Difference between revisions of "Team:ECUST China/Model"

Line 8: Line 8:
 
<div class="preloader"></div>
 
<div class="preloader"></div>
  
<nav class="navbar navbar-expand-xl fixed-top my-navbar">
+
    <nav class="navbar navbar-expand-xl fixed-top my-navbar">
         <a href="https://2021.igem.org/Team:ECUST_China"><img class="navbar-brand" src="https://static.igem.org/mediawiki/2021/a/aa/T--ECUST_China--logo.png"></img></a>
+
         <a href="https://2021.igem.org/Team:ECUST_China"><img class="navbar-brand"
 +
                src="https://static.igem.org/mediawiki/2021/a/aa/T--ECUST_China--logo.png"></img></a>
 
         <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarTogglerDemo03"
 
         <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarTogglerDemo03"
 
             aria-controls="navbarTogglerDemo03" aria-expanded="false" aria-label="Toggle navigation">
 
             aria-controls="navbarTogglerDemo03" aria-expanded="false" aria-label="Toggle navigation">
Line 24: Line 25:
 
                     <ul class="dropdown-menu" aria-labelledby="navbarScrollingDropdown">
 
                     <ul class="dropdown-menu" aria-labelledby="navbarScrollingDropdown">
 
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Team">Member</a></li>
 
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Team">Member</a></li>
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Collaborations">Collaborations</a></li>
+
                         <li><a class="dropdown-item" href="#">Cooperations</a></li>
 
                         <li><a class="dropdown-item"
 
                         <li><a class="dropdown-item"
 
                                 href="https://2021.igem.org/Team:ECUST_China/Attributions">Attributions</a></li>
 
                                 href="https://2021.igem.org/Team:ECUST_China/Attributions">Attributions</a></li>
Line 37: Line 38:
 
                         <li><a class="dropdown-item"
 
                         <li><a class="dropdown-item"
 
                                 href="https://2021.igem.org/Team:ECUST_China/Description">Description</a></li>
 
                                 href="https://2021.igem.org/Team:ECUST_China/Description">Description</a></li>
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Design">Design</a></li>
+
                         <li><a class="dropdown-item" href="#">Design</a></li>
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Experiments">Experiments</a></li>
+
                         <li><a class="dropdown-item" href="#">Experiment</a></li>
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Proof_Of_Concept">Proof Of Concept</a></li>
+
                         <li><a class="dropdown-item" href="#">Proof Of Concept</a></li>
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Contribution">Contribution</a></li>
+
                         <li><a class="dropdown-item" href="#">Contribution</a></li>
 
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Safety">Safety</a>
 
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Safety">Safety</a>
 
                         </li>
 
                         </li>
                       
+
 
 
                     </ul>
 
                     </ul>
 
                 </li>
 
                 </li>
Line 52: Line 53:
 
                     </a>
 
                     </a>
 
                     <ul class="dropdown-menu" aria-labelledby="navbarScrollingDropdown">
 
                     <ul class="dropdown-menu" aria-labelledby="navbarScrollingDropdown">
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Engineering">Engineering</a>
+
                         <li><a class="dropdown-item" href="#">Engineering</a>
 
                         </li>
 
                         </li>
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Implementation">Implementation</a>
+
                         <li><a class="dropdown-item" href="#">Implementation</a>
 
                         </li>
 
                         </li>
 +
                        <li><a class="dropdown-item"
 +
                                href="https://2021.igem.org/Team:ECUST_China/Improvement">Improvement</a></li>
 
                     </ul>
 
                     </ul>
 
                 </li>
 
                 </li>
Line 66: Line 69:
 
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Model">Model</a>
 
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Model">Model</a>
 
                         </li>
 
                         </li>
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Hardware">Hardware</a>
+
                         <li><a class="dropdown-item" href="#">Hardware</a>
 
                         </li>
 
                         </li>
 
                     </ul>
 
                     </ul>
Line 80: Line 83:
 
                     <ul class="dropdown-menu" aria-labelledby="navbarScrollingDropdown">
 
                     <ul class="dropdown-menu" aria-labelledby="navbarScrollingDropdown">
 
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Overview">Overview</a>
 
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Overview">Overview</a>
                    </li>
+
                        </li>
 
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Human_Practices">Human
 
                         <li><a class="dropdown-item" href="https://2021.igem.org/Team:ECUST_China/Human_Practices">Human
 
                                 Practices</a>
 
                                 Practices</a>
 
                         </li>
 
                         </li>
 
                         <li><a class="dropdown-item"
 
                         <li><a class="dropdown-item"
                                 href="https://2021.igem.org/Team:ECUST_China/Communication">Communication</a></li>
+
                                 href="https://2021.igem.org/Team:ECUST_China/Human_Practices#hp-title2">Communication</a>
 +
                        </li>
 +
                        <li><a class="dropdown-item"
 +
                                href="https://2021.igem.org/Team:ECUST_China/Human_Practices#hp-title2">Education</a>
 +
                        </li>
 
                     </ul>
 
                     </ul>
 
                 </li>
 
                 </li>
Line 111: Line 118:
 
             </li>
 
             </li>
 
             <li>
 
             <li>
                 <a href="#model-title2" class="slider-link">Strain growth model</a>
+
                 <a href="#model-title2" class="slider-link">MODEL 1</a>
 
             </li>
 
             </li>
 
             <li>
 
             <li>
                 <a href="#model-title3" class="slider-link">Product accumulation model</a>
+
                 <a href="#model-title3" class="slider-link">MODEL 2</a>
 
             </li>
 
             </li>
 
             <li>
 
             <li>
                 <a href="#model-title4" class="slider-link">Substrate consumption model</a>
+
                 <a href="#model-title4" class="slider-link">MODEL 3</a>
            </li>
+
            <li>
+
                <a href="#model-title5" class="slider-link">Genome-scale metabolic model</a>
+
            </li>
+
            <li>
+
                <a href="#model-title6" class="slider-link">Color-rendering model</a>
+
 
             </li>
 
             </li>
 +
 
         </ul>
 
         </ul>
  
Line 133: Line 135:
 
             </div>
 
             </div>
 
             <div class="hp-content">
 
             <div class="hp-content">
                 <p>In this experiment, yeast is used as the expression vector of phycocyanin. We can study the
+
                 <p>To guide the experiment, systematic modeling and analysis were conducted, including micro dynamics,
                     fermentation process through fermentation kinetics, and describe different indexes in the
+
                     macro fermentation process, genome-scale metabolic network, macro color rendering model, economic
                     fermentation process through mathematical modeling.</p>
+
                    income accounting and fermentation plant CAD. These models presented the feasibility and prospect of
                 <p>Next, we will show the models we have built.<br>
+
                     our project.</p>
                    Due to the experiment of glutathione production by Saccharomyces cerevisiae is similar to the
+
 
                     experiment of phycocyanin production, we chose the experimental data to fit the first three models
+
                 <p>In model 1, we first use the gray box model for mixed mechanism modeling. In order to make the
                     and judge the applicability.</p>
+
                     fermentation conditions more suitable for our phycocyanin yeast fermentation process, we organically
                <table class="table table-hover table-bordered table-striped" style="text-align: center;">
+
                    combine the kinetic mechanism modeling with parameter estimation, and improve each mechanism model
                     <thead style="background-color: rgb(148,185,229);color: #fff;">
+
                    to meet the requirements of the project. Then, the modeling and analysis of process dynamic
                        <th>t/h</th>
+
                     characteristics, transmission characteristics and biochemical reaction characteristics are carried
                        <th>biomass/(g/L)</th>
+
                    out, which are finally presented in cell growth model, matrix consumption model and product
                        <th>product concentration/(mg/L)</th>
+
                    generation model, which can guide the quantification of phycocyanin fermentation process in the
                        <th>substrate concentration/(g/L)</th>
+
                    later stage of the project and bring convenience to strategy control; In model 2, we established a
                     </thead>
+
                     micro reaction molecular mechanism model. Based on the yeast genome-scale metabolic network model,
                     <tbody>
+
                    through metabolic flow control and analysis, we obtained the metabolic pathway impact of our project
                        <tr>
+
                    route in yeast cells from the metabolic network, and obtained that the maximum threshold of
                            <th class="model-table">0</th>
+
                    phycocyanin yield was 1.0 ×10-3 mmol / (g DW· h),when the specific growth rate was about 0.083×10-3
                            <td>2.04</td>
+
                    mmol / (g DW· h). With the 110h fermentation time of yeast, the theoretical production of
                            <td>0.00</td>
+
                    phycocyanin is 0.110mmol/g DW, which provides us with an ideal estimation of phycocyanin production,
                            <td>42.00</td>
+
                     which can effectively guide the regulation of fermentation process, make the actual production
                        </tr>
+
                     closer to the theoretical production, and provide an effective estimation of phycocyanin production
                        <tr>
+
                    for the project; Model 3 is the yeast color development model. Photon simulation method is used to
                            <th class="model-table">12</th>
+
                    simulate the propagation of electromagnetic wave in the cell wall, and combined with the absorption
                            <td>8.58</td>
+
                    spectrum of phycocyanin to obtain the reflection spectrum of yeast cells. And we use the phycocyanin
                            <td>65.28</td>
+
                    concentration 0.7mg/L ,which was calculated in model 2, and predict the reflection spectrum of the
                            <td>22.00</td>
+
                    cell. CIE1931 chromaticity calculation method is used to convert the spectrum into the corresponding
                        </tr>
+
                    chromaticity, to obtain the corresponding relationship between the production of phycocyanin and the
                        <tr>
+
                    color of yeast cells, which can provide a reference basis for our subsequent factory application and
                            <th class="model-table">24</th>
+
                    guide the downstream application of the product.</p>
                            <td>11.83</td>
+
                <p>The innovation of our model is mainly reflected in the third model, yeast color-rendering model.
                            <td>102.10</td>
+
                    According to the literature we know, there is no relevant research on cell color-rendering, taking
                            <td>10.00</td>
+
                    into account both the optical effect of cell wall structures and the light path of pigments. In our
                        </tr>
+
                    model, we explore the influence of the fungal cell wall as a modulator of the light that reaches the
                        <tr>
+
                    inner part of the cell, by considering it as a photonic structure. The computer simulation method is
                            <th class="model-table">36</th>
+
                    simple and operable. The results obtained are very satisfactory.</p>
                            <td>12.44</td>
+
                            <td>108.30</td>
+
                            <td>7.60</td>
+
                        </tr>
+
                        <tr>
+
                            <th class="model-table">48</th>
+
                            <td>12.90</td>
+
                            <td>110.50</td>
+
                            <td>7.00</td>
+
                        </tr>
+
                        <tr>
+
                            <th class="model-table">60</th>
+
                            <td>12.83</td>
+
                            <td>110.30</td>
+
                            <td>4.80</td>
+
                        </tr>
+
                        <tr>
+
                            <th class="model-table">72</th>
+
                            <td>12.31</td>
+
                            <td>109.80</td>
+
                            <td>4.80</td>
+
                        </tr>
+
                        <tr>
+
                            <th class="model-table">84</th>
+
                            <td>12.00</td>
+
                            <td>108.20</td>
+
                            <td>4.80</td>
+
                        </tr>
+
                    </tbody>
+
                </table>
+
 
             </div>
 
             </div>
 
             <div class="content-title">
 
             <div class="content-title">
 
                 <a class="anchor" id="model-title2"></a>
 
                 <a class="anchor" id="model-title2"></a>
                 Strain growth model
+
                 MODEL 1
 
             </div>
 
             </div>
 
             <div class="hp-content">
 
             <div class="hp-content">
                 <p>The first model we built is the strain growth model. Considering the inhibitory effect of the
+
                <p>During this experiment, yeast was used as the expression vector of phycocyanin. We could study the
                     increase of strain concentration on its own growth, we use logistic equation to describe the process
+
                    fermentation process through fermentation kinetics, and describe different indexes in the
                    of strain growth.</p>
+
                    fermentation process through mathematical modeling.</p>
 +
                <p>Due to the fact that actual data of phycocyanin fermentation was unavailable, we utilized the
 +
                    experimental data of glutathione fermentation from the related literature ,whose basic principle is
 +
                    similar to the phycocyanin production, to fit the first three models and judge the applicability.
 +
                </p>
 +
                <p>The charts below illustrated the relevant data of glutathione fermentation.</p>
 +
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/9/9b/T--ECUST_China--modelImg12.png"
 +
                        alt="" style="width: 80%;"></div>
 +
                 <p>The first model we built is the strain growth model. The most commonly used models are Monod equation
 +
                     and logistic equation. As Monod equation is an idealized model, it has certain limitations. However,
 +
                    logistic equation is a typical S-shaped curve, which could well reflect the inhibition of strain
 +
                    concentration increase on its own growth in batch fermentation.As a result, we used logistic
 +
                    equation to describe the process of strain growth.</p>
 +
                <p>Below is the basic form of logistic equation: </p>
 
                 <img src="https://static.igem.org/mediawiki/2021/8/87/T--ECUST_China--modelFormula1.png" alt=""
 
                 <img src="https://static.igem.org/mediawiki/2021/8/87/T--ECUST_China--modelFormula1.png" alt=""
 
                     class="model-formula">
 
                     class="model-formula">
                 <p>The following is the general solution of the equation</p>
+
                 <p>The general solution of the equation is as follows:</p>
  
                 <p style="text-align: center;">
+
                 <div class="img-box"><label style="font-size: 20px;font-weight: bold;">Solution:</label><img
                    Solution:
+
                        src="https://static.igem.org/mediawiki/2021/9/99/T--ECUST_China--modelFormula2.png" alt="" style="width: 30%;
                    <img src="https://static.igem.org/mediawiki/2021/9/99/T--ECUST_China--modelFormula2.png" alt="">
+
                 min-width: 300px;"></div>
                 </p>
+
 
                 <div style="width: 300px;margin: auto;font-size: 20px;">
 
                 <div style="width: 300px;margin: auto;font-size: 20px;">
 
                     μ<sub>m</sub>:maximum formation rate
 
                     μ<sub>m</sub>:maximum formation rate
Line 222: Line 206:
 
                 <p>In order to facilitate fitting, we properly deform the equation and introduce three parameters a, b
 
                 <p>In order to facilitate fitting, we properly deform the equation and introduce three parameters a, b
 
                     and c.</p>
 
                     and c.</p>
                 <p style="text-align: center;">
+
                 <div style="text-align: center;font-size: 20px;">
                    deformation:
+
 
                     <img src="https://static.igem.org/mediawiki/2021/a/a4/T--ECUST_China--modelFormula3.png" alt=""
 
                     <img src="https://static.igem.org/mediawiki/2021/a/a4/T--ECUST_China--modelFormula3.png" alt=""
 
                         style="width: 220px;"><br>
 
                         style="width: 220px;"><br>
                     <img src="https://static.igem.org/mediawiki/2021/b/bc/T--ECUST_China--modelFormula4.png" alt=""
+
                     <b>Deformation:</b><img src="https://static.igem.org/mediawiki/2021/b/bc/T--ECUST_China--modelFormula4.png"
                        style="width: 220px;"><br>
+
                        alt="" style="width: 220px;"><br>
                     Suppose:
+
                     <b>Suppose:</b>
 
                     <img src="https://static.igem.org/mediawiki/2021/0/09/T--ECUST_China--modelFormula5.png" alt=""
 
                     <img src="https://static.igem.org/mediawiki/2021/0/09/T--ECUST_China--modelFormula5.png" alt=""
 
                         style="width: 240px;"><br>
 
                         style="width: 240px;"><br>
                    <img src="https://static.igem.org/mediawiki/2021/e/e5/T--ECUST_China--modelFormula6.png" alt=""
+
                </div>
                        class="red-img" style="width: 150px;">
+
                <p>Finally, we can obtain the simplified equation, which could be employed in the curve fitting.</p>
                </p>
+
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/e/e5/T--ECUST_China--modelFormula6.png"
                 <p>The fitted image is shown in the following figure</p>
+
                        alt="" class="red-img" style="width: 150px;min-width: 150px;"></div>
 +
                 <p>The fitted image is shown in the following figure:</p>
 
                 <p style="text-align: center;">
 
                 <p style="text-align: center;">
 
                     <img src="https://static.igem.org/mediawiki/2021/f/f6/T--ECUST_China--modelImg1.png" alt=""
 
                     <img src="https://static.igem.org/mediawiki/2021/f/f6/T--ECUST_China--modelImg1.png" alt=""
Line 244: Line 228:
 
                         src="https://static.igem.org/mediawiki/2021/f/f7/T--ECUST_China--modelFormula8.png" alt=""
 
                         src="https://static.igem.org/mediawiki/2021/f/f7/T--ECUST_China--modelFormula8.png" alt=""
 
                         class="red-img" style="width: 40%;"></p>
 
                         class="red-img" style="width: 40%;"></p>
                 <p> R<sub>2</sub> = 0.9947, indicating that the fitting effect is ideal. After fitting, we get the
+
                 <p>We found that R2 = 0.9947, which indicated the fitting effect is ideal. Through fitting the curve, we
                    values of three
+
                    get the values of three parameters a, b and c, and then xm, x0, μm are also clear by calculating.
                    parameters a, B and C, and then we can get x<sub>m</sub>, x<sub>0</sub>, μ<sub>m</sub> and the
+
                     Furthermore, the specific expression of strain growth model could be got.</p>
                     specific expression of strain growth
+
                 <p>The product accumulation model is the second model. In accordance to the fact that phycocyanin
                    model is obtained.</p>
+
                    fermentation is batch fermentation, we decided to use piret equation to describe product
            </div>
+
                     accumulation after consulting the relevant literature. </p>
            <div class="content-title">
+
                 <div class="model-formula">
                <a class="anchor" id="model-title3"></a>
+
                     <img src="https://static.igem.org/mediawiki/2021/0/0c/T--ECUST_China--modelFormula9.png" alt="" style="width: 440%;">
                Product accumulation model
+
                 </div>
            </div>
+
                 <p>Owing to the fact that the desired product phycocyanin and the obtained data product glutathione are
            <div class="hp-content">
+
                     amino acid compounds, the accumulation of the product is partially related to the growth of the
                 <p>The product accumulation model is the second model. We use piret equation to describe product
+
                    strain. Therefore, none of α、β in this equation is 0.</p>
                     accumulation. </p>
+
                 <p class="model-formula">
+
                     <img src="https://static.igem.org/mediawiki/2021/0/0c/T--ECUST_China--modelFormula9.png" alt="">
+
                 </p>
+
                 <p>Because the desired product phycocyanin and the obtained data product glutathione are amino acid
+
                     compounds, the accumulation of the product is partially related to the growth of the strain.
+
                    Therefore, in the equation α、β None is 0. The concrete solution can be obtained by integration.</p>
+
 
                 <p class="model-formula"><img
 
                 <p class="model-formula"><img
 
                         src="https://static.igem.org/mediawiki/2021/5/5e/T--ECUST_China--modelFormula10.png" alt=""
 
                         src="https://static.igem.org/mediawiki/2021/5/5e/T--ECUST_China--modelFormula10.png" alt=""
 
                         style="width: 20%;min-width: 240px;"></p>
 
                         style="width: 20%;min-width: 240px;"></p>
 +
                <p>The concrete solution can be known by integrating the equation.</p>
 
                 <p class="model-formula"><img
 
                 <p class="model-formula"><img
 
                         src="https://static.igem.org/mediawiki/2021/4/4a/T--ECUST_China--modelFormula11.png" alt=""
 
                         src="https://static.igem.org/mediawiki/2021/4/4a/T--ECUST_China--modelFormula11.png" alt=""
Line 275: Line 253:
 
                         src="https://static.igem.org/mediawiki/2021/1/16/T--ECUST_China--modelFormula13.png" alt=""
 
                         src="https://static.igem.org/mediawiki/2021/1/16/T--ECUST_China--modelFormula13.png" alt=""
 
                         style="width: 60%;min-width: 240px;" class="red-img"></p>
 
                         style="width: 60%;min-width: 240px;" class="red-img"></p>
                 <p>We can replace the two complex parts of this expression with φ(t) and Φ(t). And from the previously
+
                 <p>We can replace the two complex parts of this expression with φ(t) and Φ(t). In accordance to the
                     obtained
+
                     previously
                     x<sub>m</sub>, x<sub>0</sub>, μ<sub>m</sub> .The concrete form of φ(t) and Φ(t) is known. </p>
+
                     obtained x<sub>m</sub>, x<sub>0</sub>, μ<sub>m</sub> , the concrete form of φ(t) and Φ(t) is known.
 +
                </p>
 
                 <p class="model-formula"><img
 
                 <p class="model-formula"><img
 
                         src="https://static.igem.org/mediawiki/2021/6/63/T--ECUST_China--modelFormula14.png" alt=""
 
                         src="https://static.igem.org/mediawiki/2021/6/63/T--ECUST_China--modelFormula14.png" alt=""
Line 290: Line 269:
 
                         src="https://static.igem.org/mediawiki/2021/c/c6/T--ECUST_China--modelFormula17.png" alt=""
 
                         src="https://static.igem.org/mediawiki/2021/c/c6/T--ECUST_China--modelFormula17.png" alt=""
 
                         class="red-img" style="width: 50%;min-width: 240px;"></p>
 
                         class="red-img" style="width: 50%;min-width: 240px;"></p>
                 <p>After software fitting, it is found that R2 = 0.9995, indicating that the fitting effect is very
+
                 <p>After software fitting, it is found that R2 = 0.9995, indicating the fitting effect is excellent.
                     good. Obtaining α、β ,the specific form of the product accumulation model can be written.</p>
+
                     Obtaining α、β ,the specific form of the product accumulation model could be written.</p>
 
                 <p class="model-formula"><img src="https://static.igem.org/mediawiki/2021/b/b3/T--ECUST_China--modelImg2.png"
 
                 <p class="model-formula"><img src="https://static.igem.org/mediawiki/2021/b/b3/T--ECUST_China--modelImg2.png"
 
                         alt=""></p>
 
                         alt=""></p>
Line 300: Line 279:
 
                         src="https://static.igem.org/mediawiki/2021/3/31/T--ECUST_China--modelFormula19.png" alt=""
 
                         src="https://static.igem.org/mediawiki/2021/3/31/T--ECUST_China--modelFormula19.png" alt=""
 
                         style="width: 70%;" class="red-img"></p>
 
                         style="width: 70%;" class="red-img"></p>
            </div>
+
                 <p>The third model is the substrate consumption model. Since substrate consumption during the
            <div class="content-title">
+
                     phycocyanin fermentation includes strain growth consumption, strain metabolism consumption and
                <a class="anchor" id="model-title4"></a>
+
                    product accumulation consumption, we can employ Pirt equation to describe the whole process of
                Substrate consumption model
+
                    substrate consumption.</p>
            </div>
+
                 <div class="img-box"><img
            <div class="hp-content">
+
                         src="https://static.igem.org/mediawiki/2021/b/b4/T--ECUST_China--modelFormula37.png" alt=""></div>
                 <p>The third model is the substrate consumption model. Since substrate consumption includes strain
+
                     growth consumption, strain metabolism consumption and product production consumption, we can use
+
                    <b><i>Pirt</i></b> equation to describe the whole process of substrate consumption.
+
                </p>
+
                 <p class="model-formula"><img
+
                         src="https://static.igem.org/mediawiki/2021/b/bb/T--ECUST_China--modelFormula20.png" alt=""
+
                        style="width: 40%;min-width: 240px;"></p>
+
 
                 <p>More complex solutions are obtained by integration.</p>
 
                 <p>More complex solutions are obtained by integration.</p>
 
                 <p class="model-formula"><img
 
                 <p class="model-formula"><img
Line 318: Line 290:
 
                         style="width: 70%;"></p>
 
                         style="width: 70%;"></p>
 
                 <div style="width: 300px;margin: auto;font-size: 20px;">
 
                 <div style="width: 300px;margin: auto;font-size: 20px;">
                     Y<sub>X/S</sub>: cell yield to substrate<br>
+
                     <b>Y<sub>X/S</sub>:</b> cell yield to substrate<br>
                     Y<sub>P/S</sub>: product yield coefficient<br>
+
                     <b>Y<sub>P/S</sub>:</b> product yield coefficient<br>
                     m<sub>S</sub>: maintenance coefficient<br>
+
                     <b>m<sub>S</sub>:</b> maintenance coefficient<br>
                     S<sub>0</sub>: initial substrate concentration<br>
+
                     <b>S<sub>0</sub>:</b> initial substrate concentration<br>
 
                 </div>
 
                 </div>
                 <p>We substitute the expression of the product accumulation model, and simplify the expression of the
+
                 <p>To make the curve fitting easier, we substitute the expression of the product accumulation model, and
                    substrate consumption model by introducing three parameters L, M and N and the previously assumed
+
                    simplify the expression of the substrate consumption model by introducing three parameters L, M and
                    φ(t)
+
                    N and the previously assumed φ(t) and Φ(t).</p>
                    and Φ(t).</p>
+
 
                 <p class="model-formula"><img
 
                 <p class="model-formula"><img
 
                         src="https://static.igem.org/mediawiki/2021/a/ab/T--ECUST_China--modelFormula22.png" alt=""
 
                         src="https://static.igem.org/mediawiki/2021/a/ab/T--ECUST_China--modelFormula22.png" alt=""
Line 343: Line 314:
 
                         src="https://static.igem.org/mediawiki/2021/0/09/T--ECUST_China--modelFormula26.png" alt=""
 
                         src="https://static.igem.org/mediawiki/2021/0/09/T--ECUST_China--modelFormula26.png" alt=""
 
                         class="red-img" style="width: 26%;min-width: 240px;"></p>
 
                         class="red-img" style="width: 26%;min-width: 240px;"></p>
                 <p>After simplifying to this form, curve fitting is carried out to obtain the values of L, M and N</p>
+
                 <p>After simplifying to this clear form, we can carry out the curve fitting to obtain the values of L, M
 +
                    and N.</p>
 
                 <p class="model-formula"><img src="https://static.igem.org/mediawiki/2021/c/c3/T--ECUST_China--modelImg3.png"
 
                 <p class="model-formula"><img src="https://static.igem.org/mediawiki/2021/c/c3/T--ECUST_China--modelImg3.png"
 
                         alt=""></p>
 
                         alt=""></p>
Line 352: Line 324:
 
                 <p class="model-formula"><img
 
                 <p class="model-formula"><img
 
                         src="https://static.igem.org/mediawiki/2021/f/fb/T--ECUST_China--modelFormula30.png" alt=""></p>
 
                         src="https://static.igem.org/mediawiki/2021/f/fb/T--ECUST_China--modelFormula30.png" alt=""></p>
                 <p>By substituting the values of S<sub>0</sub>、 x<sub>0</sub>、 α、β and solving the equations the
+
                 <p>Substituting the values of S<sub>0</sub>、 x<sub>0</sub>、 α、β and solving the equations , the specific
                     specific values of the three
+
                     values of the three
 
                     coefficients can be obtained. Moreover, the specific expression of the product accumulation model
 
                     coefficients can be obtained. Moreover, the specific expression of the product accumulation model
                     can also be obtained.</p>
+
                     can also be clear.</p>
 
                 <p class="model-formula"><img
 
                 <p class="model-formula"><img
 
                         src="https://static.igem.org/mediawiki/2021/8/82/T--ECUST_China--modelFormula31.png" alt=""></p>
 
                         src="https://static.igem.org/mediawiki/2021/8/82/T--ECUST_China--modelFormula31.png" alt=""></p>
Line 371: Line 343:
 
                         class="red-img" style="width: 70%;"></p>
 
                         class="red-img" style="width: 70%;"></p>
 
                 <p>From the above fitting operations, we can find that the three models we built have good
 
                 <p>From the above fitting operations, we can find that the three models we built have good
                     applicability.</p>
+
                     applicability. As a result, once we get relevant experimental statistics, we can fit the curves by
 +
                    using these three models.Additionally, we can quantify the whole process of phycocyanin fermentation
 +
                    and make the strategic control of phycocyanin fermentation more convenient.</p>
 
             </div>
 
             </div>
 
             <div class="content-title">
 
             <div class="content-title">
                 <a class="anchor" id="model-title5"></a>
+
                 <a class="anchor" id="model-title3"></a>
                 Genome-scale metabolic model
+
                 MODEL 2
 
             </div>
 
             </div>
 
             <div class="hp-content">
 
             <div class="hp-content">
                 <p>The fourth model is Genome-scale metabolic model ,which use the data of gene, metabolites, reactions
+
                 <p>The second model is Genome-scale metabolic model ,which use the data of gene, metabolites, reactions
 
                     to construct network. </p>
 
                     to construct network. </p>
 +
 
                 <p>Related studies have made great progress in recent years, for example, the paper, A consensus
 
                 <p>Related studies have made great progress in recent years, for example, the paper, A consensus
 
                     S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular
 
                     S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular
 
                     metabolism, constructed a network which forms the basis of the ecosystem. And based on these papers,
 
                     metabolism, constructed a network which forms the basis of the ecosystem. And based on these papers,
 
                     we carried out our work. </p>
 
                     we carried out our work. </p>
                 <p class="model-formula"><img src="https://static.igem.org/mediawiki/2021/7/79/T--ECUST_China--modelImg4.png"
+
                 <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/7/79/T--ECUST_China--modelImg4.png"
                         alt="" style="width: 60%;"></p>
+
                         alt=""></div>
 
                 <p>Firstly, as presented in the experiment part, new genes are introduced in S288c, so we add the
 
                 <p>Firstly, as presented in the experiment part, new genes are introduced in S288c, so we add the
 
                     involved reactions and important metabolites to the original network. We use MATLAB to construct the
 
                     involved reactions and important metabolites to the original network. We use MATLAB to construct the
 
                     new network.</p>
 
                     new network.</p>
 
                 <p>Secondly, we found that cofactors, such as carbon monoxide and ferredoxin, are not considered in
 
                 <p>Secondly, we found that cofactors, such as carbon monoxide and ferredoxin, are not considered in
                     original network. So we ignored those cofactors.</p>
+
                     original network. So we ignored those cofactors. </p>
                 <p class="model-formula"><img src="https://static.igem.org/mediawiki/2021/e/ea/T--ECUST_China--modelImg5.png"
+
                 <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/f/f1/T--ECUST_China--modelImg13.png"
                         alt="" style="width: 90%;"></p>
+
                         alt="" style="width: 100%;"></div>
 
                 <p>Thirdly, drawing upon the visualization tool fluxer, we mapped the new metabolic networks and present
 
                 <p>Thirdly, drawing upon the visualization tool fluxer, we mapped the new metabolic networks and present
 
                     the flux.</p>
 
                     the flux.</p>
 +
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/3/30/T--ECUST_China--modelImg14.png"
 +
                        alt=""></div>
 
                 <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/2/21/T--ECUST_China--modelImg11.png"
 
                 <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/2/21/T--ECUST_China--modelImg11.png"
 
                         alt=""></div>
 
                         alt=""></div>
Line 400: Line 377:
 
                     shown in the figure, growth rate gradually decreases with the increase of phycocyanin synthesis
 
                     shown in the figure, growth rate gradually decreases with the increase of phycocyanin synthesis
 
                     rate. When the synthesis rate of phycocyanin reaches the order of 1 micro molar, the growth rate
 
                     rate. When the synthesis rate of phycocyanin reaches the order of 1 micro molar, the growth rate
                     decreases sharply. This conclusion is consistent with the self regulation of heme, which verifies
+
                     decreases sharply. This means that the maximum threshold of phycocyanin synthesis rate is
                    the correctness of our metabolic network model to a certain extent.</p>
+
                    10×10<sup>-3</sup> mmol/g
                 <p><b>Reference:</b></p>
+
                    DW/h, This conclusion is consistent with the self regulation of heme, which verifies the correctness
                 <p style="font-size: 16px!important;">[1] A consensus S. cerevisiae metabolic model Yeast8 and its
+
                    of our metabolic network model to a certain extent.</p>
                    ecosystem for comprehensively probing cellular metabolism<br>[2] Computational Analysis of
+
                 <p>With the 110h fermentation time of yeast, the theoretical production of phycocyanin <i><b>p</b></i> is 0.110 mmol/g
                    Reciprocal Association of Metabolism and Epigenetics in the Budding Yeast: A Genome-Scale Metabolic
+
                    DW. </p>
                    Model (GSMM) Approach<br>[3] Song, Yanqun, Rongfeng Zhu, and Peng Chen. "Physiological distribution
+
                 <p>Correspondingly, intracellular phycocyanin concentration is about 0.49798 mg/L. The calculation
                     and regulation of heme." SCIENTIA SINICA Chimica 45.11 (2015): 1194-1205.<br>[4] Archana Hari,
+
                    formula is as follows:</p>
                     Daniel Lobo, Fluxer: a web application to compute, analyze and visualize genome-scale metabolic flux
+
                <div class="img-box"><img
                    networks, Nucleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W427–W435,
+
                        src="https://static.igem.org/mediawiki/2021/b/ba/T--ECUST_China--modelFormula38.png" alt=""
                     https://doi.org/10.1093/nar/gkaa409</p>
+
                        style="width: 200px;min-width: 200px;"></div>
 +
                <p>where M<sub><i>phycocyanin</i></sub> = 20kd, which is the assumed molecular weight of phycocyanin, N
 +
                     = 2×10<sup>10</sup>g<sup>-1</sup> ,which means that It takes twenty
 +
                     billion yeast cells to weigh one gram , r = 3.75×10<sup>-5</sup>dm , which is the radius of yeast
 +
                     cell.</p>
 
             </div>
 
             </div>
 
             <div class="content-title">
 
             <div class="content-title">
                 <a class="anchor" id="model-title6"></a>
+
                 <a class="anchor" id="model-title4"></a>
                 Color-rendering model
+
                 MODEL 3
 
             </div>
 
             </div>
 
             <div class="hp-content">
 
             <div class="hp-content">
                 <p>The fifth model is color-rendering model for Yeast cell, which aims to determine minimum phycocyanin
+
                 <p>The third model is color-rendering model for Yeast cell, which aims to study the corresponding
                     concentration to make the cell blue visible to human eyes. The cell wall can affect the light
+
                     relationship between intracellular phycocyanin concentration and cell color.</p>
                     entering and leaving the cell, thus influencing color-rendering of phycocyanin. Therefore, it’s of
+
                <p>Yeast cell wall is a micro nano biological structure. Because micro nanostructures can affect the
                     great importance to evaluate the optical properties of cell wall. </p>
+
                    color rendering of light, we first need to study the optical properties of yeast cell wall. In the
                 <p class="model-formula"><img src="https://static.igem.org/mediawiki/2021/5/5b/T--ECUST_China--modelImg6.png"
+
                     paper Photonics of fungal cell wall, there's much in their method that we can use. fungal cell wall
                         alt="" style="width: 45%;"></p>
+
                    behaves as a photonic structure that presents an optical response similar to that of an
                 <p>In the paper <i>Photonics</i> of fungal cell wall, there's much in their method that we can use.
+
                    inhomogeneous thin film.</p>
                     fungal cell wall behaves as a photonic structure that presents an optical response similar to that
+
                <p>Firstly, we selected a typical TEM image of Saccharomyces cerevisiae S288C and intercepted a fragment
                     of an inhomogeneous thin film.</p>
+
                    of cell wall.</p>
                 <p>Based on TEM image of the cell wall, we use computer simulation to calculate the reflectance as a
+
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/1/1c/T--ECUST_China--modelImg15.png"
                    function of the optical wavelength (λ) and the observation angle (α). The simulation procedure is
+
                        alt="" style="width: 80%;"></div>
                    previously validated.</p>
+
                <p>Based on TEM image of the cell wall, we use photonic simulation to reproduces the propagation of
                 <p class="model-formula"><img src="https://static.igem.org/mediawiki/2021/6/68/T--ECUST_China--modelImg7.png"
+
                    electromagnetic waves. We call this bitmap M and its pixel represents the position of the particle.
                         alt=""></p>
+
                    Three matrices Mphys, Dphys and Ephys containing the physical values of mass, damping constant and
                 <p>Then, to determine the color of cell, we need to add phycocyanin reflection to the previous light
+
                    externally applied force are defined. These matrices are related to M, D and E as follows:</p>
                     path.Through experiments, we obtained the absorbance curve of phycocyanin. Using these data, we can
+
                <div class="img-box"><img
                     calculate the reflectance magnitude.</p>
+
                        src="https://static.igem.org/mediawiki/2021/5/5e/T--ECUST_China--modelFormula39.png" alt=""
                 <p class="model-formula"><img src="https://static.igem.org/mediawiki/2021/3/34/T--ECUST_China--modelImg8.png"
+
                        style="width: 200px;min-width: 200px;"></div>
                         alt="" style="width: 45%;"><img
+
                <p>Where <b>m<sub>0</sub></b> is a ground level mass, the proportionality constant <b>m<sub>p</sub></b> has units of
                         src="https://static.igem.org/mediawiki/2021/a/ac/T--ECUST_China--modelImg9.png" alt=""
+
                    (kg/grey level) , the
                         style="width: 40%;"></p>
+
                    constant <b>μ<sub>p</sub></b> has units of (N s/m/grey level, and <b>r<sub>p</sub></b> is a proportionality
                 <p>Furthermore, as color scale corresponds to the reflectance values, we can get the color map, which
+
                    constant with units of (N/grey
                     can be used to determine the minimum phycocyanin concentration.</p>
+
                    level) that converts the value of grey level provided by the bitmap <i><b>E</b></i> to a value of
                 <p class="model-formula"><img
+
                    force.
                        src="https://static.igem.org/mediawiki/2021/7/70/T--ECUST_China--modelImg10.png" alt=""
+
                    According
                        style="width: 45%;"></p>
+
                    to the parameters in the paper, combining with the attempt of programming, we set parameters as
 +
                     follows:</p>
 +
                <div class="img-box"><img
 +
                        src="https://static.igem.org/mediawiki/2021/d/d4/T--ECUST_China--modelFormula40.png"
 +
                        style="width: 270px;min-width: 270px;" alt=""></div>
 +
                <p>The figure on the left is bitmap <i><b>E</b></i> that indicates the masses to be excited
 +
                    harmonically, which in this
 +
                    case are those contained in a vertical line on the left side of the bitmap, in white. The bitmap
 +
                    <i><b>D</b></i>
 +
                    showing in grey levels the region with damping constant is shown on the right .</p>
 +
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/a/a2/T--ECUST_China--modelImg16.png"
 +
                        alt="" style="width: 80%;"></div>
 +
                 <p>The simulation consists in an algorithm that begins by sweeping all the elements of the matrices.
 +
                </p>
 +
                <p>We suppose that the applied force on each mass determined by the bitmap <i><b>E</b></i> varies
 +
                    harmonically over time so that</p>
 +
                <div class="model-formula"><img
 +
                        src="https://static.igem.org/mediawiki/2021/1/13/T--ECUST_China--modelFormula41.png" alt=""
 +
                         style="width: 220px;"></div>
 +
                <p>The frequency of the harmonic excitation was set to ω 250 rad s−1 and ϕ was set to 0. The adapting
 +
                    constant was set to τ 1 ms/loop cycle.</p>
 +
                <p>The total force for the mass located at (i, j) can be expressed as:</p>
 +
                <div class="img-box"><img
 +
                        src="https://static.igem.org/mediawiki/2021/5/54/T--ECUST_China--modelFormula42.png" alt=""
 +
                        style="width: 80%;"></div>
 +
                <p>The damping force is given by</p>
 +
                <div class="model-formula"><img
 +
                        src="https://static.igem.org/mediawiki/2021/f/f5/T--ECUST_China--modelFormula43.png" alt=""
 +
                        style="width: 300px;"></div>
 +
                 <p>where the matrix multiplication is a point-to-point multiplication, each element of Dphys being
 +
                    multiplied by its corresponding element of V .</p>
 +
                <p>The forces located at (i, j) due to the neighbour masses located at are calculated in terms of the
 +
                    previously defined matrices as</p>
 +
                <div class="img-box"><img
 +
                        src="https://static.igem.org/mediawiki/2021/7/7b/T--ECUST_China--modelFormula44.png" alt=""
 +
                        style="width: 40%;"></div>
 +
                <p>By means of Newton’s second law, we calculate the acceleration matrix A determining the acceleration
 +
                     of each mass. This matrix is computed as</p>
 +
                <div class="model-formula"><img
 +
                        src="https://static.igem.org/mediawiki/2021/5/5d/T--ECUST_China--modelFormula45.png" alt=""
 +
                        style="width: 300px;"></div>
 +
                <p>where the matrix division is a point-to-point division, each element of F being divided by its
 +
                     corresponding element of M<sub>phys</sub>.</p>
 +
                 <p>The speed matrix <i>V</i> is obtained by integrating the acceleration.</p>
 +
                <div class="model-formula"><img
 +
                        src="https://static.igem.org/mediawiki/2021/f/fe/T--ECUST_China--modelFormula46.png" alt=""
 +
                        style="width: 330px;"></div>
 +
                <p>The new displacement matrix H is also obtained by refreshing as</p>
 +
                <div class="model-formula"><img
 +
                        src="https://static.igem.org/mediawiki/2021/f/f2/T--ECUST_China--modelFormula47.png" alt=""
 +
                        style="width: 330px;"></div>
 +
                <p>The intensity is calculated by integrating the square of the displacement matrix as</p>
 +
                <div class="model-formula"><img
 +
                        src="https://static.igem.org/mediawiki/2021/7/70/T--ECUST_China--modelFormula48.png" alt=""
 +
                        style="width: 330px;"></div>
 +
                <p>We repeated the simulation cycle. And for a certain wavelength, we can calculate the transmittance
 +
                    as: </p>
 +
                <div class="model-formula"><img
 +
                        src="https://static.igem.org/mediawiki/2021/c/ce/T--ECUST_China--modelFormula49.png" alt=""
 +
                        style="width: 150px;"></div>
 +
                <p>The above is the process of computer simulation. We use computer simulation to calculate the
 +
                    reflectance as a function of the optical wavelength (λ). </p>
 +
                 <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/a/ae/T--ECUST_China--modelImg17.png"
 +
                         alt="" style="width: 80%;"></div>
 +
                 <p>After simulating the optical properties of cell wall, we also need to obtain the optical curve of
 +
                     phycocyanin. In the laboratory, we also measured the absorbance of pure phycocyanin. Combined with
 +
                    the literature, we obtained the following absorbance spectra. The ordinate is the absorption
 +
                     coefficient with units of mL / (mg · cm). </p>
 +
                 <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/6/6d/T--ECUST_China--modelImg18.png"
 +
                         alt="" style="width: 200px;min-width: 200px;"></div>
 +
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/8/88/T--ECUST_China--modelImg19.png"
 +
                         alt="" style="width: 80%;"></div>
 +
                <p>Next, we consider the light path in cells. When the external light enters the cell, it first
 +
                    transmits through the cell wall, and transmits in the solution. The following step is the reflection
 +
                    of the cell wall, then transmits again in the solution, and finally transmits through the cell wall
 +
                    and leaves the cell.</p>
 +
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/1/18/T--ECUST_China--modelImg20.png"
 +
                        alt=""></div>
 +
                <p>Because the cells are very small, about 5-10 microns in diameter, the color we see should be the
 +
                    accumulation of the colors of thousands of cells. So we overlap the cells and analyze their light
 +
                    path. </p>
 +
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/1/10/T--ECUST_China--modelImg21.png"
 +
                         alt="" style="width: 100%;"></div>
 +
                 <p>We assume that yeast cells overlap into spheres, as shown in the left, and the light path is shown on
 +
                    the right. To simplify the calculation, we ignore the loss of light transmission between cells and
 +
                    diffuse reflection and refraction of cells.</p>
 +
                <p>We also assume that the volume of yeast cell clusters is 1 cubic millimeter, which can just be seen
 +
                     by human eyes. According to the volume formula, the diameter of yeast cells <i><b>d</b></i> can be calculated to be
 +
                    about 1.2407 mm. However, due to the existence of cell wall and gap between cells, the optical path
 +
                    of direct light in phycocyanin solution is less than <i><b>d</b></i>, and we assume a constant <b>σ = 0.95</b>. So cumulative
 +
                    optical distance can be calculated:</p>
 +
                <p style="text-align: center;font-size: 24px!important;"><i><b>b = d · σ</b></i></p>
 +
                <p>According to Lambert-Beer law, we can calculate the absorbance <i><b>a</b></i> under the condition of a certain optical distance <i><b>b</b></i> and a certain phycocyanin concentration <i><b>c</b></i></p>
 +
                <p style="text-align: center;font-size: 24px!important;"><i><b>A = abc</b></i></p>
 +
                <p>Combined with the results of photon simulation, the reflectivity of yeast cell population for a certain wavelength λ can be calculated. The calculation formula is as follows:</p>
 +
                 <p style="text-align: center;font-size: 24px!important;"><i><b>R = T * (1 - A) * (1 - T) * (1 - A) * T</b></i></p>
 +
                <p>The reflection spectrum can be obtained by calculating the corresponding reflectivity for the wavelength from 380nm to 760nm.</p>
 +
                <p>When the phycocyanin concentration is 0.49798 mg/L which is the concentration predicted by model 2, the synthetic reflection spectrum is as follows:</p>
 +
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/f/f5/T--ECUST_China--modelImg22.png" alt="" style="width: 80%;"></div>
 +
                <p>According to the chromaticity calculation theory of CIE1931, we can use the following formula to convert the reflection spectrum into the corresponding chromaticity coordinates, where the color matching function of each spectrum,<img src="https://static.igem.org/mediawiki/2021/c/ca/T--ECUST_China--modelFormula50.png" alt="" style="width: 20px;">(λ)、<img src="https://static.igem.org/mediawiki/2021/0/09/T--ECUST_China--modelFormula51.png" alt="" style="width: 20px;">(λ)、<img src="https://static.igem.org/mediawiki/2021/9/9f/T--ECUST_China--modelFormula52.png" alt="" style="width: 20px;">(λ) and power distribution of reference S(λ).</p>
 +
                <div class="model-formula"><img src="https://static.igem.org/mediawiki/2021/6/6a/T--ECUST_China--modelFormula53.png" alt="" style="width: 250px;"></div>
 +
                <p>Corresponding chromaticity coordinates are :</p>
 +
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/1/10/T--ECUST_China--modelFormula54.png" alt=""></div>
 +
                <p>In addition, by changing the phycocyanin concentration, we can get different spectra and color coordinates. In the following table, we list the phycocyanin concentrations c and b*c, which  is the product of optical path and phycocyanin concentration, the color coordinates of pure phycocyanin solution and the color coordinates of yeast cells.</p>
 +
                <div class="img-box"><img src="https://static.igem.org/mediawiki/2021/9/94/T--ECUST_China--modelImg23.png" alt="" style="width: 80%;"></div>
 +
                <p>We draw the color coordinates on the chromaticity diagram and compare the results of solution and cell. We find that after the influence of cell wall, the color temperature of color decreases, but the chromaticity deviates from cyan and is closer to the blue gamut.</p>
 +
                <div class="img-box"><img
 +
                    src="https://static.igem.org/mediawiki/2021/7/70/T--ECUST_China--modelImg10.png" alt=""
 +
                    style="width: 45%;"></div>
 +
                <p><b>Reference:</b></p>
 +
                <p>[1] A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism<br>[2] Computational Analysis of Reciprocal Association of Metabolism and Epigenetics in the Budding Yeast: A Genome-Scale Metabolic Model (GSMM) Approach<br>[3] Song, Yanqun, Rongfeng Zhu, and Peng Chen. "Physiological distribution and regulation of heme." SCIENTIA SINICA Chimica 45.11 (2015): 1194-1205.<br>[4] Hari, Archana, and Daniel Lobo. "Fluxer: a web application to compute, analyze and visualize genome-scale metabolic flux networks." Nucleic Acids Research 48.W1 (2020): W427-W435.<br>[5] Dolinko, Andrés E., and Diana C. Skigin. "A simulation method for determining the optical response of highly complex photonic structures of biological origin." arXiv preprint arXiv:1301.0754 (2013).<br>[6] Zakhartsev, Maksim, and Matthias Reuss. "Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature." FEMS yeast research 18.6 (2018): foy052.<br>[7] Dolinko, A. E. "From Newton's second law to Huygens's principle: visualizing waves in a large array of masses joined by springs." European journal of physics 30.6 (2009): 1217.</p>
 
             </div>
 
             </div>
 
         </section>
 
         </section>
Line 465: Line 556:
 
             <p>East China University of Science and Technology</p>
 
             <p>East China University of Science and Technology</p>
 
             <p>Shanghai,China</p>
 
             <p>Shanghai,China</p>
             <a href="https://www.ecust.edu.cn/"><img src="https://static.igem.org/mediawiki/2021/9/97/T--ECUST_China--ECUST_logo.png" class="footer-right-img"></a>
+
             <a href="https://www.ecust.edu.cn/"><img
             <a href="https://biotech.ecust.edu.cn/"><img src="https://static.igem.org/mediawiki/2021/7/71/T--ECUST_China--bioeng_logo.png" class="footer-right-img"></a>
+
                    src="https://static.igem.org/mediawiki/2021/9/97/T--ECUST_China--ECUST_logo.png"
 +
                    class="footer-right-img"></a>
 +
             <a href="https://biotech.ecust.edu.cn/"><img
 +
                    src="https://static.igem.org/mediawiki/2021/7/71/T--ECUST_China--bioeng_logo.png"
 +
                    class="footer-right-img"></a>
 
         </div>
 
         </div>
 
     </div>
 
     </div>
Line 534: Line 629:
 
         })
 
         })
 
     </script>
 
     </script>
 
 
</html>
 
</html>

Revision as of 05:24, 21 October 2021

Introduction

To guide the experiment, systematic modeling and analysis were conducted, including micro dynamics, macro fermentation process, genome-scale metabolic network, macro color rendering model, economic income accounting and fermentation plant CAD. These models presented the feasibility and prospect of our project.

In model 1, we first use the gray box model for mixed mechanism modeling. In order to make the fermentation conditions more suitable for our phycocyanin yeast fermentation process, we organically combine the kinetic mechanism modeling with parameter estimation, and improve each mechanism model to meet the requirements of the project. Then, the modeling and analysis of process dynamic characteristics, transmission characteristics and biochemical reaction characteristics are carried out, which are finally presented in cell growth model, matrix consumption model and product generation model, which can guide the quantification of phycocyanin fermentation process in the later stage of the project and bring convenience to strategy control; In model 2, we established a micro reaction molecular mechanism model. Based on the yeast genome-scale metabolic network model, through metabolic flow control and analysis, we obtained the metabolic pathway impact of our project route in yeast cells from the metabolic network, and obtained that the maximum threshold of phycocyanin yield was 1.0 ×10-3 mmol / (g DW· h),when the specific growth rate was about 0.083×10-3 mmol / (g DW· h). With the 110h fermentation time of yeast, the theoretical production of phycocyanin is 0.110mmol/g DW, which provides us with an ideal estimation of phycocyanin production, which can effectively guide the regulation of fermentation process, make the actual production closer to the theoretical production, and provide an effective estimation of phycocyanin production for the project; Model 3 is the yeast color development model. Photon simulation method is used to simulate the propagation of electromagnetic wave in the cell wall, and combined with the absorption spectrum of phycocyanin to obtain the reflection spectrum of yeast cells. And we use the phycocyanin concentration 0.7mg/L ,which was calculated in model 2, and predict the reflection spectrum of the cell. CIE1931 chromaticity calculation method is used to convert the spectrum into the corresponding chromaticity, to obtain the corresponding relationship between the production of phycocyanin and the color of yeast cells, which can provide a reference basis for our subsequent factory application and guide the downstream application of the product.

The innovation of our model is mainly reflected in the third model, yeast color-rendering model. According to the literature we know, there is no relevant research on cell color-rendering, taking into account both the optical effect of cell wall structures and the light path of pigments. In our model, we explore the influence of the fungal cell wall as a modulator of the light that reaches the inner part of the cell, by considering it as a photonic structure. The computer simulation method is simple and operable. The results obtained are very satisfactory.

MODEL 1

During this experiment, yeast was used as the expression vector of phycocyanin. We could study the fermentation process through fermentation kinetics, and describe different indexes in the fermentation process through mathematical modeling.

Due to the fact that actual data of phycocyanin fermentation was unavailable, we utilized the experimental data of glutathione fermentation from the related literature ,whose basic principle is similar to the phycocyanin production, to fit the first three models and judge the applicability.

The charts below illustrated the relevant data of glutathione fermentation.

The first model we built is the strain growth model. The most commonly used models are Monod equation and logistic equation. As Monod equation is an idealized model, it has certain limitations. However, logistic equation is a typical S-shaped curve, which could well reflect the inhibition of strain concentration increase on its own growth in batch fermentation.As a result, we used logistic equation to describe the process of strain growth.

Below is the basic form of logistic equation:

The general solution of the equation is as follows:

μm:maximum formation rate
Xm:maximum number
X0:initial number

In order to facilitate fitting, we properly deform the equation and introduce three parameters a, b and c.


Deformation:
Suppose:

Finally, we can obtain the simplified equation, which could be employed in the curve fitting.

The fitted image is shown in the following figure:


We found that R2 = 0.9947, which indicated the fitting effect is ideal. Through fitting the curve, we get the values of three parameters a, b and c, and then xm, x0, μm are also clear by calculating. Furthermore, the specific expression of strain growth model could be got.

The product accumulation model is the second model. In accordance to the fact that phycocyanin fermentation is batch fermentation, we decided to use piret equation to describe product accumulation after consulting the relevant literature.

Owing to the fact that the desired product phycocyanin and the obtained data product glutathione are amino acid compounds, the accumulation of the product is partially related to the growth of the strain. Therefore, none of α、β in this equation is 0.

The concrete solution can be known by integrating the equation.

We can replace the two complex parts of this expression with φ(t) and Φ(t). In accordance to the previously obtained xm, x0, μm , the concrete form of φ(t) and Φ(t) is known.

After software fitting, it is found that R2 = 0.9995, indicating the fitting effect is excellent. Obtaining α、β ,the specific form of the product accumulation model could be written.

The third model is the substrate consumption model. Since substrate consumption during the phycocyanin fermentation includes strain growth consumption, strain metabolism consumption and product accumulation consumption, we can employ Pirt equation to describe the whole process of substrate consumption.

More complex solutions are obtained by integration.

YX/S: cell yield to substrate
YP/S: product yield coefficient
mS: maintenance coefficient
S0: initial substrate concentration

To make the curve fitting easier, we substitute the expression of the product accumulation model, and simplify the expression of the substrate consumption model by introducing three parameters L, M and N and the previously assumed φ(t) and Φ(t).

After simplifying to this clear form, we can carry out the curve fitting to obtain the values of L, M and N.

Substituting the values of S0、 x0、 α、β and solving the equations , the specific values of the three coefficients can be obtained. Moreover, the specific expression of the product accumulation model can also be clear.

From the above fitting operations, we can find that the three models we built have good applicability. As a result, once we get relevant experimental statistics, we can fit the curves by using these three models.Additionally, we can quantify the whole process of phycocyanin fermentation and make the strategic control of phycocyanin fermentation more convenient.

MODEL 2

The second model is Genome-scale metabolic model ,which use the data of gene, metabolites, reactions to construct network.

Related studies have made great progress in recent years, for example, the paper, A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism, constructed a network which forms the basis of the ecosystem. And based on these papers, we carried out our work.

Firstly, as presented in the experiment part, new genes are introduced in S288c, so we add the involved reactions and important metabolites to the original network. We use MATLAB to construct the new network.

Secondly, we found that cofactors, such as carbon monoxide and ferredoxin, are not considered in original network. So we ignored those cofactors.

Thirdly, drawing upon the visualization tool fluxer, we mapped the new metabolic networks and present the flux.

Finally, we use the FBA method to calculate the growth rate and discuss the robustness analysis. As shown in the figure, growth rate gradually decreases with the increase of phycocyanin synthesis rate. When the synthesis rate of phycocyanin reaches the order of 1 micro molar, the growth rate decreases sharply. This means that the maximum threshold of phycocyanin synthesis rate is 10×10-3 mmol/g DW/h, This conclusion is consistent with the self regulation of heme, which verifies the correctness of our metabolic network model to a certain extent.

With the 110h fermentation time of yeast, the theoretical production of phycocyanin p is 0.110 mmol/g DW.

Correspondingly, intracellular phycocyanin concentration is about 0.49798 mg/L. The calculation formula is as follows:

where Mphycocyanin = 20kd, which is the assumed molecular weight of phycocyanin, N = 2×1010g-1 ,which means that It takes twenty billion yeast cells to weigh one gram , r = 3.75×10-5dm , which is the radius of yeast cell.

MODEL 3

The third model is color-rendering model for Yeast cell, which aims to study the corresponding relationship between intracellular phycocyanin concentration and cell color.

Yeast cell wall is a micro nano biological structure. Because micro nanostructures can affect the color rendering of light, we first need to study the optical properties of yeast cell wall. In the paper Photonics of fungal cell wall, there's much in their method that we can use. fungal cell wall behaves as a photonic structure that presents an optical response similar to that of an inhomogeneous thin film.

Firstly, we selected a typical TEM image of Saccharomyces cerevisiae S288C and intercepted a fragment of cell wall.

Based on TEM image of the cell wall, we use photonic simulation to reproduces the propagation of electromagnetic waves. We call this bitmap M and its pixel represents the position of the particle. Three matrices Mphys, Dphys and Ephys containing the physical values of mass, damping constant and externally applied force are defined. These matrices are related to M, D and E as follows:

Where m0 is a ground level mass, the proportionality constant mp has units of (kg/grey level) , the constant μp has units of (N s/m/grey level, and rp is a proportionality constant with units of (N/grey level) that converts the value of grey level provided by the bitmap E to a value of force. According to the parameters in the paper, combining with the attempt of programming, we set parameters as follows:

The figure on the left is bitmap E that indicates the masses to be excited harmonically, which in this case are those contained in a vertical line on the left side of the bitmap, in white. The bitmap D showing in grey levels the region with damping constant is shown on the right .

The simulation consists in an algorithm that begins by sweeping all the elements of the matrices.

We suppose that the applied force on each mass determined by the bitmap E varies harmonically over time so that

The frequency of the harmonic excitation was set to ω 250 rad s−1 and ϕ was set to 0. The adapting constant was set to τ 1 ms/loop cycle.

The total force for the mass located at (i, j) can be expressed as:

The damping force is given by

where the matrix multiplication is a point-to-point multiplication, each element of Dphys being multiplied by its corresponding element of V .

The forces located at (i, j) due to the neighbour masses located at are calculated in terms of the previously defined matrices as

By means of Newton’s second law, we calculate the acceleration matrix A determining the acceleration of each mass. This matrix is computed as

where the matrix division is a point-to-point division, each element of F being divided by its corresponding element of Mphys.

The speed matrix V is obtained by integrating the acceleration.

The new displacement matrix H is also obtained by refreshing as

The intensity is calculated by integrating the square of the displacement matrix as

We repeated the simulation cycle. And for a certain wavelength, we can calculate the transmittance as:

The above is the process of computer simulation. We use computer simulation to calculate the reflectance as a function of the optical wavelength (λ).

After simulating the optical properties of cell wall, we also need to obtain the optical curve of phycocyanin. In the laboratory, we also measured the absorbance of pure phycocyanin. Combined with the literature, we obtained the following absorbance spectra. The ordinate is the absorption coefficient with units of mL / (mg · cm).

Next, we consider the light path in cells. When the external light enters the cell, it first transmits through the cell wall, and transmits in the solution. The following step is the reflection of the cell wall, then transmits again in the solution, and finally transmits through the cell wall and leaves the cell.

Because the cells are very small, about 5-10 microns in diameter, the color we see should be the accumulation of the colors of thousands of cells. So we overlap the cells and analyze their light path.

We assume that yeast cells overlap into spheres, as shown in the left, and the light path is shown on the right. To simplify the calculation, we ignore the loss of light transmission between cells and diffuse reflection and refraction of cells.

We also assume that the volume of yeast cell clusters is 1 cubic millimeter, which can just be seen by human eyes. According to the volume formula, the diameter of yeast cells d can be calculated to be about 1.2407 mm. However, due to the existence of cell wall and gap between cells, the optical path of direct light in phycocyanin solution is less than d, and we assume a constant σ = 0.95. So cumulative optical distance can be calculated:

b = d · σ

According to Lambert-Beer law, we can calculate the absorbance a under the condition of a certain optical distance b and a certain phycocyanin concentration c

A = abc

Combined with the results of photon simulation, the reflectivity of yeast cell population for a certain wavelength λ can be calculated. The calculation formula is as follows:

R = T * (1 - A) * (1 - T) * (1 - A) * T

The reflection spectrum can be obtained by calculating the corresponding reflectivity for the wavelength from 380nm to 760nm.

When the phycocyanin concentration is 0.49798 mg/L which is the concentration predicted by model 2, the synthetic reflection spectrum is as follows:

According to the chromaticity calculation theory of CIE1931, we can use the following formula to convert the reflection spectrum into the corresponding chromaticity coordinates, where the color matching function of each spectrum,(λ)、(λ)、(λ) and power distribution of reference S(λ).

Corresponding chromaticity coordinates are :

In addition, by changing the phycocyanin concentration, we can get different spectra and color coordinates. In the following table, we list the phycocyanin concentrations c and b*c, which is the product of optical path and phycocyanin concentration, the color coordinates of pure phycocyanin solution and the color coordinates of yeast cells.

We draw the color coordinates on the chromaticity diagram and compare the results of solution and cell. We find that after the influence of cell wall, the color temperature of color decreases, but the chromaticity deviates from cyan and is closer to the blue gamut.

Reference:

[1] A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism
[2] Computational Analysis of Reciprocal Association of Metabolism and Epigenetics in the Budding Yeast: A Genome-Scale Metabolic Model (GSMM) Approach
[3] Song, Yanqun, Rongfeng Zhu, and Peng Chen. "Physiological distribution and regulation of heme." SCIENTIA SINICA Chimica 45.11 (2015): 1194-1205.
[4] Hari, Archana, and Daniel Lobo. "Fluxer: a web application to compute, analyze and visualize genome-scale metabolic flux networks." Nucleic Acids Research 48.W1 (2020): W427-W435.
[5] Dolinko, Andrés E., and Diana C. Skigin. "A simulation method for determining the optical response of highly complex photonic structures of biological origin." arXiv preprint arXiv:1301.0754 (2013).
[6] Zakhartsev, Maksim, and Matthias Reuss. "Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature." FEMS yeast research 18.6 (2018): foy052.
[7] Dolinko, A. E. "From Newton's second law to Huygens's principle: visualizing waves in a large array of masses joined by springs." European journal of physics 30.6 (2009): 1217.