = Uniform;
 +
exports.UniformsLib = UniformsLib;
 +
exports.UniformsUtils = UniformsUtils;
 +
exports.UnsignedByteType = UnsignedByteType;
 +
exports.UnsignedInt248Type = UnsignedInt248Type;
 +
exports.UnsignedIntType = UnsignedIntType;
 +
exports.UnsignedShort4444Type = UnsignedShort4444Type;
 +
exports.UnsignedShort5551Type = UnsignedShort5551Type;
 +
exports.UnsignedShort565Type = UnsignedShort565Type;
 +
exports.UnsignedShortType = UnsignedShortType;
 +
exports.VSMShadowMap = VSMShadowMap;
 +
exports.Vector2 = Vector2;
 +
exports.Vector3 = Vector3;
 +
exports.Vector4 = Vector4;
 +
exports.VectorKeyframeTrack = VectorKeyframeTrack;
 +
exports.Vertex = Vertex;
 +
exports.VertexColors = VertexColors;
 +
exports.VideoTexture = VideoTexture;
 +
exports.WebGL1Renderer = WebGL1Renderer;
 +
exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget;
 +
exports.WebGLMultipleRenderTargets = WebGLMultipleRenderTargets;
 +
exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget;
 +
exports.WebGLRenderTarget = WebGLRenderTarget;
 +
exports.WebGLRenderTargetCube = WebGLRenderTargetCube;
 +
exports.WebGLRenderer = WebGLRenderer;
 +
exports.WebGLUtils = WebGLUtils;
 +
exports.WireframeGeometry = WireframeGeometry;
 +
exports.WireframeHelper = WireframeHelper;
 +
exports.WrapAroundEnding = WrapAroundEnding;
 +
exports.XHRLoader = XHRLoader;
 +
exports.ZeroCurvatureEnding = ZeroCurvatureEnding;
 +
exports.ZeroFactor = ZeroFactor;
 +
exports.ZeroSlopeEnding = ZeroSlopeEnding;
 +
exports.ZeroStencilOp = ZeroStencilOp;
 +
exports.sRGBEncoding = sRGBEncoding;
 +
 +
Object.defineProperty(exports, '__esModule', { value: true });
 +
 +
})));
 +
 +
    </script>
 +
    <script type="module">
 +
      const {
 +
AnimationClip,
 +
Bone,
 +
Box3,
 +
BufferAttribute,
 +
BufferGeometry,
 +
ClampToEdgeWrapping,
 +
Color,
 +
DirectionalLight,
 +
DoubleSide,
 +
FileLoader,
 +
FrontSide,
 +
Group,
 +
ImageBitmapLoader,
 +
InterleavedBuffer,
 +
InterleavedBufferAttribute,
 +
Interpolant,
 +
InterpolateDiscrete,
 +
InterpolateLinear,
 +
Line,
 +
LineBasicMaterial,
 +
LineLoop,
 +
LineSegments,
 +
LinearFilter,
 +
LinearMipmapLinearFilter,
 +
LinearMipmapNearestFilter,
 +
Loader,
 +
LoaderUtils,
 +
Material,
 +
MathUtils,
 +
Matrix4,
 +
Mesh,
 +
MeshBasicMaterial,
 +
MeshPhysicalMaterial,
 +
MeshStandardMaterial,
 +
MirroredRepeatWrapping,
 +
NearestFilter,
 +
NearestMipmapLinearFilter,
 +
NearestMipmapNearestFilter,
 +
NumberKeyframeTrack,
 +
Object3D,
 +
OrthographicCamera,
 +
PerspectiveCamera,
 +
PointLight,
 +
Points,
 +
PointsMaterial,
 +
PropertyBinding,
 +
QuaternionKeyframeTrack,
 +
RGBFormat,
 +
RepeatWrapping,
 +
Skeleton,
 +
SkinnedMesh,
 +
Sphere,
 +
SpotLight,
 +
TangentSpaceNormalMap,
 +
Texture,
 +
TextureLoader,
 +
TriangleFanDrawMode,
 +
TriangleStripDrawMode,
 +
Vector2,
 +
Vector3,
 +
VectorKeyframeTrack,
 +
sRGBEncoding
 +
} = THREE;
 +
 +
class GLTFLoader extends Loader {
 +
 +
constructor( manager ) {
 +
 +
super( manager );
 +
 +
this.ktx2Loader = null;
 +
this.meshoptDecoder = null;
 +
 +
this.pluginCallbacks = [];
 +
 +
this.register( function ( parser ) {
 +
 +
return new GLTFMaterialsClearcoatExtension( parser );
 +
 +
} );
 +
 +
this.register( function ( parser ) {
 +
 +
return new GLTFTextureBasisUExtension( parser );
 +
 +
} );
 +
 +
this.register( function ( parser ) {
 +
 +
return new GLTFTextureWebPExtension( parser );
 +
 +
} );
 +
 +
this.register( function ( parser ) {
 +
 +
return new GLTFMaterialsTransmissionExtension( parser );
 +
 +
} );
 +
 +
this.register( function ( parser ) {
 +
 +
return new GLTFLightsExtension( parser );
 +
 +
} );
 +
 +
this.register( function ( parser ) {
 +
 +
return new GLTFMeshoptCompression( parser );
 +
 +
} );
 +
 +
}
 +
 +
load( url, onLoad, onProgress, onError ) {
 +
 +
const scope = this;
 +
 +
let resourcePath;
 +
 +
if ( this.resourcePath !== '' ) {
 +
 +
resourcePath = this.resourcePath;
 +
 +
} else if ( this.path !== '' ) {
 +
 +
resourcePath = this.path;
 +
 +
} else {
 +
 +
resourcePath = LoaderUtils.extractUrlBase( url );
 +
 +
}
 +
 +
// Tells the LoadingManager to track an extra item, which resolves after
 +
// the model is fully loaded. This means the count of items loaded will
 +
// be incorrect, but ensures manager.onLoad() does not fire early.
 +
this.manager.itemStart( url );
 +
 +
const _onError = function ( e ) {
 +
 +
if ( onError ) {
 +
 +
onError( e );
 +
 +
} else {
 +
 +
console.error( e );
 +
 +
}
 +
 +
scope.manager.itemError( url );
 +
scope.manager.itemEnd( url );
 +
 +
};
 +
 +
const loader = new FileLoader( this.manager );
 +
 +
loader.setPath( this.path );
 +
loader.setResponseType( 'arraybuffer' );
 +
loader.setRequestHeader( this.requestHeader );
 +
loader.setWithCredentials( this.withCredentials );
 +
 +
loader.load( url, function ( data ) {
 +
 +
try {
 +
 +
scope.parse( data, resourcePath, function ( gltf ) {
 +
 +
onLoad( gltf );
 +
 +
scope.manager.itemEnd( url );
 +
 +
}, _onError );
 +
 +
} catch ( e ) {
 +
 +
_onError( e );
 +
 +
}
 +
 +
}, onProgress, _onError );
 +
 +
}
 +
 +
setDRACOLoader( dracoLoader ) {
 +
 +
this.dracoLoader = dracoLoader;
 +
return this;
 +
 +
}
 +
 +
setDDSLoader() {
 +
 +
throw new Error(
 +
 +
'THREE.GLTFLoader: "MSFT_texture_dds" no longer supported. Please update to "KHR_texture_basisu".'
 +
 +
);
 +
 +
}
 +
 +
setKTX2Loader( ktx2Loader ) {
 +
 +
this.ktx2Loader = ktx2Loader;
 +
return this;
 +
 +
}
 +
 +
setMeshoptDecoder( meshoptDecoder ) {
 +
 +
this.meshoptDecoder = meshoptDecoder;
 +
return this;
 +
 +
}
 +
 +
register( callback ) {
 +
 +
if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) {
 +
 +
this.pluginCallbacks.push( callback );
 +
 +
}
 +
 +
return this;
 +
 +
}
 +
 +
unregister( callback ) {
 +
 +
if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) {
 +
 +
this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 );
 +
 +
}
 +
 +
return this;
 +
 +
}
 +
 +
parse( data, path, onLoad, onError ) {
 +
 +
let content;
 +
const extensions = {};
 +
const plugins = {};
 +
 +
if ( typeof data === 'string' ) {
 +
 +
content = data;
 +
 +
} else {
 +
 +
const magic = LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) );
 +
 +
if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {
 +
 +
try {
 +
 +
extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );
 +
 +
} catch ( error ) {
 +
 +
if ( onError ) onError( error );
 +
return;
 +
 +
}
 +
 +
content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content;
 +
 +
} else {
 +
 +
content = LoaderUtils.decodeText( new Uint8Array( data ) );
 +
 +
}
 +
 +
}
 +
 +
const json = JSON.parse( content );
 +
 +
if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {
 +
 +
if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) );
 +
return;
 +
 +
}
 +
 +
const parser = new GLTFParser( json, {
 +
 +
path: path || this.resourcePath || '',
 +
crossOrigin: this.crossOrigin,
 +
requestHeader: this.requestHeader,
 +
manager: this.manager,
 +
ktx2Loader: this.ktx2Loader,
 +
meshoptDecoder: this.meshoptDecoder
 +
 +
} );
 +
 +
parser.fileLoader.setRequestHeader( this.requestHeader );
 +
 +
for ( let i = 0; i < this.pluginCallbacks.length; i ++ ) {
 +
 +
const plugin = this.pluginCallbacks[ i ]( parser );
 +
plugins[ plugin.name ] = plugin;
 +
 +
// Workaround to avoid determining as unknown extension
 +
// in addUnknownExtensionsToUserData().
 +
// Remove this workaround if we move all the existing
 +
// extension handlers to plugin system
 +
extensions[ plugin.name ] = true;
 +
 +
}
 +
 +
if ( json.extensionsUsed ) {
 +
 +
for ( let i = 0; i < json.extensionsUsed.length; ++ i ) {
 +
 +
const extensionName = json.extensionsUsed[ i ];
 +
const extensionsRequired = json.extensionsRequired || [];
 +
 +
switch ( extensionName ) {
 +
 +
case EXTENSIONS.KHR_MATERIALS_UNLIT:
 +
extensions[ extensionName ] = new GLTFMaterialsUnlitExtension();
 +
break;
 +
 +
case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
 +
extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension();
 +
break;
 +
 +
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
 +
extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
 +
break;
 +
 +
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
 +
extensions[ extensionName ] = new GLTFTextureTransformExtension();
 +
break;
 +
 +
case EXTENSIONS.KHR_MESH_QUANTIZATION:
 +
extensions[ extensionName ] = new GLTFMeshQuantizationExtension();
 +
break;
 +
 +
default:
 +
 +
if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) {
 +
 +
console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
parser.setExtensions( extensions );
 +
parser.setPlugins( plugins );
 +
parser.parse( onLoad, onError );
 +
 +
}
 +
 +
}
 +
 +
/* GLTFREGISTRY */
 +
window.GLTFLoader = GLTFLoader;
 +
function GLTFRegistry() {
 +
 +
let objects = {};
 +
 +
return {
 +
 +
get: function ( key ) {
 +
 +
return objects[ key ];
 +
 +
},
 +
 +
add: function ( key, object ) {
 +
 +
objects[ key ] = object;
 +
 +
},
 +
 +
remove: function ( key ) {
 +
 +
delete objects[ key ];
 +
 +
},
 +
 +
removeAll: function () {
 +
 +
objects = {};
 +
 +
}
 +
 +
};
 +
 +
}
 +
 +
/*********************************/
 +
/********** EXTENSIONS ***********/
 +
/*********************************/
 +
 +
const EXTENSIONS = {
 +
KHR_BINARY_GLTF: 'KHR_binary_glTF',
 +
KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
 +
KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual',
 +
KHR_MATERIALS_CLEARCOAT: 'KHR_materials_clearcoat',
 +
KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness',
 +
KHR_MATERIALS_TRANSMISSION: 'KHR_materials_transmission',
 +
KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
 +
KHR_TEXTURE_BASISU: 'KHR_texture_basisu',
 +
KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform',
 +
KHR_MESH_QUANTIZATION: 'KHR_mesh_quantization',
 +
EXT_TEXTURE_WEBP: 'EXT_texture_webp',
 +
EXT_MESHOPT_COMPRESSION: 'EXT_meshopt_compression'
 +
};
 +
 +
/**
 +
* Punctual Lights Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
 +
*/
 +
class GLTFLightsExtension {
 +
 +
constructor( parser ) {
 +
 +
this.parser = parser;
 +
this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;
 +
 +
// Object3D instance caches
 +
this.cache = { refs: {}, uses: {} };
 +
 +
}
 +
 +
_markDefs() {
 +
 +
const parser = this.parser;
 +
const nodeDefs = this.parser.json.nodes || [];
 +
 +
for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
 +
 +
const nodeDef = nodeDefs[ nodeIndex ];
 +
 +
if ( nodeDef.extensions
 +
&& nodeDef.extensions[ this.name ]
 +
&& nodeDef.extensions[ this.name ].light !== undefined ) {
 +
 +
parser._addNodeRef( this.cache, nodeDef.extensions[ this.name ].light );
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
_loadLight( lightIndex ) {
 +
 +
const parser = this.parser;
 +
const cacheKey = 'light:' + lightIndex;
 +
let dependency = parser.cache.get( cacheKey );
 +
 +
if ( dependency ) return dependency;
 +
 +
const json = parser.json;
 +
const extensions = ( json.extensions && json.extensions[ this.name ] ) || {};
 +
const lightDefs = extensions.lights || [];
 +
const lightDef = lightDefs[ lightIndex ];
 +
let lightNode;
 +
 +
const color = new Color( 0xffffff );
 +
 +
if ( lightDef.color !== undefined ) color.fromArray( lightDef.color );
 +
 +
const range = lightDef.range !== undefined ? lightDef.range : 0;
 +
 +
switch ( lightDef.type ) {
 +
 +
case 'directional':
 +
lightNode = new DirectionalLight( color );
 +
lightNode.target.position.set( 0, 0, - 1 );
 +
lightNode.add( lightNode.target );
 +
break;
 +
 +
case 'point':
 +
lightNode = new PointLight( color );
 +
lightNode.distance = range;
 +
break;
 +
 +
case 'spot':
 +
lightNode = new SpotLight( color );
 +
lightNode.distance = range;
 +
// Handle spotlight properties.
 +
lightDef.spot = lightDef.spot || {};
 +
lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
 +
lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
 +
lightNode.angle = lightDef.spot.outerConeAngle;
 +
lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
 +
lightNode.target.position.set( 0, 0, - 1 );
 +
lightNode.add( lightNode.target );
 +
break;
 +
 +
default:
 +
throw new Error( 'THREE.GLTFLoader: Unexpected light type: ' + lightDef.type );
 +
 +
}
 +
 +
// Some lights (e.g. spot) default to a position other than the origin. Reset the position
 +
// here, because node-level parsing will only override position if explicitly specified.
 +
lightNode.position.set( 0, 0, 0 );
 +
 +
lightNode.decay = 2;
 +
 +
if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;
 +
 +
lightNode.name = parser.createUniqueName( lightDef.name || ( 'light_' + lightIndex ) );
 +
 +
dependency = Promise.resolve( lightNode );
 +
 +
parser.cache.add( cacheKey, dependency );
 +
 +
return dependency;
 +
 +
}
 +
 +
createNodeAttachment( nodeIndex ) {
 +
 +
const self = this;
 +
const parser = this.parser;
 +
const json = parser.json;
 +
const nodeDef = json.nodes[ nodeIndex ];
 +
const lightDef = ( nodeDef.extensions && nodeDef.extensions[ this.name ] ) || {};
 +
const lightIndex = lightDef.light;
 +
 +
if ( lightIndex === undefined ) return null;
 +
 +
return this._loadLight( lightIndex ).then( function ( light ) {
 +
 +
return parser._getNodeRef( self.cache, lightIndex, light );
 +
 +
} );
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* Unlit Materials Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit
 +
*/
 +
class GLTFMaterialsUnlitExtension {
 +
 +
constructor() {
 +
 +
this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
 +
 +
}
 +
 +
getMaterialType() {
 +
 +
return MeshBasicMaterial;
 +
 +
}
 +
 +
extendParams( materialParams, materialDef, parser ) {
 +
 +
const pending = [];
 +
 +
materialParams.color = new Color( 1.0, 1.0, 1.0 );
 +
materialParams.opacity = 1.0;
 +
 +
const metallicRoughness = materialDef.pbrMetallicRoughness;
 +
 +
if ( metallicRoughness ) {
 +
 +
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
 +
 +
const array = metallicRoughness.baseColorFactor;
 +
 +
materialParams.color.fromArray( array );
 +
materialParams.opacity = array[ 3 ];
 +
 +
}
 +
 +
if ( metallicRoughness.baseColorTexture !== undefined ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );
 +
 +
}
 +
 +
}
 +
 +
return Promise.all( pending );
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* Clearcoat Materials Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat
 +
*/
 +
class GLTFMaterialsClearcoatExtension {
 +
 +
constructor( parser ) {
 +
 +
this.parser = parser;
 +
this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT;
 +
 +
}
 +
 +
getMaterialType( materialIndex ) {
 +
 +
const parser = this.parser;
 +
const materialDef = parser.json.materials[ materialIndex ];
 +
 +
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
 +
 +
return MeshPhysicalMaterial;
 +
 +
}
 +
 +
extendMaterialParams( materialIndex, materialParams ) {
 +
 +
const parser = this.parser;
 +
const materialDef = parser.json.materials[ materialIndex ];
 +
 +
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
 +
 +
return Promise.resolve();
 +
 +
}
 +
 +
const pending = [];
 +
 +
const extension = materialDef.extensions[ this.name ];
 +
 +
if ( extension.clearcoatFactor !== undefined ) {
 +
 +
materialParams.clearcoat = extension.clearcoatFactor;
 +
 +
}
 +
 +
if ( extension.clearcoatTexture !== undefined ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) );
 +
 +
}
 +
 +
if ( extension.clearcoatRoughnessFactor !== undefined ) {
 +
 +
materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;
 +
 +
}
 +
 +
if ( extension.clearcoatRoughnessTexture !== undefined ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) );
 +
 +
}
 +
 +
if ( extension.clearcoatNormalTexture !== undefined ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) );
 +
 +
if ( extension.clearcoatNormalTexture.scale !== undefined ) {
 +
 +
const scale = extension.clearcoatNormalTexture.scale;
 +
 +
// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
 +
materialParams.clearcoatNormalScale = new Vector2( scale, - scale );
 +
 +
}
 +
 +
}
 +
 +
return Promise.all( pending );
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* Transmission Materials Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_transmission
 +
* Draft: https://github.com/KhronosGroup/glTF/pull/1698
 +
*/
 +
class GLTFMaterialsTransmissionExtension {
 +
 +
constructor( parser ) {
 +
 +
this.parser = parser;
 +
this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION;
 +
 +
}
 +
 +
getMaterialType( materialIndex ) {
 +
 +
const parser = this.parser;
 +
const materialDef = parser.json.materials[ materialIndex ];
 +
 +
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
 +
 +
return MeshPhysicalMaterial;
 +
 +
}
 +
 +
extendMaterialParams( materialIndex, materialParams ) {
 +
 +
const parser = this.parser;
 +
const materialDef = parser.json.materials[ materialIndex ];
 +
 +
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
 +
 +
return Promise.resolve();
 +
 +
}
 +
 +
const pending = [];
 +
 +
const extension = materialDef.extensions[ this.name ];
 +
 +
if ( extension.transmissionFactor !== undefined ) {
 +
 +
materialParams.transmission = extension.transmissionFactor;
 +
 +
}
 +
 +
if ( extension.transmissionTexture !== undefined ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'transmissionMap', extension.transmissionTexture ) );
 +
 +
}
 +
 +
return Promise.all( pending );
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* BasisU Texture Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_basisu
 +
*/
 +
class GLTFTextureBasisUExtension {
 +
 +
constructor( parser ) {
 +
 +
this.parser = parser;
 +
this.name = EXTENSIONS.KHR_TEXTURE_BASISU;
 +
 +
}
 +
 +
loadTexture( textureIndex ) {
 +
 +
const parser = this.parser;
 +
const json = parser.json;
 +
 +
const textureDef = json.textures[ textureIndex ];
 +
 +
if ( ! textureDef.extensions || ! textureDef.extensions[ this.name ] ) {
 +
 +
return null;
 +
 +
}
 +
 +
const extension = textureDef.extensions[ this.name ];
 +
const source = json.images[ extension.source ];
 +
const loader = parser.options.ktx2Loader;
 +
 +
if ( ! loader ) {
 +
 +
if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
 +
 +
throw new Error( 'THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures' );
 +
 +
} else {
 +
 +
// Assumes that the extension is optional and that a fallback texture is present
 +
return null;
 +
 +
}
 +
 +
}
 +
 +
return parser.loadTextureImage( textureIndex, source, loader );
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* WebP Texture Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_texture_webp
 +
*/
 +
class GLTFTextureWebPExtension {
 +
 +
constructor( parser ) {
 +
 +
this.parser = parser;
 +
this.name = EXTENSIONS.EXT_TEXTURE_WEBP;
 +
this.isSupported = null;
 +
 +
}
 +
 +
loadTexture( textureIndex ) {
 +
 +
const name = this.name;
 +
const parser = this.parser;
 +
const json = parser.json;
 +
 +
const textureDef = json.textures[ textureIndex ];
 +
 +
if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {
 +
 +
return null;
 +
 +
}
 +
 +
const extension = textureDef.extensions[ name ];
 +
const source = json.images[ extension.source ];
 +
 +
let loader = parser.textureLoader;
 +
if ( source.uri ) {
 +
 +
const handler = parser.options.manager.getHandler( source.uri );
 +
if ( handler !== null ) loader = handler;
 +
 +
}
 +
 +
return this.detectSupport().then( function ( isSupported ) {
 +
 +
if ( isSupported ) return parser.loadTextureImage( textureIndex, source, loader );
 +
 +
if ( json.extensionsRequired && json.extensionsRequired.indexOf( name ) >= 0 ) {
 +
 +
throw new Error( 'THREE.GLTFLoader: WebP required by asset but unsupported.' );
 +
 +
}
 +
 +
// Fall back to PNG or JPEG.
 +
return parser.loadTexture( textureIndex );
 +
 +
} );
 +
 +
}
 +
 +
detectSupport() {
 +
 +
if ( ! this.isSupported ) {
 +
 +
this.isSupported = new Promise( function ( resolve ) {
 +
 +
const image = new Image();
 +
 +
// Lossy test image. Support for lossy images doesn't guarantee support for all
 +
// WebP images, unfortunately.
 +
image.src = '';
 +
 +
image.onload = image.onerror = function () {
 +
 +
resolve( image.height === 1 );
 +
 +
};
 +
 +
} );
 +
 +
}
 +
 +
return this.isSupported;
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* meshopt BufferView Compression Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_meshopt_compression
 +
*/
 +
class GLTFMeshoptCompression {
 +
 +
constructor( parser ) {
 +
 +
this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION;
 +
this.parser = parser;
 +
 +
}
 +
 +
loadBufferView( index ) {
 +
 +
const json = this.parser.json;
 +
const bufferView = json.bufferViews[ index ];
 +
 +
if ( bufferView.extensions && bufferView.extensions[ this.name ] ) {
 +
 +
const extensionDef = bufferView.extensions[ this.name ];
 +
 +
const buffer = this.parser.getDependency( 'buffer', extensionDef.buffer );
 +
const decoder = this.parser.options.meshoptDecoder;
 +
 +
if ( ! decoder || ! decoder.supported ) {
 +
 +
if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
 +
 +
throw new Error( 'THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files' );
 +
 +
} else {
 +
 +
// Assumes that the extension is optional and that fallback buffer data is present
 +
return null;
 +
 +
}
 +
 +
}
 +
 +
return Promise.all( [ buffer, decoder.ready ] ).then( function ( res ) {
 +
 +
const byteOffset = extensionDef.byteOffset || 0;
 +
const byteLength = extensionDef.byteLength || 0;
 +
 +
const count = extensionDef.count;
 +
const stride = extensionDef.byteStride;
 +
 +
const result = new ArrayBuffer( count * stride );
 +
const source = new Uint8Array( res[ 0 ], byteOffset, byteLength );
 +
 +
decoder.decodeGltfBuffer( new Uint8Array( result ), count, stride, source, extensionDef.mode, extensionDef.filter );
 +
return result;
 +
 +
} );
 +
 +
} else {
 +
 +
return null;
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
/* BINARY EXTENSION */
 +
const BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
 +
const BINARY_EXTENSION_HEADER_LENGTH = 12;
 +
const BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 };
 +
 +
class GLTFBinaryExtension {
 +
 +
constructor( data ) {
 +
 +
this.name = EXTENSIONS.KHR_BINARY_GLTF;
 +
this.content = null;
 +
this.body = null;
 +
 +
const headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH );
 +
 +
this.header = {
 +
magic: LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ),
 +
version: headerView.getUint32( 4, true ),
 +
length: headerView.getUint32( 8, true )
 +
};
 +
 +
if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) {
 +
 +
throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' );
 +
 +
} else if ( this.header.version < 2.0 ) {
 +
 +
throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' );
 +
 +
}
 +
 +
const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH;
 +
const chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH );
 +
let chunkIndex = 0;
 +
 +
while ( chunkIndex < chunkContentsLength ) {
 +
 +
const chunkLength = chunkView.getUint32( chunkIndex, true );
 +
chunkIndex += 4;
 +
 +
const chunkType = chunkView.getUint32( chunkIndex, true );
 +
chunkIndex += 4;
 +
 +
if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) {
 +
 +
const contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength );
 +
this.content = LoaderUtils.decodeText( contentArray );
 +
 +
} else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) {
 +
 +
const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
 +
this.body = data.slice( byteOffset, byteOffset + chunkLength );
 +
 +
}
 +
 +
// Clients must ignore chunks with unknown types.
 +
 +
chunkIndex += chunkLength;
 +
 +
}
 +
 +
if ( this.content === null ) {
 +
 +
throw new Error( 'THREE.GLTFLoader: JSON content not found.' );
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* DRACO Mesh Compression Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression
 +
*/
 +
class GLTFDracoMeshCompressionExtension {
 +
 +
constructor( json, dracoLoader ) {
 +
 +
if ( ! dracoLoader ) {
 +
 +
throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' );
 +
 +
}
 +
 +
this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
 +
this.json = json;
 +
this.dracoLoader = dracoLoader;
 +
this.dracoLoader.preload();
 +
 +
}
 +
 +
decodePrimitive( primitive, parser ) {
 +
 +
const json = this.json;
 +
const dracoLoader = this.dracoLoader;
 +
const bufferViewIndex = primitive.extensions[ this.name ].bufferView;
 +
const gltfAttributeMap = primitive.extensions[ this.name ].attributes;
 +
const threeAttributeMap = {};
 +
const attributeNormalizedMap = {};
 +
const attributeTypeMap = {};
 +
 +
for ( const attributeName in gltfAttributeMap ) {
 +
 +
const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
 +
 +
threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];
 +
 +
}
 +
 +
for ( const attributeName in primitive.attributes ) {
 +
 +
const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
 +
 +
if ( gltfAttributeMap[ attributeName ] !== undefined ) {
 +
 +
const accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
 +
const componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
 +
 +
attributeTypeMap[ threeAttributeName ] = componentType;
 +
attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;
 +
 +
}
 +
 +
}
 +
 +
return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {
 +
 +
return new Promise( function ( resolve ) {
 +
 +
dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {
 +
 +
for ( const attributeName in geometry.attributes ) {
 +
 +
const attribute = geometry.attributes[ attributeName ];
 +
const normalized = attributeNormalizedMap[ attributeName ];
 +
 +
if ( normalized !== undefined ) attribute.normalized = normalized;
 +
 +
}
 +
 +
resolve( geometry );
 +
 +
}, threeAttributeMap, attributeTypeMap );
 +
 +
} );
 +
 +
} );
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* Texture Transform Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_transform
 +
*/
 +
class GLTFTextureTransformExtension {
 +
 +
constructor() {
 +
 +
this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;
 +
 +
}
 +
 +
extendTexture( texture, transform ) {
 +
 +
if ( transform.texCoord !== undefined ) {
 +
 +
console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' );
 +
 +
}
 +
 +
if ( transform.offset === undefined && transform.rotation === undefined && transform.scale === undefined ) {
 +
 +
// See https://github.com/mrdoob/three.js/issues/21819.
 +
return texture;
 +
 +
}
 +
 +
texture = texture.clone();
 +
 +
if ( transform.offset !== undefined ) {
 +
 +
texture.offset.fromArray( transform.offset );
 +
 +
}
 +
 +
if ( transform.rotation !== undefined ) {
 +
 +
texture.rotation = transform.rotation;
 +
 +
}
 +
 +
if ( transform.scale !== undefined ) {
 +
 +
texture.repeat.fromArray( transform.scale );
 +
 +
}
 +
 +
texture.needsUpdate = true;
 +
 +
return texture;
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* Specular-Glossiness Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
 +
*/
 +
 +
/**
 +
* A sub class of StandardMaterial with some of the functionality
 +
* changed via the `onBeforeCompile` callback
 +
* @pailhead
 +
*/
 +
class GLTFMeshStandardSGMaterial extends MeshStandardMaterial {
 +
 +
constructor( params ) {
 +
 +
super();
 +
 +
this.isGLTFSpecularGlossinessMaterial = true;
 +
 +
//various chunks that need replacing
 +
const specularMapParsFragmentChunk = [
 +
'#ifdef USE_SPECULARMAP',
 +
' uniform sampler2D specularMap;',
 +
'#endif'
 +
].join( '\n' );
 +
 +
const glossinessMapParsFragmentChunk = [
 +
'#ifdef USE_GLOSSINESSMAP',
 +
' uniform sampler2D glossinessMap;',
 +
'#endif'
 +
].join( '\n' );
 +
 +
const specularMapFragmentChunk = [
 +
'vec3 specularFactor = specular;',
 +
'#ifdef USE_SPECULARMAP',
 +
' vec4 texelSpecular = texture2D( specularMap, vUv );',
 +
' texelSpecular = sRGBToLinear( texelSpecular );',
 +
' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture',
 +
' specularFactor *= texelSpecular.rgb;',
 +
'#endif'
 +
].join( '\n' );
 +
 +
const glossinessMapFragmentChunk = [
 +
'float glossinessFactor = glossiness;',
 +
'#ifdef USE_GLOSSINESSMAP',
 +
' vec4 texelGlossiness = texture2D( glossinessMap, vUv );',
 +
' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture',
 +
' glossinessFactor *= texelGlossiness.a;',
 +
'#endif'
 +
].join( '\n' );
 +
 +
const lightPhysicalFragmentChunk = [
 +
'PhysicalMaterial material;',
 +
'material.diffuseColor = diffuseColor.rgb * ( 1. - max( specularFactor.r, max( specularFactor.g, specularFactor.b ) ) );',
 +
'vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );',
 +
'float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );',
 +
'material.specularRoughness = max( 1.0 - glossinessFactor, 0.0525 ); // 0.0525 corresponds to the base mip of a 256 cubemap.',
 +
'material.specularRoughness += geometryRoughness;',
 +
'material.specularRoughness = min( material.specularRoughness, 1.0 );',
 +
'material.specularColor = specularFactor;',
 +
].join( '\n' );
 +
 +
const uniforms = {
 +
specular: { value: new Color().setHex( 0xffffff ) },
 +
glossiness: { value: 1 },
 +
specularMap: { value: null },
 +
glossinessMap: { value: null }
 +
};
 +
 +
this._extraUniforms = uniforms;
 +
 +
this.onBeforeCompile = function ( shader ) {
 +
 +
for ( const uniformName in uniforms ) {
 +
 +
shader.uniforms[ uniformName ] = uniforms[ uniformName ];
 +
 +
}
 +
 +
shader.fragmentShader = shader.fragmentShader
 +
.replace( 'uniform float roughness;', 'uniform vec3 specular;' )
 +
.replace( 'uniform float metalness;', 'uniform float glossiness;' )
 +
.replace( '#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk )
 +
.replace( '#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk )
 +
.replace( '#include <roughnessmap_fragment>', specularMapFragmentChunk )
 +
.replace( '#include <metalnessmap_fragment>', glossinessMapFragmentChunk )
 +
.replace( '#include <lights_physical_fragment>', lightPhysicalFragmentChunk );
 +
 +
};
 +
 +
Object.defineProperties( this, {
 +
 +
specular: {
 +
get: function () {
 +
 +
return uniforms.specular.value;
 +
 +
},
 +
set: function ( v ) {
 +
 +
uniforms.specular.value = v;
 +
 +
}
 +
},
 +
 +
specularMap: {
 +
get: function () {
 +
 +
return uniforms.specularMap.value;
 +
 +
},
 +
set: function ( v ) {
 +
 +
uniforms.specularMap.value = v;
 +
 +
if ( v ) {
 +
 +
this.defines.USE_SPECULARMAP = ''; // USE_UV is set by the renderer for specular maps
 +
 +
} else {
 +
 +
delete this.defines.USE_SPECULARMAP;
 +
 +
}
 +
 +
}
 +
},
 +
 +
glossiness: {
 +
get: function () {
 +
 +
return uniforms.glossiness.value;
 +
 +
},
 +
set: function ( v ) {
 +
 +
uniforms.glossiness.value = v;
 +
 +
}
 +
},
 +
 +
glossinessMap: {
 +
get: function () {
 +
 +
return uniforms.glossinessMap.value;
 +
 +
},
 +
set: function ( v ) {
 +
 +
uniforms.glossinessMap.value = v;
 +
 +
if ( v ) {
 +
 +
this.defines.USE_GLOSSINESSMAP = '';
 +
this.defines.USE_UV = '';
 +
 +
} else {
 +
 +
delete this.defines.USE_GLOSSINESSMAP;
 +
delete this.defines.USE_UV;
 +
 +
}
 +
 +
}
 +
}
 +
 +
} );
 +
 +
delete this.metalness;
 +
delete this.roughness;
 +
delete this.metalnessMap;
 +
delete this.roughnessMap;
 +
 +
this.setValues( params );
 +
 +
}
 +
 +
copy( source ) {
 +
 +
super.copy( source );
 +
 +
this.specularMap = source.specularMap;
 +
this.specular.copy( source.specular );
 +
this.glossinessMap = source.glossinessMap;
 +
this.glossiness = source.glossiness;
 +
delete this.metalness;
 +
delete this.roughness;
 +
delete this.metalnessMap;
 +
delete this.roughnessMap;
 +
return this;
 +
 +
}
 +
 +
}
 +
 +
 +
class GLTFMaterialsPbrSpecularGlossinessExtension {
 +
 +
constructor() {
 +
 +
this.name = EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS;
 +
 +
this.specularGlossinessParams = [
 +
'color',
 +
'map',
 +
'lightMap',
 +
'lightMapIntensity',
 +
'aoMap',
 +
'aoMapIntensity',
 +
'emissive',
 +
'emissiveIntensity',
 +
'emissiveMap',
 +
'bumpMap',
 +
'bumpScale',
 +
'normalMap',
 +
'normalMapType',
 +
'displacementMap',
 +
'displacementScale',
 +
'displacementBias',
 +
'specularMap',
 +
'specular',
 +
'glossinessMap',
 +
'glossiness',
 +
'alphaMap',
 +
'envMap',
 +
'envMapIntensity',
 +
'refractionRatio',
 +
];
 +
 +
}
 +
 +
getMaterialType() {
 +
 +
return GLTFMeshStandardSGMaterial;
 +
 +
}
 +
 +
extendParams( materialParams, materialDef, parser ) {
 +
 +
const pbrSpecularGlossiness = materialDef.extensions[ this.name ];
 +
 +
materialParams.color = new Color( 1.0, 1.0, 1.0 );
 +
materialParams.opacity = 1.0;
 +
 +
const pending = [];
 +
 +
if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) {
 +
 +
const array = pbrSpecularGlossiness.diffuseFactor;
 +
 +
materialParams.color.fromArray( array );
 +
materialParams.opacity = array[ 3 ];
 +
 +
}
 +
 +
if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'map', pbrSpecularGlossiness.diffuseTexture ) );
 +
 +
}
 +
 +
materialParams.emissive = new Color( 0.0, 0.0, 0.0 );
 +
materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0;
 +
materialParams.specular = new Color( 1.0, 1.0, 1.0 );
 +
 +
if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) {
 +
 +
materialParams.specular.fromArray( pbrSpecularGlossiness.specularFactor );
 +
 +
}
 +
 +
if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) {
 +
 +
const specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture;
 +
pending.push( parser.assignTexture( materialParams, 'glossinessMap', specGlossMapDef ) );
 +
pending.push( parser.assignTexture( materialParams, 'specularMap', specGlossMapDef ) );
 +
 +
}
 +
 +
return Promise.all( pending );
 +
 +
}
 +
 +
createMaterial( materialParams ) {
 +
 +
const material = new GLTFMeshStandardSGMaterial( materialParams );
 +
material.fog = true;
 +
 +
material.color = materialParams.color;
 +
 +
material.map = materialParams.map === undefined ? null : materialParams.map;
 +
 +
material.lightMap = null;
 +
material.lightMapIntensity = 1.0;
 +
 +
material.aoMap = materialParams.aoMap === undefined ? null : materialParams.aoMap;
 +
material.aoMapIntensity = 1.0;
 +
 +
material.emissive = materialParams.emissive;
 +
material.emissiveIntensity = 1.0;
 +
material.emissiveMap = materialParams.emissiveMap === undefined ? null : materialParams.emissiveMap;
 +
 +
material.bumpMap = materialParams.bumpMap === undefined ? null : materialParams.bumpMap;
 +
material.bumpScale = 1;
 +
 +
material.normalMap = materialParams.normalMap === undefined ? null : materialParams.normalMap;
 +
material.normalMapType = TangentSpaceNormalMap;
 +
 +
if ( materialParams.normalScale ) material.normalScale = materialParams.normalScale;
 +
 +
material.displacementMap = null;
 +
material.displacementScale = 1;
 +
material.displacementBias = 0;
 +
 +
material.specularMap = materialParams.specularMap === undefined ? null : materialParams.specularMap;
 +
material.specular = materialParams.specular;
 +
 +
material.glossinessMap = materialParams.glossinessMap === undefined ? null : materialParams.glossinessMap;
 +
material.glossiness = materialParams.glossiness;
 +
 +
material.alphaMap = null;
 +
 +
material.envMap = materialParams.envMap === undefined ? null : materialParams.envMap;
 +
material.envMapIntensity = 1.0;
 +
 +
material.refractionRatio = 0.98;
 +
 +
return material;
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* Mesh Quantization Extension
 +
*
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization
 +
*/
 +
class GLTFMeshQuantizationExtension {
 +
 +
constructor() {
 +
 +
this.name = EXTENSIONS.KHR_MESH_QUANTIZATION;
 +
 +
}
 +
 +
}
 +
 +
/*********************************/
 +
/********** INTERPOLATION ********/
 +
/*********************************/
 +
 +
// Spline Interpolation
 +
// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
 +
class GLTFCubicSplineInterpolant extends Interpolant {
 +
 +
constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
 +
 +
super( parameterPositions, sampleValues, sampleSize, resultBuffer );
 +
 +
}
 +
 +
copySampleValue_( index ) {
 +
 +
// Copies a sample value to the result buffer. See description of glTF
 +
// CUBICSPLINE values layout in interpolate_() function below.
 +
 +
const result = this.resultBuffer,
 +
values = this.sampleValues,
 +
valueSize = this.valueSize,
 +
offset = index * valueSize * 3 + valueSize;
 +
 +
for ( let i = 0; i !== valueSize; i ++ ) {
 +
 +
result[ i ] = values[ offset + i ];
 +
 +
}
 +
 +
return result;
 +
 +
}
 +
 +
}
 +
 +
GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;
 +
 +
GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;
 +
 +
GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) {
 +
 +
const result = this.resultBuffer;
 +
const values = this.sampleValues;
 +
const stride = this.valueSize;
 +
 +
const stride2 = stride * 2;
 +
const stride3 = stride * 3;
 +
 +
const td = t1 - t0;
 +
 +
const p = ( t - t0 ) / td;
 +
const pp = p * p;
 +
const ppp = pp * p;
 +
 +
const offset1 = i1 * stride3;
 +
const offset0 = offset1 - stride3;
 +
 +
const s2 = - 2 * ppp + 3 * pp;
 +
const s3 = ppp - pp;
 +
const s0 = 1 - s2;
 +
const s1 = s3 - pp + p;
 +
 +
// Layout of keyframe output values for CUBICSPLINE animations:
 +
//  [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
 +
for ( let i = 0; i !== stride; i ++ ) {
 +
 +
const p0 = values[ offset0 + i + stride ]; // splineVertex_k
 +
const m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
 +
const p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
 +
const m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)
 +
 +
result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
 +
 +
}
 +
 +
return result;
 +
 +
};
 +
 +
/*********************************/
 +
/********** INTERNALS ************/
 +
/*********************************/
 +
 +
/* CONSTANTS */
 +
 +
const WEBGL_CONSTANTS = {
 +
FLOAT: 5126,
 +
//FLOAT_MAT2: 35674,
 +
FLOAT_MAT3: 35675,
 +
FLOAT_MAT4: 35676,
 +
FLOAT_VEC2: 35664,
 +
FLOAT_VEC3: 35665,
 +
FLOAT_VEC4: 35666,
 +
LINEAR: 9729,
 +
REPEAT: 10497,
 +
SAMPLER_2D: 35678,
 +
POINTS: 0,
 +
LINES: 1,
 +
LINE_LOOP: 2,
 +
LINE_STRIP: 3,
 +
TRIANGLES: 4,
 +
TRIANGLE_STRIP: 5,
 +
TRIANGLE_FAN: 6,
 +
UNSIGNED_BYTE: 5121,
 +
UNSIGNED_SHORT: 5123
 +
};
 +
 +
const WEBGL_COMPONENT_TYPES = {
 +
5120: Int8Array,
 +
5121: Uint8Array,
 +
5122: Int16Array,
 +
5123: Uint16Array,
 +
5125: Uint32Array,
 +
5126: Float32Array
 +
};
 +
 +
const WEBGL_FILTERS = {
 +
9728: NearestFilter,
 +
9729: LinearFilter,
 +
9984: NearestMipmapNearestFilter,
 +
9985: LinearMipmapNearestFilter,
 +
9986: NearestMipmapLinearFilter,
 +
9987: LinearMipmapLinearFilter
 +
};
 +
 +
const WEBGL_WRAPPINGS = {
 +
33071: ClampToEdgeWrapping,
 +
33648: MirroredRepeatWrapping,
 +
10497: RepeatWrapping
 +
};
 +
 +
const WEBGL_TYPE_SIZES = {
 +
'SCALAR': 1,
 +
'VEC2': 2,
 +
'VEC3': 3,
 +
'VEC4': 4,
 +
'MAT2': 4,
 +
'MAT3': 9,
 +
'MAT4': 16
 +
};
 +
 +
const ATTRIBUTES = {
 +
POSITION: 'position',
 +
NORMAL: 'normal',
 +
TANGENT: 'tangent',
 +
TEXCOORD_0: 'uv',
 +
TEXCOORD_1: 'uv2',
 +
COLOR_0: 'color',
 +
WEIGHTS_0: 'skinWeight',
 +
JOINTS_0: 'skinIndex',
 +
};
 +
 +
const PATH_PROPERTIES = {
 +
scale: 'scale',
 +
translation: 'position',
 +
rotation: 'quaternion',
 +
weights: 'morphTargetInfluences'
 +
};
 +
 +
const INTERPOLATION = {
 +
CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each
 +
                        // keyframe track will be initialized with a default interpolation type, then modified.
 +
LINEAR: InterpolateLinear,
 +
STEP: InterpolateDiscrete
 +
};
 +
 +
const ALPHA_MODES = {
 +
OPAQUE: 'OPAQUE',
 +
MASK: 'MASK',
 +
BLEND: 'BLEND'
 +
};
 +
 +
/* UTILITY FUNCTIONS */
 +
 +
function resolveURL( url, path ) {
 +
 +
// Invalid URL
 +
if ( typeof url !== 'string' || url === '' ) return '';
 +
 +
// Host Relative URL
 +
if ( /^https?:\/\//i.test( path ) && /^\//.test( url ) ) {
 +
 +
path = path.replace( /(^https?:\/\/[^\/]+).*/i, '$1' );
 +
 +
}
 +
 +
// Absolute URL http://,https://,//
 +
if ( /^(https?:)?\/\//i.test( url ) ) return url;
 +
 +
// Data URI
 +
if ( /^data:.*,.*$/i.test( url ) ) return url;
 +
 +
// Blob URL
 +
if ( /^blob:.*$/i.test( url ) ) return url;
 +
 +
// Relative URL
 +
return path + url;
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
 +
*/
 +
function createDefaultMaterial( cache ) {
 +
 +
if ( cache[ 'DefaultMaterial' ] === undefined ) {
 +
 +
cache[ 'DefaultMaterial' ] = new MeshStandardMaterial( {
 +
color: 0xFFFFFF,
 +
emissive: 0x000000,
 +
metalness: 1,
 +
roughness: 1,
 +
transparent: false,
 +
depthTest: true,
 +
side: FrontSide
 +
} );
 +
 +
}
 +
 +
return cache[ 'DefaultMaterial' ];
 +
 +
}
 +
 +
function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) {
 +
 +
// Add unknown glTF extensions to an object's userData.
 +
 +
for ( const name in objectDef.extensions ) {
 +
 +
if ( knownExtensions[ name ] === undefined ) {
 +
 +
object.userData.gltfExtensions = object.userData.gltfExtensions || {};
 +
object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ];
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* @param {Object3D|Material|BufferGeometry} object
 +
* @param {GLTF.definition} gltfDef
 +
*/
 +
function assignExtrasToUserData( object, gltfDef ) {
 +
 +
if ( gltfDef.extras !== undefined ) {
 +
 +
if ( typeof gltfDef.extras === 'object' ) {
 +
 +
Object.assign( object.userData, gltfDef.extras );
 +
 +
} else {
 +
 +
console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras );
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
 +
*
 +
* @param {BufferGeometry} geometry
 +
* @param {Array<GLTF.Target>} targets
 +
* @param {GLTFParser} parser
 +
* @return {Promise<BufferGeometry>}
 +
*/
 +
function addMorphTargets( geometry, targets, parser ) {
 +
 +
let hasMorphPosition = false;
 +
let hasMorphNormal = false;
 +
 +
for ( let i = 0, il = targets.length; i < il; i ++ ) {
 +
 +
const target = targets[ i ];
 +
 +
if ( target.POSITION !== undefined ) hasMorphPosition = true;
 +
if ( target.NORMAL !== undefined ) hasMorphNormal = true;
 +
 +
if ( hasMorphPosition && hasMorphNormal ) break;
 +
 +
}
 +
 +
if ( ! hasMorphPosition && ! hasMorphNormal ) return Promise.resolve( geometry );
 +
 +
const pendingPositionAccessors = [];
 +
const pendingNormalAccessors = [];
 +
 +
for ( let i = 0, il = targets.length; i < il; i ++ ) {
 +
 +
const target = targets[ i ];
 +
 +
if ( hasMorphPosition ) {
 +
 +
const pendingAccessor = target.POSITION !== undefined
 +
? parser.getDependency( 'accessor', target.POSITION )
 +
: geometry.attributes.position;
 +
 +
pendingPositionAccessors.push( pendingAccessor );
 +
 +
}
 +
 +
if ( hasMorphNormal ) {
 +
 +
const pendingAccessor = target.NORMAL !== undefined
 +
? parser.getDependency( 'accessor', target.NORMAL )
 +
: geometry.attributes.normal;
 +
 +
pendingNormalAccessors.push( pendingAccessor );
 +
 +
}
 +
 +
}
 +
 +
return Promise.all( [
 +
Promise.all( pendingPositionAccessors ),
 +
Promise.all( pendingNormalAccessors )
 +
] ).then( function ( accessors ) {
 +
 +
const morphPositions = accessors[ 0 ];
 +
const morphNormals = accessors[ 1 ];
 +
 +
if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions;
 +
if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals;
 +
geometry.morphTargetsRelative = true;
 +
 +
return geometry;
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* @param {Mesh} mesh
 +
* @param {GLTF.Mesh} meshDef
 +
*/
 +
function updateMorphTargets( mesh, meshDef ) {
 +
 +
mesh.updateMorphTargets();
 +
 +
if ( meshDef.weights !== undefined ) {
 +
 +
for ( let i = 0, il = meshDef.weights.length; i < il; i ++ ) {
 +
 +
mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ];
 +
 +
}
 +
 +
}
 +
 +
// .extras has user-defined data, so check that .extras.targetNames is an array.
 +
if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) {
 +
 +
const targetNames = meshDef.extras.targetNames;
 +
 +
if ( mesh.morphTargetInfluences.length === targetNames.length ) {
 +
 +
mesh.morphTargetDictionary = {};
 +
 +
for ( let i = 0, il = targetNames.length; i < il; i ++ ) {
 +
 +
mesh.morphTargetDictionary[ targetNames[ i ] ] = i;
 +
 +
}
 +
 +
} else {
 +
 +
console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' );
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
function createPrimitiveKey( primitiveDef ) {
 +
 +
const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ];
 +
let geometryKey;
 +
 +
if ( dracoExtension ) {
 +
 +
geometryKey = 'draco:' + dracoExtension.bufferView
 +
+ ':' + dracoExtension.indices
 +
+ ':' + createAttributesKey( dracoExtension.attributes );
 +
 +
} else {
 +
 +
geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode;
 +
 +
}
 +
 +
return geometryKey;
 +
 +
}
 +
 +
function createAttributesKey( attributes ) {
 +
 +
let attributesKey = '';
 +
 +
const keys = Object.keys( attributes ).sort();
 +
 +
for ( let i = 0, il = keys.length; i < il; i ++ ) {
 +
 +
attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';';
 +
 +
}
 +
 +
return attributesKey;
 +
 +
}
 +
 +
function getNormalizedComponentScale( constructor ) {
 +
 +
// Reference:
 +
// https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization#encoding-quantized-data
 +
 +
switch ( constructor ) {
 +
 +
case Int8Array:
 +
return 1 / 127;
 +
 +
case Uint8Array:
 +
return 1 / 255;
 +
 +
case Int16Array:
 +
return 1 / 32767;
 +
 +
case Uint16Array:
 +
return 1 / 65535;
 +
 +
default:
 +
throw new Error( 'THREE.GLTFLoader: Unsupported normalized accessor component type.' );
 +
 +
}
 +
 +
}
 +
 +
/* GLTF PARSER */
 +
 +
class GLTFParser {
 +
 +
constructor( json = {}, options = {} ) {
 +
 +
this.json = json;
 +
this.extensions = {};
 +
this.plugins = {};
 +
this.options = options;
 +
 +
// loader object cache
 +
this.cache = new GLTFRegistry();
 +
 +
// associations between Three.js objects and glTF elements
 +
this.associations = new Map();
 +
 +
// BufferGeometry caching
 +
this.primitiveCache = {};
 +
 +
// Object3D instance caches
 +
this.meshCache = { refs: {}, uses: {} };
 +
this.cameraCache = { refs: {}, uses: {} };
 +
this.lightCache = { refs: {}, uses: {} };
 +
 +
this.textureCache = {};
 +
 +
// Track node names, to ensure no duplicates
 +
this.nodeNamesUsed = {};
 +
 +
// Use an ImageBitmapLoader if imageBitmaps are supported. Moves much of the
 +
// expensive work of uploading a texture to the GPU off the main thread.
 +
if ( typeof createImageBitmap !== 'undefined' && /Firefox/.test( navigator.userAgent ) === false ) {
 +
 +
this.textureLoader = new ImageBitmapLoader( this.options.manager );
 +
 +
} else {
 +
 +
this.textureLoader = new TextureLoader( this.options.manager );
 +
 +
}
 +
 +
this.textureLoader.setCrossOrigin( this.options.crossOrigin );
 +
this.textureLoader.setRequestHeader( this.options.requestHeader );
 +
 +
this.fileLoader = new FileLoader( this.options.manager );
 +
this.fileLoader.setResponseType( 'arraybuffer' );
 +
 +
if ( this.options.crossOrigin === 'use-credentials' ) {
 +
 +
this.fileLoader.setWithCredentials( true );
 +
 +
}
 +
 +
}
 +
 +
setExtensions( extensions ) {
 +
 +
this.extensions = extensions;
 +
 +
}
 +
 +
setPlugins( plugins ) {
 +
 +
this.plugins = plugins;
 +
 +
}
 +
 +
parse( onLoad, onError ) {
 +
 +
const parser = this;
 +
const json = this.json;
 +
const extensions = this.extensions;
 +
 +
// Clear the loader cache
 +
this.cache.removeAll();
 +
 +
// Mark the special nodes/meshes in json for efficient parse
 +
this._invokeAll( function ( ext ) {
 +
 +
return ext._markDefs && ext._markDefs();
 +
 +
} );
 +
 +
Promise.all( this._invokeAll( function ( ext ) {
 +
 +
return ext.beforeRoot && ext.beforeRoot();
 +
 +
} ) ).then( function () {
 +
 +
return Promise.all( [
 +
 +
parser.getDependencies( 'scene' ),
 +
parser.getDependencies( 'animation' ),
 +
parser.getDependencies( 'camera' ),
 +
 +
] );
 +
 +
} ).then( function ( dependencies ) {
 +
 +
const result = {
 +
scene: dependencies[ 0 ][ json.scene || 0 ],
 +
scenes: dependencies[ 0 ],
 +
animations: dependencies[ 1 ],
 +
cameras: dependencies[ 2 ],
 +
asset: json.asset,
 +
parser: parser,
 +
userData: {}
 +
};
 +
 +
addUnknownExtensionsToUserData( extensions, result, json );
 +
 +
assignExtrasToUserData( result, json );
 +
 +
Promise.all( parser._invokeAll( function ( ext ) {
 +
 +
return ext.afterRoot && ext.afterRoot( result );
 +
 +
} ) ).then( function () {
 +
 +
onLoad( result );
 +
 +
} );
 +
 +
} ).catch( onError );
 +
 +
}
 +
 +
/**
 +
* Marks the special nodes/meshes in json for efficient parse.
 +
*/
 +
_markDefs() {
 +
 +
const nodeDefs = this.json.nodes || [];
 +
const skinDefs = this.json.skins || [];
 +
const meshDefs = this.json.meshes || [];
 +
 +
// Nothing in the node definition indicates whether it is a Bone or an
 +
// Object3D. Use the skins' joint references to mark bones.
 +
for ( let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {
 +
 +
const joints = skinDefs[ skinIndex ].joints;
 +
 +
for ( let i = 0, il = joints.length; i < il; i ++ ) {
 +
 +
nodeDefs[ joints[ i ] ].isBone = true;
 +
 +
}
 +
 +
}
 +
 +
// Iterate over all nodes, marking references to shared resources,
 +
// as well as skeleton joints.
 +
for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
 +
 +
const nodeDef = nodeDefs[ nodeIndex ];
 +
 +
if ( nodeDef.mesh !== undefined ) {
 +
 +
this._addNodeRef( this.meshCache, nodeDef.mesh );
 +
 +
// Nothing in the mesh definition indicates whether it is
 +
// a SkinnedMesh or Mesh. Use the node's mesh reference
 +
// to mark SkinnedMesh if node has skin.
 +
if ( nodeDef.skin !== undefined ) {
 +
 +
meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;
 +
 +
}
 +
 +
}
 +
 +
if ( nodeDef.camera !== undefined ) {
 +
 +
this._addNodeRef( this.cameraCache, nodeDef.camera );
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
/**
 +
* Counts references to shared node / Object3D resources. These resources
 +
* can be reused, or "instantiated", at multiple nodes in the scene
 +
* hierarchy. Mesh, Camera, and Light instances are instantiated and must
 +
* be marked. Non-scenegraph resources (like Materials, Geometries, and
 +
* Textures) can be reused directly and are not marked here.
 +
*
 +
* Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
 +
*/
 +
_addNodeRef( cache, index ) {
 +
 +
if ( index === undefined ) return;
 +
 +
if ( cache.refs[ index ] === undefined ) {
 +
 +
cache.refs[ index ] = cache.uses[ index ] = 0;
 +
 +
}
 +
 +
cache.refs[ index ] ++;
 +
 +
}
 +
 +
/** Returns a reference to a shared resource, cloning it if necessary. */
 +
_getNodeRef( cache, index, object ) {
 +
 +
if ( cache.refs[ index ] <= 1 ) return object;
 +
 +
const ref = object.clone();
 +
 +
ref.name += '_instance_' + ( cache.uses[ index ] ++ );
 +
 +
return ref;
 +
 +
}
 +
 +
_invokeOne( func ) {
 +
 +
const extensions = Object.values( this.plugins );
 +
extensions.push( this );
 +
 +
for ( let i = 0; i < extensions.length; i ++ ) {
 +
 +
const result = func( extensions[ i ] );
 +
 +
if ( result ) return result;
 +
 +
}
 +
 +
return null;
 +
 +
}
 +
 +
_invokeAll( func ) {
 +
 +
const extensions = Object.values( this.plugins );
 +
extensions.unshift( this );
 +
 +
const pending = [];
 +
 +
for ( let i = 0; i < extensions.length; i ++ ) {
 +
 +
const result = func( extensions[ i ] );
 +
 +
if ( result ) pending.push( result );
 +
 +
}
 +
 +
return pending;
 +
 +
}
 +
 +
/**
 +
* Requests the specified dependency asynchronously, with caching.
 +
* @param {string} type
 +
* @param {number} index
 +
* @return {Promise<Object3D|Material|THREE.Texture|AnimationClip|ArrayBuffer|Object>}
 +
*/
 +
getDependency( type, index ) {
 +
 +
const cacheKey = type + ':' + index;
 +
let dependency = this.cache.get( cacheKey );
 +
 +
if ( ! dependency ) {
 +
 +
switch ( type ) {
 +
 +
case 'scene':
 +
dependency = this.loadScene( index );
 +
break;
 +
 +
case 'node':
 +
dependency = this.loadNode( index );
 +
break;
 +
 +
case 'mesh':
 +
dependency = this._invokeOne( function ( ext ) {
 +
 +
return ext.loadMesh && ext.loadMesh( index );
 +
 +
} );
 +
break;
 +
 +
case 'accessor':
 +
dependency = this.loadAccessor( index );
 +
break;
 +
 +
case 'bufferView':
 +
dependency = this._invokeOne( function ( ext ) {
 +
 +
return ext.loadBufferView && ext.loadBufferView( index );
 +
 +
} );
 +
break;
 +
 +
case 'buffer':
 +
dependency = this.loadBuffer( index );
 +
break;
 +
 +
case 'material':
 +
dependency = this._invokeOne( function ( ext ) {
 +
 +
return ext.loadMaterial && ext.loadMaterial( index );
 +
 +
} );
 +
break;
 +
 +
case 'texture':
 +
dependency = this._invokeOne( function ( ext ) {
 +
 +
return ext.loadTexture && ext.loadTexture( index );
 +
 +
} );
 +
break;
 +
 +
case 'skin':
 +
dependency = this.loadSkin( index );
 +
break;
 +
 +
case 'animation':
 +
dependency = this.loadAnimation( index );
 +
break;
 +
 +
case 'camera':
 +
dependency = this.loadCamera( index );
 +
break;
 +
 +
default:
 +
throw new Error( 'Unknown type: ' + type );
 +
 +
}
 +
 +
this.cache.add( cacheKey, dependency );
 +
 +
}
 +
 +
return dependency;
 +
 +
}
 +
 +
/**
 +
* Requests all dependencies of the specified type asynchronously, with caching.
 +
* @param {string} type
 +
* @return {Promise<Array<Object>>}
 +
*/
 +
getDependencies( type ) {
 +
 +
let dependencies = this.cache.get( type );
 +
 +
if ( ! dependencies ) {
 +
 +
const parser = this;
 +
const defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];
 +
 +
dependencies = Promise.all( defs.map( function ( def, index ) {
 +
 +
return parser.getDependency( type, index );
 +
 +
} ) );
 +
 +
this.cache.add( type, dependencies );
 +
 +
}
 +
 +
return dependencies;
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
 +
* @param {number} bufferIndex
 +
* @return {Promise<ArrayBuffer>}
 +
*/
 +
loadBuffer( bufferIndex ) {
 +
 +
const bufferDef = this.json.buffers[ bufferIndex ];
 +
const loader = this.fileLoader;
 +
 +
if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {
 +
 +
throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );
 +
 +
}
 +
 +
// If present, GLB container is required to be the first buffer.
 +
if ( bufferDef.uri === undefined && bufferIndex === 0 ) {
 +
 +
return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );
 +
 +
}
 +
 +
const options = this.options;
 +
 +
return new Promise( function ( resolve, reject ) {
 +
 +
loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {
 +
 +
reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );
 +
 +
} );
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
 +
* @param {number} bufferViewIndex
 +
* @return {Promise<ArrayBuffer>}
 +
*/
 +
loadBufferView( bufferViewIndex ) {
 +
 +
const bufferViewDef = this.json.bufferViews[ bufferViewIndex ];
 +
 +
return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {
 +
 +
const byteLength = bufferViewDef.byteLength || 0;
 +
const byteOffset = bufferViewDef.byteOffset || 0;
 +
return buffer.slice( byteOffset, byteOffset + byteLength );
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
 +
* @param {number} accessorIndex
 +
* @return {Promise<BufferAttribute|InterleavedBufferAttribute>}
 +
*/
 +
loadAccessor( accessorIndex ) {
 +
 +
const parser = this;
 +
const json = this.json;
 +
 +
const accessorDef = this.json.accessors[ accessorIndex ];
 +
 +
if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {
 +
 +
// Ignore empty accessors, which may be used to declare runtime
 +
// information about attributes coming from another source (e.g. Draco
 +
// compression extension).
 +
return Promise.resolve( null );
 +
 +
}
 +
 +
const pendingBufferViews = [];
 +
 +
if ( accessorDef.bufferView !== undefined ) {
 +
 +
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );
 +
 +
} else {
 +
 +
pendingBufferViews.push( null );
 +
 +
}
 +
 +
if ( accessorDef.sparse !== undefined ) {
 +
 +
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
 +
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );
 +
 +
}
 +
 +
return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {
 +
 +
const bufferView = bufferViews[ 0 ];
 +
 +
const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
 +
const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
 +
 +
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
 +
const elementBytes = TypedArray.BYTES_PER_ELEMENT;
 +
const itemBytes = elementBytes * itemSize;
 +
const byteOffset = accessorDef.byteOffset || 0;
 +
const byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined;
 +
const normalized = accessorDef.normalized === true;
 +
let array, bufferAttribute;
 +
 +
// The buffer is not interleaved if the stride is the item size in bytes.
 +
if ( byteStride && byteStride !== itemBytes ) {
 +
 +
// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer
 +
// This makes sure that IBA.count reflects accessor.count properly
 +
const ibSlice = Math.floor( byteOffset / byteStride );
 +
const ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count;
 +
let ib = parser.cache.get( ibCacheKey );
 +
 +
if ( ! ib ) {
 +
 +
array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes );
 +
 +
// Integer parameters to IB/IBA are in array elements, not bytes.
 +
ib = new InterleavedBuffer( array, byteStride / elementBytes );
 +
 +
parser.cache.add( ibCacheKey, ib );
 +
 +
}
 +
 +
bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized );
 +
 +
} else {
 +
 +
if ( bufferView === null ) {
 +
 +
array = new TypedArray( accessorDef.count * itemSize );
 +
 +
} else {
 +
 +
array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );
 +
 +
}
 +
 +
bufferAttribute = new BufferAttribute( array, itemSize, normalized );
 +
 +
}
 +
 +
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
 +
if ( accessorDef.sparse !== undefined ) {
 +
 +
const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
 +
const TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];
 +
 +
const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
 +
const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
 +
 +
const sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
 +
const sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );
 +
 +
if ( bufferView !== null ) {
 +
 +
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
 +
bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized );
 +
 +
}
 +
 +
for ( let i = 0, il = sparseIndices.length; i < il; i ++ ) {
 +
 +
const index = sparseIndices[ i ];
 +
 +
bufferAttribute.setX( index, sparseValues[ i * itemSize ] );
 +
if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] );
 +
if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] );
 +
if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] );
 +
if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' );
 +
 +
}
 +
 +
}
 +
 +
return bufferAttribute;
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
 +
* @param {number} textureIndex
 +
* @return {Promise<THREE.Texture>}
 +
*/
 +
loadTexture( textureIndex ) {
 +
 +
const json = this.json;
 +
const options = this.options;
 +
const textureDef = json.textures[ textureIndex ];
 +
const source = json.images[ textureDef.source ];
 +
 +
let loader = this.textureLoader;
 +
 +
if ( source.uri ) {
 +
 +
const handler = options.manager.getHandler( source.uri );
 +
if ( handler !== null ) loader = handler;
 +
 +
}
 +
 +
return this.loadTextureImage( textureIndex, source, loader );
 +
 +
}
 +
 +
loadTextureImage( textureIndex, source, loader ) {
 +
 +
const parser = this;
 +
const json = this.json;
 +
const options = this.options;
 +
 +
const textureDef = json.textures[ textureIndex ];
 +
 +
const cacheKey = ( source.uri || source.bufferView ) + ':' + textureDef.sampler;
 +
 +
if ( this.textureCache[ cacheKey ] ) {
 +
 +
// See https://github.com/mrdoob/three.js/issues/21559.
 +
return this.textureCache[ cacheKey ];
 +
 +
}
 +
 +
const URL = self.URL || self.webkitURL;
 +
 +
let sourceURI = source.uri || '';
 +
let isObjectURL = false;
 +
let hasAlpha = true;
 +
 +
const isJPEG = sourceURI.search( /\.jpe?g($|\?)/i ) > 0 || sourceURI.search( /^data\:image\/jpeg/ ) === 0;
 +
 +
if ( source.mimeType === 'image/jpeg' || isJPEG ) hasAlpha = false;
 +
 +
if ( source.bufferView !== undefined ) {
 +
 +
// Load binary image data from bufferView, if provided.
 +
 +
sourceURI = parser.getDependency( 'bufferView', source.bufferView ).then( function ( bufferView ) {
 +
 +
if ( source.mimeType === 'image/png' ) {
 +
 +
// Inspect the PNG 'IHDR' chunk to determine whether the image could have an
 +
// alpha channel. This check is conservative — the image could have an alpha
 +
// channel with all values == 1, and the indexed type (colorType == 3) only
 +
// sometimes contains alpha.
 +
//
 +
// https://en.wikipedia.org/wiki/Portable_Network_Graphics#File_header
 +
const colorType = new DataView( bufferView, 25, 1 ).getUint8( 0, false );
 +
hasAlpha = colorType === 6 || colorType === 4 || colorType === 3;
 +
 +
}
 +
 +
isObjectURL = true;
 +
const blob = new Blob( [ bufferView ], { type: source.mimeType } );
 +
sourceURI = URL.createObjectURL( blob );
 +
return sourceURI;
 +
 +
} );
 +
 +
} else if ( source.uri === undefined ) {
 +
 +
throw new Error( 'THREE.GLTFLoader: Image ' + textureIndex + ' is missing URI and bufferView' );
 +
 +
}
 +
 +
const promise = Promise.resolve( sourceURI ).then( function ( sourceURI ) {
 +
 +
return new Promise( function ( resolve, reject ) {
 +
 +
let onLoad = resolve;
 +
 +
if ( loader.isImageBitmapLoader === true ) {
 +
 +
onLoad = function ( imageBitmap ) {
 +
 +
const texture = new Texture( imageBitmap );
 +
texture.needsUpdate = true;
 +
 +
resolve( texture );
 +
 +
};
 +
 +
}
 +
 +
loader.load( resolveURL( sourceURI, options.path ), onLoad, undefined, reject );
 +
 +
} );
 +
 +
} ).then( function ( texture ) {
 +
 +
// Clean up resources and configure Texture.
 +
 +
if ( isObjectURL === true ) {
 +
 +
URL.revokeObjectURL( sourceURI );
 +
 +
}
 +
 +
texture.flipY = false;
 +
 +
if ( textureDef.name ) texture.name = textureDef.name;
 +
 +
// When there is definitely no alpha channel in the texture, set RGBFormat to save space.
 +
if ( ! hasAlpha ) texture.format = RGBFormat;
 +
 +
const samplers = json.samplers || {};
 +
const sampler = samplers[ textureDef.sampler ] || {};
 +
 +
texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter;
 +
texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter;
 +
texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping;
 +
texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping;
 +
 +
parser.associations.set( texture, {
 +
type: 'textures',
 +
index: textureIndex
 +
} );
 +
 +
return texture;
 +
 +
} ).catch( function () {
 +
 +
console.error( 'THREE.GLTFLoader: Couldn\'t load texture', sourceURI );
 +
return null;
 +
 +
} );
 +
 +
this.textureCache[ cacheKey ] = promise;
 +
 +
return promise;
 +
 +
}
 +
 +
/**
 +
* Asynchronously assigns a texture to the given material parameters.
 +
* @param {Object} materialParams
 +
* @param {string} mapName
 +
* @param {Object} mapDef
 +
* @return {Promise}
 +
*/
 +
assignTexture( materialParams, mapName, mapDef ) {
 +
 +
const parser = this;
 +
 +
return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) {
 +
 +
// Materials sample aoMap from UV set 1 and other maps from UV set 0 - this can't be configured
 +
// However, we will copy UV set 0 to UV set 1 on demand for aoMap
 +
if ( mapDef.texCoord !== undefined && mapDef.texCoord != 0 && ! ( mapName === 'aoMap' && mapDef.texCoord == 1 ) ) {
 +
 +
console.warn( 'THREE.GLTFLoader: Custom UV set ' + mapDef.texCoord + ' for texture ' + mapName + ' not yet supported.' );
 +
 +
}
 +
 +
if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) {
 +
 +
const transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined;
 +
 +
if ( transform ) {
 +
 +
const gltfReference = parser.associations.get( texture );
 +
texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform );
 +
parser.associations.set( texture, gltfReference );
 +
 +
}
 +
 +
}
 +
 +
materialParams[ mapName ] = texture;
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* Assigns final material to a Mesh, Line, or Points instance. The instance
 +
* already has a material (generated from the glTF material options alone)
 +
* but reuse of the same glTF material may require multiple threejs materials
 +
* to accommodate different primitive types, defines, etc. New materials will
 +
* be created if necessary, and reused from a cache.
 +
* @param  {Object3D} mesh Mesh, Line, or Points instance.
 +
*/
 +
assignFinalMaterial( mesh ) {
 +
 +
const geometry = mesh.geometry;
 +
let material = mesh.material;
 +
 +
const useVertexTangents = geometry.attributes.tangent !== undefined;
 +
const useVertexColors = geometry.attributes.color !== undefined;
 +
const useFlatShading = geometry.attributes.normal === undefined;
 +
const useMorphTargets = Object.keys( geometry.morphAttributes ).length > 0;
 +
const useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined;
 +
 +
if ( mesh.isPoints ) {
 +
 +
const cacheKey = 'PointsMaterial:' + material.uuid;
 +
 +
let pointsMaterial = this.cache.get( cacheKey );
 +
 +
if ( ! pointsMaterial ) {
 +
 +
pointsMaterial = new PointsMaterial();
 +
Material.prototype.copy.call( pointsMaterial, material );
 +
pointsMaterial.color.copy( material.color );
 +
pointsMaterial.map = material.map;
 +
pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px
 +
 +
this.cache.add( cacheKey, pointsMaterial );
 +
 +
}
 +
 +
material = pointsMaterial;
 +
 +
} else if ( mesh.isLine ) {
 +
 +
const cacheKey = 'LineBasicMaterial:' + material.uuid;
 +
 +
let lineMaterial = this.cache.get( cacheKey );
 +
 +
if ( ! lineMaterial ) {
 +
 +
lineMaterial = new LineBasicMaterial();
 +
Material.prototype.copy.call( lineMaterial, material );
 +
lineMaterial.color.copy( material.color );
 +
 +
this.cache.add( cacheKey, lineMaterial );
 +
 +
}
 +
 +
material = lineMaterial;
 +
 +
}
 +
 +
// Clone the material if it will be modified
 +
if ( useVertexTangents || useVertexColors || useFlatShading || useMorphTargets ) {
 +
 +
let cacheKey = 'ClonedMaterial:' + material.uuid + ':';
 +
 +
if ( material.isGLTFSpecularGlossinessMaterial ) cacheKey += 'specular-glossiness:';
 +
if ( useVertexTangents ) cacheKey += 'vertex-tangents:';
 +
if ( useVertexColors ) cacheKey += 'vertex-colors:';
 +
if ( useFlatShading ) cacheKey += 'flat-shading:';
 +
if ( useMorphTargets ) cacheKey += 'morph-targets:';
 +
if ( useMorphNormals ) cacheKey += 'morph-normals:';
 +
 +
let cachedMaterial = this.cache.get( cacheKey );
 +
 +
if ( ! cachedMaterial ) {
 +
 +
cachedMaterial = material.clone();
 +
 +
if ( useVertexColors ) cachedMaterial.vertexColors = true;
 +
if ( useFlatShading ) cachedMaterial.flatShading = true;
 +
if ( useMorphTargets ) cachedMaterial.morphTargets = true;
 +
if ( useMorphNormals ) cachedMaterial.morphNormals = true;
 +
 +
if ( useVertexTangents ) {
 +
 +
cachedMaterial.vertexTangents = true;
 +
 +
// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
 +
if ( cachedMaterial.normalScale ) cachedMaterial.normalScale.y *= - 1;
 +
if ( cachedMaterial.clearcoatNormalScale ) cachedMaterial.clearcoatNormalScale.y *= - 1;
 +
 +
}
 +
 +
this.cache.add( cacheKey, cachedMaterial );
 +
 +
this.associations.set( cachedMaterial, this.associations.get( material ) );
 +
 +
}
 +
 +
material = cachedMaterial;
 +
 +
}
 +
 +
// workarounds for mesh and geometry
 +
 +
if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) {
 +
 +
geometry.setAttribute( 'uv2', geometry.attributes.uv );
 +
 +
}
 +
 +
mesh.material = material;
 +
 +
}
 +
 +
getMaterialType( /* materialIndex */ ) {
 +
 +
return MeshStandardMaterial;
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
 +
* @param {number} materialIndex
 +
* @return {Promise<Material>}
 +
*/
 +
loadMaterial( materialIndex ) {
 +
 +
const parser = this;
 +
const json = this.json;
 +
const extensions = this.extensions;
 +
const materialDef = json.materials[ materialIndex ];
 +
 +
let materialType;
 +
const materialParams = {};
 +
const materialExtensions = materialDef.extensions || {};
 +
 +
const pending = [];
 +
 +
if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) {
 +
 +
const sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ];
 +
materialType = sgExtension.getMaterialType();
 +
pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) );
 +
 +
} else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {
 +
 +
const kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ];
 +
materialType = kmuExtension.getMaterialType();
 +
pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );
 +
 +
} else {
 +
 +
// Specification:
 +
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material
 +
 +
const metallicRoughness = materialDef.pbrMetallicRoughness || {};
 +
 +
materialParams.color = new Color( 1.0, 1.0, 1.0 );
 +
materialParams.opacity = 1.0;
 +
 +
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
 +
 +
const array = metallicRoughness.baseColorFactor;
 +
 +
materialParams.color.fromArray( array );
 +
materialParams.opacity = array[ 3 ];
 +
 +
}
 +
 +
if ( metallicRoughness.baseColorTexture !== undefined ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );
 +
 +
}
 +
 +
materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
 +
materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;
 +
 +
if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) );
 +
pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) );
 +
 +
}
 +
 +
materialType = this._invokeOne( function ( ext ) {
 +
 +
return ext.getMaterialType && ext.getMaterialType( materialIndex );
 +
 +
} );
 +
 +
pending.push( Promise.all( this._invokeAll( function ( ext ) {
 +
 +
return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams );
 +
 +
} ) ) );
 +
 +
}
 +
 +
if ( materialDef.doubleSided === true ) {
 +
 +
materialParams.side = DoubleSide;
 +
 +
}
 +
 +
const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
 +
 +
if ( alphaMode === ALPHA_MODES.BLEND ) {
 +
 +
materialParams.transparent = true;
 +
 +
// See: https://github.com/mrdoob/three.js/issues/17706
 +
materialParams.depthWrite = false;
 +
 +
} else {
 +
 +
materialParams.transparent = false;
 +
 +
if ( alphaMode === ALPHA_MODES.MASK ) {
 +
 +
materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;
 +
 +
}
 +
 +
}
 +
 +
if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) );
 +
 +
// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
 +
materialParams.normalScale = new Vector2( 1, - 1 );
 +
 +
if ( materialDef.normalTexture.scale !== undefined ) {
 +
 +
materialParams.normalScale.set( materialDef.normalTexture.scale, - materialDef.normalTexture.scale );
 +
 +
}
 +
 +
}
 +
 +
if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) );
 +
 +
if ( materialDef.occlusionTexture.strength !== undefined ) {
 +
 +
materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
 +
 +
}
 +
 +
}
 +
 +
if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) {
 +
 +
materialParams.emissive = new Color().fromArray( materialDef.emissiveFactor );
 +
 +
}
 +
 +
if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) {
 +
 +
pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture ) );
 +
 +
}
 +
 +
return Promise.all( pending ).then( function () {
 +
 +
let material;
 +
 +
if ( materialType === GLTFMeshStandardSGMaterial ) {
 +
 +
material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams );
 +
 +
} else {
 +
 +
material = new materialType( materialParams );
 +
 +
}
 +
 +
if ( materialDef.name ) material.name = materialDef.name;
 +
 +
// baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding.
 +
if ( material.map ) material.map.encoding = sRGBEncoding;
 +
if ( material.emissiveMap ) material.emissiveMap.encoding = sRGBEncoding;
 +
 +
assignExtrasToUserData( material, materialDef );
 +
 +
parser.associations.set( material, { type: 'materials', index: materialIndex } );
 +
 +
if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );
 +
 +
return material;
 +
 +
} );
 +
 +
}
 +
 +
/** When Object3D instances are targeted by animation, they need unique names. */
 +
createUniqueName( originalName ) {
 +
 +
const sanitizedName = PropertyBinding.sanitizeNodeName( originalName || '' );
 +
 +
let name = sanitizedName;
 +
 +
for ( let i = 1; this.nodeNamesUsed[ name ]; ++ i ) {
 +
 +
name = sanitizedName + '_' + i;
 +
 +
}
 +
 +
this.nodeNamesUsed[ name ] = true;
 +
 +
return name;
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
 +
*
 +
* Creates BufferGeometries from primitives.
 +
*
 +
* @param {Array<GLTF.Primitive>} primitives
 +
* @return {Promise<Array<BufferGeometry>>}
 +
*/
 +
loadGeometries( primitives ) {
 +
 +
const parser = this;
 +
const extensions = this.extensions;
 +
const cache = this.primitiveCache;
 +
 +
function createDracoPrimitive( primitive ) {
 +
 +
return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]
 +
.decodePrimitive( primitive, parser )
 +
.then( function ( geometry ) {
 +
 +
return addPrimitiveAttributes( geometry, primitive, parser );
 +
 +
} );
 +
 +
}
 +
 +
const pending = [];
 +
 +
for ( let i = 0, il = primitives.length; i < il; i ++ ) {
 +
 +
const primitive = primitives[ i ];
 +
const cacheKey = createPrimitiveKey( primitive );
 +
 +
// See if we've already created this geometry
 +
const cached = cache[ cacheKey ];
 +
 +
if ( cached ) {
 +
 +
// Use the cached geometry if it exists
 +
pending.push( cached.promise );
 +
 +
} else {
 +
 +
let geometryPromise;
 +
 +
if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {
 +
 +
// Use DRACO geometry if available
 +
geometryPromise = createDracoPrimitive( primitive );
 +
 +
} else {
 +
 +
// Otherwise create a new geometry
 +
geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser );
 +
 +
}
 +
 +
// Cache this geometry
 +
cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise };
 +
 +
pending.push( geometryPromise );
 +
 +
}
 +
 +
}
 +
 +
return Promise.all( pending );
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
 +
* @param {number} meshIndex
 +
* @return {Promise<Group|Mesh|SkinnedMesh>}
 +
*/
 +
loadMesh( meshIndex ) {
 +
 +
const parser = this;
 +
const json = this.json;
 +
const extensions = this.extensions;
 +
 +
const meshDef = json.meshes[ meshIndex ];
 +
const primitives = meshDef.primitives;
 +
 +
const pending = [];
 +
 +
for ( let i = 0, il = primitives.length; i < il; i ++ ) {
 +
 +
const material = primitives[ i ].material === undefined
 +
? createDefaultMaterial( this.cache )
 +
: this.getDependency( 'material', primitives[ i ].material );
 +
 +
pending.push( material );
 +
 +
}
 +
 +
pending.push( parser.loadGeometries( primitives ) );
 +
 +
return Promise.all( pending ).then( function ( results ) {
 +
 +
const materials = results.slice( 0, results.length - 1 );
 +
const geometries = results[ results.length - 1 ];
 +
 +
const meshes = [];
 +
 +
for ( let i = 0, il = geometries.length; i < il; i ++ ) {
 +
 +
const geometry = geometries[ i ];
 +
const primitive = primitives[ i ];
 +
 +
// 1. create Mesh
 +
 +
let mesh;
 +
 +
const material = materials[ i ];
 +
 +
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
 +
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
 +
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
 +
primitive.mode === undefined ) {
 +
 +
// .isSkinnedMesh isn't in glTF spec. See ._markDefs()
 +
mesh = meshDef.isSkinnedMesh === true
 +
? new SkinnedMesh( geometry, material )
 +
: new Mesh( geometry, material );
 +
 +
if ( mesh.isSkinnedMesh === true && ! mesh.geometry.attributes.skinWeight.normalized ) {
 +
 +
// we normalize floating point skin weight array to fix malformed assets (see #15319)
 +
// it's important to skip this for non-float32 data since normalizeSkinWeights assumes non-normalized inputs
 +
mesh.normalizeSkinWeights();
 +
 +
}
 +
 +
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {
 +
 +
mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode );
 +
 +
} else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {
 +
 +
mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode );
 +
 +
}
 +
 +
} else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {
 +
 +
mesh = new LineSegments( geometry, material );
 +
 +
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {
 +
 +
mesh = new Line( geometry, material );
 +
 +
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {
 +
 +
mesh = new LineLoop( geometry, material );
 +
 +
} else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {
 +
 +
mesh = new Points( geometry, material );
 +
 +
} else {
 +
 +
throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );
 +
 +
}
 +
 +
if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {
 +
 +
updateMorphTargets( mesh, meshDef );
 +
 +
}
 +
 +
mesh.name = parser.createUniqueName( meshDef.name || ( 'mesh_' + meshIndex ) );
 +
 +
assignExtrasToUserData( mesh, meshDef );
 +
 +
if ( primitive.extensions ) addUnknownExtensionsToUserData( extensions, mesh, primitive );
 +
 +
parser.assignFinalMaterial( mesh );
 +
 +
meshes.push( mesh );
 +
 +
}
 +
 +
if ( meshes.length === 1 ) {
 +
 +
return meshes[ 0 ];
 +
 +
}
 +
 +
const group = new Group();
 +
 +
for ( let i = 0, il = meshes.length; i < il; i ++ ) {
 +
 +
group.add( meshes[ i ] );
 +
 +
}
 +
 +
return group;
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
 +
* @param {number} cameraIndex
 +
* @return {Promise<THREE.Camera>}
 +
*/
 +
loadCamera( cameraIndex ) {
 +
 +
let camera;
 +
const cameraDef = this.json.cameras[ cameraIndex ];
 +
const params = cameraDef[ cameraDef.type ];
 +
 +
if ( ! params ) {
 +
 +
console.warn( 'THREE.GLTFLoader: Missing camera parameters.' );
 +
return;
 +
 +
}
 +
 +
if ( cameraDef.type === 'perspective' ) {
 +
 +
camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );
 +
 +
} else if ( cameraDef.type === 'orthographic' ) {
 +
 +
camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar );
 +
 +
}
 +
 +
if ( cameraDef.name ) camera.name = this.createUniqueName( cameraDef.name );
 +
 +
assignExtrasToUserData( camera, cameraDef );
 +
 +
return Promise.resolve( camera );
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
 +
* @param {number} skinIndex
 +
* @return {Promise<Object>}
 +
*/
 +
loadSkin( skinIndex ) {
 +
 +
const skinDef = this.json.skins[ skinIndex ];
 +
 +
const skinEntry = { joints: skinDef.joints };
 +
 +
if ( skinDef.inverseBindMatrices === undefined ) {
 +
 +
return Promise.resolve( skinEntry );
 +
 +
}
 +
 +
return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) {
 +
 +
skinEntry.inverseBindMatrices = accessor;
 +
 +
return skinEntry;
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
 +
* @param {number} animationIndex
 +
* @return {Promise<AnimationClip>}
 +
*/
 +
loadAnimation( animationIndex ) {
 +
 +
const json = this.json;
 +
 +
const animationDef = json.animations[ animationIndex ];
 +
 +
const pendingNodes = [];
 +
const pendingInputAccessors = [];
 +
const pendingOutputAccessors = [];
 +
const pendingSamplers = [];
 +
const pendingTargets = [];
 +
 +
for ( let i = 0, il = animationDef.channels.length; i < il; i ++ ) {
 +
 +
const channel = animationDef.channels[ i ];
 +
const sampler = animationDef.samplers[ channel.sampler ];
 +
const target = channel.target;
 +
const name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated.
 +
const input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input;
 +
const output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;
 +
 +
pendingNodes.push( this.getDependency( 'node', name ) );
 +
pendingInputAccessors.push( this.getDependency( 'accessor', input ) );
 +
pendingOutputAccessors.push( this.getDependency( 'accessor', output ) );
 +
pendingSamplers.push( sampler );
 +
pendingTargets.push( target );
 +
 +
}
 +
 +
return Promise.all( [
 +
 +
Promise.all( pendingNodes ),
 +
Promise.all( pendingInputAccessors ),
 +
Promise.all( pendingOutputAccessors ),
 +
Promise.all( pendingSamplers ),
 +
Promise.all( pendingTargets )
 +
 +
] ).then( function ( dependencies ) {
 +
 +
const nodes = dependencies[ 0 ];
 +
const inputAccessors = dependencies[ 1 ];
 +
const outputAccessors = dependencies[ 2 ];
 +
const samplers = dependencies[ 3 ];
 +
const targets = dependencies[ 4 ];
 +
 +
const tracks = [];
 +
 +
for ( let i = 0, il = nodes.length; i < il; i ++ ) {
 +
 +
const node = nodes[ i ];
 +
const inputAccessor = inputAccessors[ i ];
 +
const outputAccessor = outputAccessors[ i ];
 +
const sampler = samplers[ i ];
 +
const target = targets[ i ];
 +
 +
if ( node === undefined ) continue;
 +
 +
node.updateMatrix();
 +
node.matrixAutoUpdate = true;
 +
 +
let TypedKeyframeTrack;
 +
 +
switch ( PATH_PROPERTIES[ target.path ] ) {
 +
 +
case PATH_PROPERTIES.weights:
 +
 +
TypedKeyframeTrack = NumberKeyframeTrack;
 +
break;
 +
 +
case PATH_PROPERTIES.rotation:
 +
 +
TypedKeyframeTrack = QuaternionKeyframeTrack;
 +
break;
 +
 +
case PATH_PROPERTIES.position:
 +
case PATH_PROPERTIES.scale:
 +
default:
 +
 +
TypedKeyframeTrack = VectorKeyframeTrack;
 +
break;
 +
 +
}
 +
 +
const targetName = node.name ? node.name : node.uuid;
 +
 +
const interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear;
 +
 +
const targetNames = [];
 +
 +
if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {
 +
 +
// Node may be a Group (glTF mesh with several primitives) or a Mesh.
 +
node.traverse( function ( object ) {
 +
 +
if ( object.isMesh === true && object.morphTargetInfluences ) {
 +
 +
targetNames.push( object.name ? object.name : object.uuid );
 +
 +
}
 +
 +
} );
 +
 +
} else {
 +
 +
targetNames.push( targetName );
 +
 +
}
 +
 +
let outputArray = outputAccessor.array;
 +
 +
if ( outputAccessor.normalized ) {
 +
 +
const scale = getNormalizedComponentScale( outputArray.constructor );
 +
const scaled = new Float32Array( outputArray.length );
 +
 +
for ( let j = 0, jl = outputArray.length; j < jl; j ++ ) {
 +
 +
scaled[ j ] = outputArray[ j ] * scale;
 +
 +
}
 +
 +
outputArray = scaled;
 +
 +
}
 +
 +
for ( let j = 0, jl = targetNames.length; j < jl; j ++ ) {
 +
 +
const track = new TypedKeyframeTrack(
 +
targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ],
 +
inputAccessor.array,
 +
outputArray,
 +
interpolation
 +
);
 +
 +
// Override interpolation with custom factory method.
 +
if ( sampler.interpolation === 'CUBICSPLINE' ) {
 +
 +
track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {
 +
 +
// A CUBICSPLINE keyframe in glTF has three output values for each input value,
 +
// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
 +
// must be divided by three to get the interpolant's sampleSize argument.
 +
 +
return new GLTFCubicSplineInterpolant( this.times, this.values, this.getValueSize() / 3, result );
 +
 +
};
 +
 +
// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
 +
track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
 +
 +
}
 +
 +
tracks.push( track );
 +
 +
}
 +
 +
}
 +
 +
const name = animationDef.name ? animationDef.name : 'animation_' + animationIndex;
 +
 +
return new AnimationClip( name, undefined, tracks );
 +
 +
} );
 +
 +
}
 +
 +
createNodeMesh( nodeIndex ) {
 +
 +
const json = this.json;
 +
const parser = this;
 +
const nodeDef = json.nodes[ nodeIndex ];
 +
 +
if ( nodeDef.mesh === undefined ) return null;
 +
 +
return parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) {
 +
 +
const node = parser._getNodeRef( parser.meshCache, nodeDef.mesh, mesh );
 +
 +
// if weights are provided on the node, override weights on the mesh.
 +
if ( nodeDef.weights !== undefined ) {
 +
 +
node.traverse( function ( o ) {
 +
 +
if ( ! o.isMesh ) return;
 +
 +
for ( let i = 0, il = nodeDef.weights.length; i < il; i ++ ) {
 +
 +
o.morphTargetInfluences[ i ] = nodeDef.weights[ i ];
 +
 +
}
 +
 +
} );
 +
 +
}
 +
 +
return node;
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
 +
* @param {number} nodeIndex
 +
* @return {Promise<Object3D>}
 +
*/
 +
loadNode( nodeIndex ) {
 +
 +
const json = this.json;
 +
const extensions = this.extensions;
 +
const parser = this;
 +
 +
const nodeDef = json.nodes[ nodeIndex ];
 +
 +
// reserve node's name before its dependencies, so the root has the intended name.
 +
const nodeName = nodeDef.name ? parser.createUniqueName( nodeDef.name ) : '';
 +
 +
return ( function () {
 +
 +
const pending = [];
 +
 +
const meshPromise = parser._invokeOne( function ( ext ) {
 +
 +
return ext.createNodeMesh && ext.createNodeMesh( nodeIndex );
 +
 +
} );
 +
 +
if ( meshPromise ) {
 +
 +
pending.push( meshPromise );
 +
 +
}
 +
 +
if ( nodeDef.camera !== undefined ) {
 +
 +
pending.push( parser.getDependency( 'camera', nodeDef.camera ).then( function ( camera ) {
 +
 +
return parser._getNodeRef( parser.cameraCache, nodeDef.camera, camera );
 +
 +
} ) );
 +
 +
}
 +
 +
parser._invokeAll( function ( ext ) {
 +
 +
return ext.createNodeAttachment && ext.createNodeAttachment( nodeIndex );
 +
 +
} ).forEach( function ( promise ) {
 +
 +
pending.push( promise );
 +
 +
} );
 +
 +
return Promise.all( pending );
 +
 +
}() ).then( function ( objects ) {
 +
 +
let node;
 +
 +
// .isBone isn't in glTF spec. See ._markDefs
 +
if ( nodeDef.isBone === true ) {
 +
 +
node = new Bone();
 +
 +
} else if ( objects.length > 1 ) {
 +
 +
node = new Group();
 +
 +
} else if ( objects.length === 1 ) {
 +
 +
node = objects[ 0 ];
 +
 +
} else {
 +
 +
node = new Object3D();
 +
 +
}
 +
 +
if ( node !== objects[ 0 ] ) {
 +
 +
for ( let i = 0, il = objects.length; i < il; i ++ ) {
 +
 +
node.add( objects[ i ] );
 +
 +
}
 +
 +
}
 +
 +
if ( nodeDef.name ) {
 +
 +
node.userData.name = nodeDef.name;
 +
node.name = nodeName;
 +
 +
}
 +
 +
assignExtrasToUserData( node, nodeDef );
 +
 +
if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );
 +
 +
if ( nodeDef.matrix !== undefined ) {
 +
 +
const matrix = new Matrix4();
 +
matrix.fromArray( nodeDef.matrix );
 +
node.applyMatrix4( matrix );
 +
 +
} else {
 +
 +
if ( nodeDef.translation !== undefined ) {
 +
 +
node.position.fromArray( nodeDef.translation );
 +
 +
}
 +
 +
if ( nodeDef.rotation !== undefined ) {
 +
 +
node.quaternion.fromArray( nodeDef.rotation );
 +
 +
}
 +
 +
if ( nodeDef.scale !== undefined ) {
 +
 +
node.scale.fromArray( nodeDef.scale );
 +
 +
}
 +
 +
}
 +
 +
parser.associations.set( node, { type: 'nodes', index: nodeIndex } );
 +
 +
return node;
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
 +
* @param {number} sceneIndex
 +
* @return {Promise<Group>}
 +
*/
 +
loadScene( sceneIndex ) {
 +
 +
const json = this.json;
 +
const extensions = this.extensions;
 +
const sceneDef = this.json.scenes[ sceneIndex ];
 +
const parser = this;
 +
 +
// Loader returns Group, not Scene.
 +
// See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172
 +
const scene = new Group();
 +
if ( sceneDef.name ) scene.name = parser.createUniqueName( sceneDef.name );
 +
 +
assignExtrasToUserData( scene, sceneDef );
 +
 +
if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );
 +
 +
const nodeIds = sceneDef.nodes || [];
 +
 +
const pending = [];
 +
 +
for ( let i = 0, il = nodeIds.length; i < il; i ++ ) {
 +
 +
pending.push( buildNodeHierachy( nodeIds[ i ], scene, json, parser ) );
 +
 +
}
 +
 +
return Promise.all( pending ).then( function () {
 +
 +
return scene;
 +
 +
} );
 +
 +
}
 +
 +
}
 +
 +
function buildNodeHierachy( nodeId, parentObject, json, parser ) {
 +
 +
const nodeDef = json.nodes[ nodeId ];
 +
 +
return parser.getDependency( 'node', nodeId ).then( function ( node ) {
 +
 +
if ( nodeDef.skin === undefined ) return node;
 +
 +
// build skeleton here as well
 +
 +
let skinEntry;
 +
 +
return parser.getDependency( 'skin', nodeDef.skin ).then( function ( skin ) {
 +
 +
skinEntry = skin;
 +
 +
const pendingJoints = [];
 +
 +
for ( let i = 0, il = skinEntry.joints.length; i < il; i ++ ) {
 +
 +
pendingJoints.push( parser.getDependency( 'node', skinEntry.joints[ i ] ) );
 +
 +
}
 +
 +
return Promise.all( pendingJoints );
 +
 +
} ).then( function ( jointNodes ) {
 +
 +
node.traverse( function ( mesh ) {
 +
 +
if ( ! mesh.isMesh ) return;
 +
 +
const bones = [];
 +
const boneInverses = [];
 +
 +
for ( let j = 0, jl = jointNodes.length; j < jl; j ++ ) {
 +
 +
const jointNode = jointNodes[ j ];
 +
 +
if ( jointNode ) {
 +
 +
bones.push( jointNode );
 +
 +
const mat = new Matrix4();
 +
 +
if ( skinEntry.inverseBindMatrices !== undefined ) {
 +
 +
mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 );
 +
 +
}
 +
 +
boneInverses.push( mat );
 +
 +
} else {
 +
 +
console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[ j ] );
 +
 +
}
 +
 +
}
 +
 +
mesh.bind( new Skeleton( bones, boneInverses ), mesh.matrixWorld );
 +
 +
} );
 +
 +
return node;
 +
 +
} );
 +
 +
} ).then( function ( node ) {
 +
 +
// build node hierachy
 +
 +
parentObject.add( node );
 +
 +
const pending = [];
 +
 +
if ( nodeDef.children ) {
 +
 +
const children = nodeDef.children;
 +
 +
for ( let i = 0, il = children.length; i < il; i ++ ) {
 +
 +
const child = children[ i ];
 +
pending.push( buildNodeHierachy( child, node, json, parser ) );
 +
 +
}
 +
 +
}
 +
 +
return Promise.all( pending );
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* @param {BufferGeometry} geometry
 +
* @param {GLTF.Primitive} primitiveDef
 +
* @param {GLTFParser} parser
 +
*/
 +
function computeBounds( geometry, primitiveDef, parser ) {
 +
 +
const attributes = primitiveDef.attributes;
 +
 +
const box = new Box3();
 +
 +
if ( attributes.POSITION !== undefined ) {
 +
 +
const accessor = parser.json.accessors[ attributes.POSITION ];
 +
 +
const min = accessor.min;
 +
const max = accessor.max;
 +
 +
// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.
 +
 +
if ( min !== undefined && max !== undefined ) {
 +
 +
box.set(
 +
new Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ),
 +
new Vector3( max[ 0 ], max[ 1 ], max[ 2 ] )
 +
);
 +
 +
if ( accessor.normalized ) {
 +
 +
const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] );
 +
box.min.multiplyScalar( boxScale );
 +
box.max.multiplyScalar( boxScale );
 +
 +
}
 +
 +
} else {
 +
 +
console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );
 +
 +
return;
 +
 +
}
 +
 +
} else {
 +
 +
return;
 +
 +
}
 +
 +
const targets = primitiveDef.targets;
 +
 +
if ( targets !== undefined ) {
 +
 +
const maxDisplacement = new Vector3();
 +
const vector = new Vector3();
 +
 +
for ( let i = 0, il = targets.length; i < il; i ++ ) {
 +
 +
const target = targets[ i ];
 +
 +
if ( target.POSITION !== undefined ) {
 +
 +
const accessor = parser.json.accessors[ target.POSITION ];
 +
const min = accessor.min;
 +
const max = accessor.max;
 +
 +
// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.
 +
 +
if ( min !== undefined && max !== undefined ) {
 +
 +
// we need to get max of absolute components because target weight is [-1,1]
 +
vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) );
 +
vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) );
 +
vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) );
 +
 +
 +
if ( accessor.normalized ) {
 +
 +
const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] );
 +
vector.multiplyScalar( boxScale );
 +
 +
}
 +
 +
// Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative
 +
// to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets
 +
// are used to implement key-frame animations and as such only two are active at a time - this results in very large
 +
// boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size.
 +
maxDisplacement.max( vector );
 +
 +
} else {
 +
 +
console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
// As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets.
 +
box.expandByVector( maxDisplacement );
 +
 +
}
 +
 +
geometry.boundingBox = box;
 +
 +
const sphere = new Sphere();
 +
 +
box.getCenter( sphere.center );
 +
sphere.radius = box.min.distanceTo( box.max ) / 2;
 +
 +
geometry.boundingSphere = sphere;
 +
 +
}
 +
 +
/**
 +
* @param {BufferGeometry} geometry
 +
* @param {GLTF.Primitive} primitiveDef
 +
* @param {GLTFParser} parser
 +
* @return {Promise<BufferGeometry>}
 +
*/
 +
function addPrimitiveAttributes( geometry, primitiveDef, parser ) {
 +
 +
const attributes = primitiveDef.attributes;
 +
 +
const pending = [];
 +
 +
function assignAttributeAccessor( accessorIndex, attributeName ) {
 +
 +
return parser.getDependency( 'accessor', accessorIndex )
 +
.then( function ( accessor ) {
 +
 +
geometry.setAttribute( attributeName, accessor );
 +
 +
} );
 +
 +
}
 +
 +
for ( const gltfAttributeName in attributes ) {
 +
 +
const threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase();
 +
 +
// Skip attributes already provided by e.g. Draco extension.
 +
if ( threeAttributeName in geometry.attributes ) continue;
 +
 +
pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) );
 +
 +
}
 +
 +
if ( primitiveDef.indices !== undefined && ! geometry.index ) {
 +
 +
const accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) {
 +
 +
geometry.setIndex( accessor );
 +
 +
} );
 +
 +
pending.push( accessor );
 +
 +
}
 +
 +
assignExtrasToUserData( geometry, primitiveDef );
 +
 +
computeBounds( geometry, primitiveDef, parser );
 +
 +
return Promise.all( pending ).then( function () {
 +
 +
return primitiveDef.targets !== undefined
 +
? addMorphTargets( geometry, primitiveDef.targets, parser )
 +
: geometry;
 +
 +
} );
 +
 +
}
 +
 +
/**
 +
* @param {BufferGeometry} geometry
 +
* @param {Number} drawMode
 +
* @return {BufferGeometry}
 +
*/
 +
function toTrianglesDrawMode( geometry, drawMode ) {
 +
 +
let index = geometry.getIndex();
 +
 +
// generate index if not present
 +
 +
if ( index === null ) {
 +
 +
const indices = [];
 +
 +
const position = geometry.getAttribute( 'position' );
 +
 +
if ( position !== undefined ) {
 +
 +
for ( let i = 0; i < position.count; i ++ ) {
 +
 +
indices.push( i );
 +
 +
}
 +
 +
geometry.setIndex( indices );
 +
index = geometry.getIndex();
 +
 +
} else {
 +
 +
console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' );
 +
return geometry;
 +
 +
}
 +
 +
}
 +
 +
//
 +
 +
const numberOfTriangles = index.count - 2;
 +
const newIndices = [];
 +
 +
if ( drawMode === TriangleFanDrawMode ) {
 +
 +
// gl.TRIANGLE_FAN
 +
 +
for ( let i = 1; i <= numberOfTriangles; i ++ ) {
 +
 +
newIndices.push( index.getX( 0 ) );
 +
newIndices.push( index.getX( i ) );
 +
newIndices.push( index.getX( i + 1 ) );
 +
 +
}
 +
 +
} else {
 +
 +
// gl.TRIANGLE_STRIP
 +
 +
for ( let i = 0; i < numberOfTriangles; i ++ ) {
 +
 +
if ( i % 2 === 0 ) {
 +
 +
newIndices.push( index.getX( i ) );
 +
newIndices.push( index.getX( i + 1 ) );
 +
newIndices.push( index.getX( i + 2 ) );
 +
 +
 +
} else {
 +
 +
newIndices.push( index.getX( i + 2 ) );
 +
newIndices.push( index.getX( i + 1 ) );
 +
newIndices.push( index.getX( i ) );
 +
 +
}
 +
 +
}
 +
 +
}
 +
 +
if ( ( newIndices.length / 3 ) !== numberOfTriangles ) {
 +
 +
console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' );
 +
 +
}
 +
 +
// build final geometry
 +
 +
const newGeometry = geometry.clone();
 +
newGeometry.setIndex( newIndices );
 +
 +
return newGeometry;
 +
 +
}
 +
    </script>
 +
    <script type="module">
 +
      const {
 +
BufferAttribute,
 +
BufferGeometry,
 +
FileLoader,
 +
Loader
 +
} = THREE;
 +
 +
const _taskCache = new WeakMap();
 +
 +
class DRACOLoader extends Loader {
 +
 +
constructor( manager ) {
 +
 +
super( manager );
 +
 +
this.decoderPath = '';
 +
this.decoderConfig = {};
 +
this.decoderBinary = null;
 +
this.decoderPending = null;
 +
 +
this.workerLimit = 4;
 +
this.workerPool = [];
 +
this.workerNextTaskID = 1;
 +
this.workerSourceURL = '';
 +
 +
this.defaultAttributeIDs = {
 +
position: 'POSITION',
 +
normal: 'NORMAL',
 +
color: 'COLOR',
 +
uv: 'TEX_COORD'
 +
};
 +
this.defaultAttributeTypes = {
 +
position: 'Float32Array',
 +
normal: 'Float32Array',
 +
color: 'Float32Array',
 +
uv: 'Float32Array'
 +
};
 +
 +
}
 +
 +
setDecoderPath( path ) {
 +
 +
this.decoderPath = path;
 +
 +
return this;
 +
 +
}
 +
 +
setDecoderConfig( config ) {
 +
 +
this.decoderConfig = config;
 +
 +
return this;
 +
 +
}
 +
 +
setWorkerLimit( workerLimit ) {
 +
 +
this.workerLimit = workerLimit;
 +
 +
return this;
 +
 +
}
 +
 +
load( url, onLoad, onProgress, onError ) {
 +
 +
const loader = new FileLoader( this.manager );
 +
 +
loader.setPath( this.path );
 +
loader.setResponseType( 'arraybuffer' );
 +
loader.setRequestHeader( this.requestHeader );
 +
loader.setWithCredentials( this.withCredentials );
 +
 +
loader.load( url, ( buffer ) => {
 +
 +
const taskConfig = {
 +
attributeIDs: this.defaultAttributeIDs,
 +
attributeTypes: this.defaultAttributeTypes,
 +
useUniqueIDs: false
 +
};
 +
 +
this.decodeGeometry( buffer, taskConfig )
 +
.then( onLoad )
 +
.catch( onError );
 +
 +
}, onProgress, onError );
 +
 +
}
 +
 +
/** @deprecated Kept for backward-compatibility with previous DRACOLoader versions. */
 +
decodeDracoFile( buffer, callback, attributeIDs, attributeTypes ) {
 +
 +
const taskConfig = {
 +
attributeIDs: attributeIDs || this.defaultAttributeIDs,
 +
attributeTypes: attributeTypes || this.defaultAttributeTypes,
 +
useUniqueIDs: !! attributeIDs
 +
};
 +
 +
this.decodeGeometry( buffer, taskConfig ).then( callback );
 +
 +
}
 +
 +
decodeGeometry( buffer, taskConfig ) {
 +
 +
// TODO: For backward-compatibility, support 'attributeTypes' objects containing
 +
// references (rather than names) to typed array constructors. These must be
 +
// serialized before sending them to the worker.
 +
for ( const attribute in taskConfig.attributeTypes ) {
 +
 +
const type = taskConfig.attributeTypes[ attribute ];
 +
 +
if ( type.BYTES_PER_ELEMENT !== undefined ) {
 +
 +
taskConfig.attributeTypes[ attribute ] = type.name;
 +
 +
}
 +
 +
}
 +
 +
//
 +
 +
const taskKey = JSON.stringify( taskConfig );
 +
 +
// Check for an existing task using this buffer. A transferred buffer cannot be transferred
 +
// again from this thread.
 +
if ( _taskCache.has( buffer ) ) {
 +
 +
const cachedTask = _taskCache.get( buffer );
 +
 +
if ( cachedTask.key === taskKey ) {
 +
 +
return cachedTask.promise;
 +
 +
} else if ( buffer.byteLength === 0 ) {
 +
 +
// Technically, it would be possible to wait for the previous task to complete,
 +
// transfer the buffer back, and decode again with the second configuration. That
 +
// is complex, and I don't know of any reason to decode a Draco buffer twice in
 +
// different ways, so this is left unimplemented.
 +
throw new Error(
 +
 +
'THREE.DRACOLoader: Unable to re-decode a buffer with different ' +
 +
'settings. Buffer has already been transferred.'
 +
 +
);
 +
 +
}
 +
 +
}
 +
 +
//
 +
 +
let worker;
 +
const taskID = this.workerNextTaskID ++;
 +
const taskCost = buffer.byteLength;
 +
 +
// Obtain a worker and assign a task, and construct a geometry instance
 +
// when the task completes.
 +
const geometryPending = this._getWorker( taskID, taskCost )
 +
.then( ( _worker ) => {
 +
 +
worker = _worker;
 +
 +
return new Promise( ( resolve, reject ) => {
 +
 +
worker._callbacks[ taskID ] = { resolve, reject };
 +
 +
worker.postMessage( { type: 'decode', id: taskID, taskConfig, buffer }, [ buffer ] );
 +
 +
// this.debug();
 +
 +
} );
 +
 +
} )
 +
.then( ( message ) => this._createGeometry( message.geometry ) );
 +
 +
// Remove task from the task list.
 +
// Note: replaced '.finally()' with '.catch().then()' block - iOS 11 support (#19416)
 +
geometryPending
 +
.catch( () => true )
 +
.then( () => {
 +
 +
if ( worker && taskID ) {
 +
 +
this._releaseTask( worker, taskID );
 +
 +
// this.debug();
 +
 +
}
 +
 +
} );
 +
 +
// Cache the task result.
 +
_taskCache.set( buffer, {
 +
 +
key: taskKey,
 +
promise: geometryPending
 +
 +
} );
 +
 +
return geometryPending;
 +
 +
}
 +
 +
_createGeometry( geometryData ) {
 +
 +
const geometry = new BufferGeometry();
 +
 +
if ( geometryData.index ) {
 +
 +
geometry.setIndex( new BufferAttribute( geometryData.index.array, 1 ) );
 +
 +
}
 +
 +
for ( let i = 0; i < geometryData.attributes.length; i ++ ) {
 +
 +
const attribute = geometryData.attributes[ i ];
 +
const name = attribute.name;
 +
const array = attribute.array;
 +
const itemSize = attribute.itemSize;
 +
 +
geometry.setAttribute( name, new BufferAttribute( array, itemSize ) );
 +
 +
}
 +
 +
return geometry;
 +
 +
}
 +
 +
_loadLibrary( url, responseType ) {
 +
 +
const loader = new FileLoader( this.manager );
 +
loader.setPath( this.decoderPath );
 +
loader.setResponseType( responseType );
 +
loader.setWithCredentials( this.withCredentials );
 +
 +
return new Promise( ( resolve, reject ) => {
 +
 +
loader.load( url, resolve, undefined, reject );
 +
 +
} );
 +
 +
}
 +
 +
preload() {
 +
 +
this._initDecoder();
 +
 +
return this;
 +
 +
}
 +
 +
_initDecoder() {
 +
 +
if ( this.decoderPending ) return this.decoderPending;
 +
 +
const useJS = typeof WebAssembly !== 'object' || this.decoderConfig.type === 'js';
 +
const librariesPending = [];
 +
 +
if ( useJS ) {
 +
 +
librariesPending.push( this._loadLibrary( 'draco_decoder.js', 'text' ) );
 +
 +
} else {
 +
 +
librariesPending.push( this._loadLibrary( 'draco_wasm_wrapper.js', 'text' ) );
 +
librariesPending.push( this._loadLibrary( 'draco_decoder.wasm', 'arraybuffer' ) );
 +
 +
}
 +
 +
this.decoderPending = Promise.all( librariesPending )
 +
.then( ( libraries ) => {
 +
 +
const jsContent = libraries[ 0 ];
 +
 +
if ( ! useJS ) {
 +
 +
this.decoderConfig.wasmBinary = libraries[ 1 ];
 +
 +
}
 +
 +
const fn = DRACOWorker.toString();
 +
 +
const body = [
 +
'/* draco decoder */',
 +
jsContent,
 +
'',
 +
'/* worker */',
 +
fn.substring( fn.indexOf( '{' ) + 1, fn.lastIndexOf( '}' ) )
 +
].join( '\n' );
 +
 +
this.workerSourceURL = URL.createObjectURL( new Blob( [ body ] ) );
 +
 +
} );
 +
 +
return this.decoderPending;
 +
 +
}
 +
 +
_getWorker( taskID, taskCost ) {
 +
 +
return this._initDecoder().then( () => {
 +
 +
if ( this.workerPool.length < this.workerLimit ) {
 +
 +
const worker = new Worker( this.workerSourceURL );
 +
 +
worker._callbacks = {};
 +
worker._taskCosts = {};
 +
worker._taskLoad = 0;
 +
 +
worker.postMessage( { type: 'init', decoderConfig: this.decoderConfig } );
 +
 +
worker.onmessage = function ( e ) {
 +
 +
const message = e.data;
 +
 +
switch ( message.type ) {
 +
 +
case 'decode':
 +
worker._callbacks[ message.id ].resolve( message );
 +
break;
 +
 +
case 'error':
 +
worker._callbacks[ message.id ].reject( message );
 +
break;
 +
 +
default:
 +
console.error( 'THREE.DRACOLoader: Unexpected message, "' + message.type + '"' );
 +
 +
}
 +
 +
};
 +
 +
this.workerPool.push( worker );
 +
 +
} else {
 +
 +
this.workerPool.sort( function ( a, b ) {
 +
 +
return a._taskLoad > b._taskLoad ? - 1 : 1;
 +
 +
} );
 +
 +
}
 +
 +
const worker = this.workerPool[ this.workerPool.length - 1 ];
 +
worker._taskCosts[ taskID ] = taskCost;
 +
worker._taskLoad += taskCost;
 +
return worker;
 +
 +
} );
 +
 +
}
 +
 +
_releaseTask( worker, taskID ) {
 +
 +
worker._taskLoad -= worker._taskCosts[ taskID ];
 +
delete worker._callbacks[ taskID ];
 +
delete worker._taskCosts[ taskID ];
 +
 +
}
 +
 +
debug() {
 +
 +
console.log( 'Task load: ', this.workerPool.map( ( worker ) => worker._taskLoad ) );
 +
 +
}
 +
 +
dispose() {
 +
 +
for ( let i = 0; i < this.workerPool.length; ++ i ) {
 +
 +
this.workerPool[ i ].terminate();
 +
 +
}
 +
 +
this.workerPool.length = 0;
 +
 +
return this;
 +
 +
}
 +
 +
}
 +
 +
/* WEB WORKER */
 +
 +
function DRACOWorker() {
 +
 +
let decoderConfig;
 +
let decoderPending;
 +
 +
onmessage = function ( e ) {
 +
 +
const message = e.data;
 +
 +
switch ( message.type ) {
 +
 +
case 'init':
 +
decoderConfig = message.decoderConfig;
 +
decoderPending = new Promise( function ( resolve/*, reject*/ ) {
 +
 +
decoderConfig.onModuleLoaded = function ( draco ) {
 +
 +
// Module is Promise-like. Wrap before resolving to avoid loop.
 +
resolve( { draco: draco } );
 +
 +
};
 +
 +
DracoDecoderModule( decoderConfig ); // eslint-disable-line no-undef
 +
 +
} );
 +
break;
 +
 +
case 'decode':
 +
const buffer = message.buffer;
 +
const taskConfig = message.taskConfig;
 +
decoderPending.then( ( module ) => {
 +
 +
const draco = module.draco;
 +
const decoder = new draco.Decoder();
 +
const decoderBuffer = new draco.DecoderBuffer();
 +
decoderBuffer.Init( new Int8Array( buffer ), buffer.byteLength );
 +
 +
try {
 +
 +
const geometry = decodeGeometry( draco, decoder, decoderBuffer, taskConfig );
 +
 +
const buffers = geometry.attributes.map( ( attr ) => attr.array.buffer );
 +
 +
if ( geometry.index ) buffers.push( geometry.index.array.buffer );
 +
 +
self.postMessage( { type: 'decode', id: message.id, geometry }, buffers );
 +
 +
} catch ( error ) {
 +
 +
console.error( error );
 +
 +
self.postMessage( { type: 'error', id: message.id, error: error.message } );
 +
 +
} finally {
 +
 +
draco.destroy( decoderBuffer );
 +
draco.destroy( decoder );
 +
 +
}
 +
 +
} );
 +
break;
 +
 +
}
 +
 +
};
 +
 +
function decodeGeometry( draco, decoder, decoderBuffer, taskConfig ) {
 +
 +
const attributeIDs = taskConfig.attributeIDs;
 +
const attributeTypes = taskConfig.attributeTypes;
 +
 +
let dracoGeometry;
 +
let decodingStatus;
 +
 +
const geometryType = decoder.GetEncodedGeometryType( decoderBuffer );
 +
 +
if ( geometryType === draco.TRIANGULAR_MESH ) {
 +
 +
dracoGeometry = new draco.Mesh();
 +
decodingStatus = decoder.DecodeBufferToMesh( decoderBuffer, dracoGeometry );
 +
 +
} else if ( geometryType === draco.POINT_CLOUD ) {
 +
 +
dracoGeometry = new draco.PointCloud();
 +
decodingStatus = decoder.DecodeBufferToPointCloud( decoderBuffer, dracoGeometry );
 +
 +
} else {
 +
 +
throw new Error( 'THREE.DRACOLoader: Unexpected geometry type.' );
 +
 +
}
 +
 +
if ( ! decodingStatus.ok() || dracoGeometry.ptr === 0 ) {
 +
 +
throw new Error( 'THREE.DRACOLoader: Decoding failed: ' + decodingStatus.error_msg() );
 +
 +
}
 +
 +
const geometry = { index: null, attributes: [] };
 +
 +
// Gather all vertex attributes.
 +
for ( const attributeName in attributeIDs ) {
 +
 +
const attributeType = self[ attributeTypes[ attributeName ] ];
 +
 +
let attribute;
 +
let attributeID;
 +
 +
// A Draco file may be created with default vertex attributes, whose attribute IDs
 +
// are mapped 1:1 from their semantic name (POSITION, NORMAL, ...). Alternatively,
 +
// a Draco file may contain a custom set of attributes, identified by known unique
 +
// IDs. glTF files always do the latter, and `.drc` files typically do the former.
 +
if ( taskConfig.useUniqueIDs ) {
 +
 +
attributeID = attributeIDs[ attributeName ];
 +
attribute = decoder.GetAttributeByUniqueId( dracoGeometry, attributeID );
 +
 +
} else {
 +
 +
attributeID = decoder.GetAttributeId( dracoGeometry, draco[ attributeIDs[ attributeName ] ] );
 +
 +
if ( attributeID === - 1 ) continue;
 +
 +
attribute = decoder.GetAttribute( dracoGeometry, attributeID );
 +
 +
}
 +
 +
geometry.attributes.push( decodeAttribute( draco, decoder, dracoGeometry, attributeName, attributeType, attribute ) );
 +
 +
}
 +
 +
// Add index.
 +
if ( geometryType === draco.TRIANGULAR_MESH ) {
 +
 +
geometry.index = decodeIndex( draco, decoder, dracoGeometry );
 +
 +
}
 +
 +
draco.destroy( dracoGeometry );
 +
 +
return geometry;
 +
 +
}
 +
 +
function decodeIndex( draco, decoder, dracoGeometry ) {
 +
 +
const numFaces = dracoGeometry.num_faces();
 +
const numIndices = numFaces * 3;
 +
const byteLength = numIndices * 4;
 +
 +
const ptr = draco._malloc( byteLength );
 +
decoder.GetTrianglesUInt32Array( dracoGeometry, byteLength, ptr );
 +
const index = new Uint32Array( draco.HEAPF32.buffer, ptr, numIndices ).slice();
 +
draco._free( ptr );
 +
 +
return { array: index, itemSize: 1 };
 +
 +
}
 +
 +
function decodeAttribute( draco, decoder, dracoGeometry, attributeName, attributeType, attribute ) {
 +
 +
const numComponents = attribute.num_components();
 +
const numPoints = dracoGeometry.num_points();
 +
const numValues = numPoints * numComponents;
 +
const byteLength = numValues * attributeType.BYTES_PER_ELEMENT;
 +
const dataType = getDracoDataType( draco, attributeType );
 +
 +
const ptr = draco._malloc( byteLength );
 +
decoder.GetAttributeDataArrayForAllPoints( dracoGeometry, attribute, dataType, byteLength, ptr );
 +
const array = new attributeType( draco.HEAPF32.buffer, ptr, numValues ).slice();
 +
draco._free( ptr );
 +
 +
return {
 +
name: attributeName,
 +
array: array,
 +
itemSize: numComponents
 +
};
 +
 +
}
 +
 +
function getDracoDataType( draco, attributeType ) {
 +
 +
switch ( attributeType ) {
 +
 +
case Float32Array: return draco.DT_FLOAT32;
 +
case Int8Array: return draco.DT_INT8;
 +
case Int16Array: return draco.DT_INT16;
 +
case Int32Array: return draco.DT_INT32;
 +
case Uint8Array: return draco.DT_UINT8;
 +
case Uint16Array: return draco.DT_UINT16;
 +
case Uint32Array: return draco.DT_UINT32;
 +
 +
}
 +
 +
}
 +
 +
}
 +
window.DRACOLoader = DRACOLoader
 +
    </script>
 +
    <script type="module">
 +
var scene = new THREE.Scene();
 +
    var root = new THREE.Group();
 +
var camera = new THREE.PerspectiveCamera(
 +
75,
 +
window.innerWidth / window.innerHeight,
 +
0.1,
 +
1000
 +
);
 +
var renderer = new THREE.WebGLRenderer({
 +
antialias: true,
 +
preserveDrawingBuffer: true,
 +
alpha: true,
 +
});
 +
    var clock = new THREE.Clock();
 +
 +
var container = document.getElementById("model-view");
 +
 +
const light1 = new THREE.DirectionalLight(0xffffff, 2.5);
 +
    light1.position.set(0, 1, 3);
 +
    scene.add(light1);
 +
 +
    const light2 = new THREE.AmbientLight(0xffffff, 0.7);
 +
    light1.position.set(0, 1, 3);
 +
    scene.add(light2);
 +
 +
    const light3 = new THREE.HemisphereLight();
 +
    scene.add(light3);
 +
 +
renderer.setClearColor(0xcccccc, 0);
 +
 +
camera.position.z = 2;
 +
camera.position.y = 0.5;
 +
scene.position.y = -0.5;
 +
scene.add(camera);
 +
 +
renderer.gammaOutput = true;
 +
renderer.gammaFactor = 2.2;
 +
 +
renderer.setPixelRatio(window.devicePixelRatio);
 +
renderer.outputEncoding = THREE.sRGBEncoding;
 +
renderer.toneMappingExposure = 1;
 +
renderer.setSize(
 +
container.offsetWidth,
 +
container.offsetHeight
 +
);
 +
renderer.physicallyCorrectLights = true;
 +
container.appendChild(renderer.domElement);
 +
 +
 +
window.addEventListener("resize", function () {}, false);
 +
 +
scene.add(root);
 +
 +
const loader = new GLTFLoader();
 +
 +
let mixer;
 +
const actions = [];
 +
 +
function animate () {
 +
actions.forEach((action) => {
 +
action.play();
 +
});
 +
renderer.render(scene, camera);
 +
requestAnimationFrame(animate);
 +
};
 +
 +
loader.load("./bioit_uncompressed.glb.png", function(loadedModel) {
 +
const meshItem = loadedModel.scene;
 +
 +
meshItem.scale.set(
 +
        0.1,
 +
        0.1,
 +
        0.1
 +
);
 +
 +
root.add(meshItem);
 +
 +
animate();
 +
});
 +
    </script>
 +
 +
<div id="model-view"></div>
 +
  </body>
 +
</html>

Revision as of 17:01, 30 July 2021

Here is a secret page <!DOCTYPE html>