Difference between revisions of "Team:CPU CHINA/Design"

Line 89: Line 89:
 
                     </li>
 
                     </li>
 
                     <li class="num">
 
                     <li class="num">
                         <a href="#section2" title="PE DEGRADING ELEMENTS">PE DEGRADING ELEMENTS</a>
+
                         <a href="#section2" title="PRIMARY GOAL: TO SELECT A CENTRAL PE DEGRADATION AGENT">PRIMARY GOAL:
 +
                            TO SELECT A CENTRAL PE DEGRADATION AGENT</a>
 
                     </li>
 
                     </li>
 
                     <li class="num">
 
                     <li class="num">
                         <a href="#section3" title="ASSEMBLY SYSTEM">ASSEMBLY SYSTEM</a>
+
                         <a href="#section3"
 +
                            title="SECONDARY GOAL: TO ENHANCE THE PE-DEGRADING EFFICIENCY OF MnP">SECONDARY GOAL: TO
 +
                            ENHANCE THE PE-DEGRADING EFFICIENCY OF MnP</a>
 
                     </li>
 
                     </li>
 
                     <li class="num">
 
                     <li class="num">
                         <a href="#section4" title="HOW DO OUR COMPLEX REALIZES ITS OPTIMAL FUNCTION?">HOW DO OUR COMPLEX
+
                         <a href="#section4"
                             REALIZES ITS OPTIMAL FUNCTION?</a>
+
                            title="TERTIARY GOAL: CONVERGE THE ADVANTAGES OF THREE FUNCTIONAL PROTEINS">TERTIARY GOAL:
 +
                             CONVERGE THE ADVANTAGES OF THREE FUNCTIONAL PROTEINS</a>
 
                     </li>
 
                     </li>
 
                     <li class="num">
 
                     <li class="num">
                         <a href="#section5" title="ELEMENT DESIGN">ELEMENT DESIGN</a>
+
                         <a href="#section5" title="THE OVERALL DIAGRAM">THE OVERALL DIAGRAM</a>
 
                     </li>
 
                     </li>
 
                 </ul>
 
                 </ul>
Line 106: Line 110:
 
         </div>
 
         </div>
 
         <div id="detail" class="clearfix">
 
         <div id="detail" class="clearfix">
 +
 +
 
             <div class="section" id="section1">
 
             <div class="section" id="section1">
 
                 <h2 class="mume-header" id="overview">OVERVIEW</h2>
 
                 <h2 class="mume-header" id="overview">OVERVIEW</h2>
  
 
                 <p><strong>Plastic pollution</strong> has long been an old yet tricky problem that <strong>remains
 
                 <p><strong>Plastic pollution</strong> has long been an old yet tricky problem that <strong>remains
                         poorly tackled</strong>. However, traditional plastic materials, <strong>exemplified by
+
                         poorly
                         polyethylene (PE)</strong>, are still widely applied in different aspects of human activities in
+
                        tackled</strong>. However, traditional plastic materials, <strong>exemplified by polyethylene
                    large quantities, inevitably causing severe environmental <strong>contamination</strong>, as well as
+
                         (PE)</strong>, are
                    posting a great <strong>threat</strong> to species diversity. Therefore, it is of <strong>vital
+
                    still widely applied in different aspects of human activities in large quantities,
                        urgency</strong> to search for <strong>green and efficient</strong> methods to better
+
                    <strong>especially</strong> in
                    <strong>degrade</strong> these kinds of plastics.</p>
+
                    the booming <strong>express delivery</strong> industry. This inevitably caused severe resource
                 <p>As we were in search of ideal management method of disposed polyethylene waste, three functional
+
                    <strong>loss</strong> and environmental <strong>contamination</strong>, as well as posted a great
                    proteins, including two enzymes, were selected to reach our goal:</p>
+
                    <strong>threat</strong> to species diversity. Therefore, it is of <strong>vital urgency</strong> to
                 <ul>
+
                    search for
                    <li>
+
                    <strong>green and efficient</strong> methods to better <strong>degrade</strong> this kind of
                        <p><strong>Manganese Peroxidase (MnP)</strong> : the key PE-degrading element.</p>
+
                    plastics.
                        <p>It is derived from fungi and utilizes <strong>hydrogen peroxide</strong> to produce
+
                 </p>
                            high-redox-potential <strong>trivalent manganese ions</strong> that can
+
                 <p>PE belongs to other waste. Its major disposal methods under current situation are incineration and
                            <strong>oxidize</strong> a considerable variety of substances, including
+
                    landfill, both
                            <strong>PE</strong>.</p>
+
                     of which are not the optimal way of disposing PE, for the reason that not only hazardous gas or
                     </li>
+
                     harmful organic
                    <li>
+
                     pollutants are produced, but also the occupancy of enormous land resources is observed.</p>
                        <p><strong>Aryl Alcohol Oxidase (AAO)</strong>: assists the function of MnP.</p>
+
                <p>Under the encouragement of government policy, recent years have seen a rise of PE recycling and
                        <p>It is a type of hydrogen-peroxide-producing enzyme for <strong>activating fungal
+
                     reusing industry.
                                peroxidases</strong> in the natural lignin decomposition process.</p>
+
                     However, its relatively small scale and high technological barrier have temporary hindered its
                     </li>
+
                     further promotion,
                     <li>
+
                     and constrained its ability to cleanse PE waste to a larger extent.</p>
                        <p><strong>Hydrophobin-1 (HFB1)</strong>: enhances substrate adherence.</p>
+
                 <p>Therefore, in order to cope with the environment issue posted by the majority of unrecyclable PE, by
                        <p>A type of surface-activating protein. It is applied aiming to decrease the hydrophobicity of
+
                     integrating
                            <strong>PE</strong> surface, thereby increasing the degradation efficacy of our enzymes.</p>
+
                     facts and data in literatures, as well as the on-site observations and feedback from our Human
                     </li>
+
                     Practices members,
                </ul>
+
                     we decided to take advantage of the power of nature, seeking specific agents that possess the unique
                <p>To further <strong>converge</strong> the <strong>advantages</strong> provided by the three
+
                    ability of
                     PE-degrading elements for improved performance, we began to consider the possibility of
+
                     degrading PE.</p>
                     <strong>applying</strong> an <strong>integrated assembly</strong> system, consisting of the
+
                 <p>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;</p>
                     following two subsystems:</p>
+
                 <ul>
+
                    <li>
+
                        <p><strong>SpyCatcher/SpyTag system</strong></p>
+
                        <p>It enables random proteins fused with reciprocal Spy domains to be linked together through
+
                            the formation of a covalent bond.</p>
+
                     </li>
+
                     <li>
+
                        <p><strong>CRISPR/dCas9 system</strong></p>
+
                        <p>It promotes a programmable, specific binding of single strand RNA-guided deactivated CRISPR
+
                            associated protein 9 (sgRNA:dCas9) towards a designed double-stranded DNA with variable
+
                            interval, proportion and order.</p>
+
                     </li>
+
                </ul>
+
                <p>Eventually, by combining the three PE-degrading elements with the two assembly systems, we are able
+
                     to construct a new type of protein-nucleic-acid complex that possesses an enhanced ability for PE
+
                     degradation.</p>
+
                <p>A demonstrative graph is shown below (Fig. 1).</p>
+
                <p><img src="C:%5CUsers%5CLyernotLeere%5CDesktop%5CCPU_CHINA%5CTypora%E6%96%87%E7%A8%BF%5CDesign%E9%83%A8%E5%88%86%E5%88%9D%E7%A8%BF%5Cfigures%5CT--CPU_CHINA--Design-1.png"
+
                        alt="T--CPU_CHINA--Design-1"></p>
+
                <p><strong>Fig.1 Graphical abstract of our PE-degrading complex.</strong></p>
+
                 <p>Further explanations and detailed information regarding elements, systems and chassis applied in our
+
                    design can be found in the following contents.</p>
+
 
             </div>
 
             </div>
             <div class="section" id="section2">
+
             <div class="section" id="section2><h2 class=" mume-header"
                <h2 class="mume-header" id="pe-degrading-elements">PE DEGRADING ELEMENTS</h2>
+
                id="primary-goal-to-select-a-central-pe-degradation-agent">PRIMARY GOAL: TO SELECT A CENTRAL
 +
                PE DEGRADATION AGENT</h2>
  
                <p>As is briefly described earlier, each PE-degrading element plays a different but irreplaceable role
+
                 <h3 class="mume-header" id="agent-selection">AGENT SELECTION</h3>
                    in the whole integrated system. Their detailed characteristics and division of labor are displayed
+
                    below.</p>
+
                 <h3 class="mume-header" id="manganese-peroxidase-mnp">MANGANESE PEROXIDASE (MnP)</h3>
+
  
                 <p>Manganese Peroxidase (MnP) is a highly glycosylated lignin peroxidase with <strong>heme</strong>. It
+
                 <p>During our preliminary stage of literature research, strains of microorganism as well as enzymes that
                     can <strong>oxidize Mn<sup>2+</sup> to Mn<sup>3+</sup></strong>, which can be chelated by ligands
+
                    both had
                    like oxalic acid, forming the <strong>Mn<sup>3+</sup>-ligand chelate compound</strong> that can
+
                    the potential of PE degradation were obtained by us. An either-or decision must be made upon the
                    diffuse outside the enzyme for further degrading of lignin or other refractory chemicals.</p>
+
                    selection of the
                 <p>![Fig2](C:\Users\LyernotLeere\Desktop\iGEM wiki\Project\Design\Fig2.png)</p>
+
                    PE-degrading agent. Without much hesitation, we selected enzymes instead of strains due to a more
                 <p><strong>Fig. 2 The catalytic cycle of MnP.</strong></p>
+
                    definite origin
                 <p>Moreover, it has been reported that <strong>MnP has a significant degradation efficiency on PE
+
                    and characteristics provided by online databases. After screening through potential candidates, the
                        film</strong>. As reported before, the weight-average molecular weight (Mw) of PE was halved by
+
                    very
                    MnP after being treated for two days. Thus, MnP was chosen by us as the key element for PE
+
                    <strong>manganese peroxidase</strong> (MnP) was selected as our central functional element.
                     degradation.</p>
+
                </p>
                 <p>In our complex, MnP is assisted by two other elements. This enables MnP to gain
+
                <p>It is a highly glycosylated lignin peroxidase with <strong>heme</strong><sup>[1,2]</sup> that can
                    H<sub>2</sub>O<sub>2</sub> in a stable and consistent rate, as well as to get closer to PE. Under
+
                     <strong>oxidize
                    such coordination, MnP could achieve a better function and accelerate PE degradation.</p>
+
                        Mn<sup>2+</sup> to Mn<sup>3+</sup></strong>, the latter can be chelated by ligands like oxalic
                 <h3 class="mume-header" id="aryl-alcohol-oxidase-aao"><strong>ARYL ALCOHOL OXIDASE (AAO)</strong></h3>
+
                    acid, forming the
 +
                    <strong>Mn<sup>3+</sup>-ligand chelate compound</strong> that can diffuse outside the enzyme for
 +
                    further
 +
                    degradation of lignin or other refractory chemicals<sup>[3]</sup>.
 +
                 </p>
 +
                <img src="" alt="">
 +
                 <p class="imgdescribe"><strong>Fig. 1 The catalytic cycle of MnP.</strong></p>
 +
                 <p>It has been reported that <strong>MnP has a significant degradation efficiency on PE film</strong>.
 +
                    As reported
 +
                    before, the weight-average molecular weight (Mw) of PE was halved by MnP treatment for two days,
 +
                    showing its
 +
                    remarkable degradation efficacy<sup>[4]</sup>. Thus, MnP was chosen by us as the key element for PE
 +
                     degradation.
 +
                 </p>
 +
                 <h3 class="mume-header" id="using-aao-as-a-better-approach-to-provide-substrate-for-mnp">USING AAO AS A
 +
                    BETTER
 +
                    APPROACH TO PROVIDE SUBSTRATE FOR MnP</h3>
  
                 <p>Aryl alcohol oxidase, a member of the glucose-methanol-choline oxidase/dehydrogenase (GMC)
+
                 <p>It is shown on the catalytic cycle of MnP above that H<sub>2</sub>O<sub>2</sub> is required as its
                     superfamily, is an enzyme containing <strong>flavin-adenine-dinucleotide (FAD)</strong> that
+
                    <strong>essential substrate</strong> for activating the enzymatic reaction. Yet an abnormally high
                    catalyzes the oxidation of aromatic and aliphatic allylic primary alcohols to the corresponding
+
                    concentration
                     aldehydes while <strong>reducing molecular oxygen to H<sub>2</sub>O<sub>2</sub></strong> (the
+
                    of H<sub>2</sub>O<sub>2</sub> could also inhibit, even deactivate the enzyme, which might happen
                    corresponding mechanism is shown on Fig. 3).</p>
+
                     when
                 <p>![Fig3-Transparent](C:\Users\LyernotLeere\Desktop\iGEM wiki\Project\Design\Fig3-Transparent.png)</p>
+
                    H<sub>2</sub>O<sub>2</sub> was added into the system manually and periodically.
                 <p><strong>Fig. 3 The mechanism of AAO reducing molecular oxygen to H<sub>2</sub>O<sub>2</sub> by
+
                </p>
                         oxidizing 4-methoxybenzyl alcohol.</strong></p>
+
                <p>Therefore, a more in-depth investigation was carried out to seek a solution. As a result, we
                 <p>In our project, we plan to use AAO as a H<sub>2</sub>O<sub>2</sub>-producing enzyme to assist MnP to
+
                    discovered a
                     play its role.</p>
+
                    specific type of enzyme, namely <strong>aryl alcohol oxidase (AAO)</strong>. It is an enzyme
                <h3 class="mume-header" id="hydrophobin-1-hfb1"><strong>HYDROPHOBIN-1 (HFB1)</strong></h3>
+
                    containing
 
+
                    flavin-adenine-dinucleotide (FAD) that catalyzes the oxidation of aromatic and aliphatic allylic
                <p>Hydrophobin (HFB) is a type of <strong>biosurfactant</strong> rich in hydrophobic amino acids,
+
                    primary alcohols
                     possessing <strong>surface activity</strong>. By <strong>self-assembling</strong> at
+
                    (which are far less oxidative when compared to Mn<sup>3+</sup> and H<sub>2</sub>O<sub>2</sub>) to
                    hydrophilic-hydrophobic interfaces autonomously, HFBs can <strong>enhance the affinity</strong>
+
                    the
                    between hydrophilic proteins and hydrophobic materials, <strong>such as PE</strong>, thus
+
                     corresponding aldehydes while <strong>reducing molecular oxygen to
                     facilitating its contact with aqueous environment. <strong>Hydrophobin-1</strong> (HFB1) is a kind
+
                        H<sub>2</sub>O<sub>2</sub></strong>.</p>
                    of class &#x2161; HFBs derived from <em>Trichoderma reesei</em>. Compared with other members of
+
                 <img src="" alt="">
                    HFBs, HFB1 has <strong>better stability</strong> and <strong>higher surface activity</strong>, which
+
                 <p class="imgdescribe"><strong>Fig. 2 The mechanism of AAO reducing molecular oxygen to H<sub>2</sub>O<sub>2</sub> by
                     means it can maintain its function of adherence on hydrophobic substances <strong>more
+
                         oxidizing
                        firmly</strong> for a <strong>longer period of time</strong>.</p>
+
                        4-methoxybenzyl alcohol.</strong></p>
                <p>Therefore, in our project, HFB1 is used as a biosurfactant to produce consistent surface activity on
+
                 <p>We learned from the literature that AAO is able to produce H<sub>2</sub>O<sub>2</sub> in a
                     PE, therefore <strong>adhering</strong> the whole <strong>molecular machine</strong> on the PE
+
                     <strong>low but
                     surface, which will eventually <strong>improve</strong> the degradation <strong>efficacy</strong> of
+
                        steady</strong> rate. Therefore, the <strong>inhibition</strong> of MnP <strong>due to</strong>
                     our protein-nucleic acid complex.</p>
+
                     <strong>an</strong> <strong>excess of H<sub>2</sub>O<sub>2</sub></strong> concentration can be
 +
                     <strong>effectively
 +
                        prevented</strong> when applying AAO as the source of H<sub>2</sub>O<sub>2</sub>. This would
 +
                    allow MnP to
 +
                     <strong>catalyze</strong> the PE-degrading reaction <strong>over a longer period of time</strong>,
 +
                    realizing a
 +
                     more <strong>complete degradation</strong> of PE. In addition, since the two enzymes work in tandem,
 +
                    the
 +
                    <strong>cascade reaction</strong> mediated by the two can only be initiated when substrates of AAO
 +
                     is introduced
 +
                    to the system. Therefore, we can <strong>achieve precise control</strong> to the onset and
 +
                    termination of the
 +
                     reactions via adding specific amount of substrates to the system in a given time, preventing
 +
                    uncontrollable
 +
                    situations from happening. As a result, we decided to select AAO as the assistant of MnP.
 +
                </p>
 
             </div>
 
             </div>
 
             <div class="section" id="section3">
 
             <div class="section" id="section3">
                 <h2 class="mume-header" id="assembly-system">ASSEMBLY SYSTEM</h2>
+
                 <h2 class="mume-header" id="secondary-goal-to-enhance-the-pe-degrading-efficiency-of-mnp">SECONDARY
 +
                    GOAL: TO ENHANCE
 +
                    THE PE-DEGRADING EFFICIENCY OF MnP.</h2>
 +
 
 +
                <h3 class="mume-header" id="optimize-the-degradation-competence-of-mnp-by-directed-evolution">OPTIMIZE
 +
                    THE
 +
                    DEGRADATION COMPETENCE OF MnP BY DIRECTED EVOLUTION</h3>
  
                 <p>In order to maximize the advantage of the three elements, two kinds of assembly systems were selected
+
                 <p>As our key PE-degrading enzyme, manganese peroxidase (MnP) undertakes a fundamental role of
                     and cooperatively introduced into our system to integrate and align the enzymes and biosurfactant on
+
                    inflicting oxidation
                     one double-stranded DNA. In this way, the whole complex can be successfully constructed.</p>
+
                    to PE by continuously producing Mn<sup>3+</sup> ions. Therefore, enhancing the degradation
                 <h3 class="mume-header" id="spycatcherspytag-connect-system"><strong>SPYCATCHER/SPYTAG CONNECT
+
                    efficiency of MnP is
                        SYSTEM</strong></h3>
+
                    beneficial to reach a more complete destruction of PE films.</p>
 +
                <p>In theory, there are two approaches of reinforce the degradation efficacy of MnP, whether by
 +
                     increasing the
 +
                    activity of MnP to realize a stronger oxidative capacity, or by improving the stability of MnP to
 +
                    prolong its
 +
                    duration of effect. However, since the substrate and catalysate of MnP are both highly-oxidative,
 +
                    simply
 +
                    increasing its activity without restrictions is bound to cause irreversible harm not only to the MnP
 +
                    itself, but
 +
                    also to other affiliated elements in our design, AAO for instance. Therefore, we decided to improve
 +
                    the stability
 +
                     of MnP by proposing a semi-rational directed evolution strategy towards it, with the hope to
 +
                    increase its
 +
                    tolerance of high temperature, acidic pH, as well as different types of organic solvents, all of
 +
                    which are common
 +
                    inhibitory physiochemical properties that may severely impact the activity of MnP.</p>
 +
                 <h3 class="mume-header" id="facilitate-the-surface-adherence-of-mnp-by-introducing-hfb1">FACILITATE THE
 +
                    SURFACE
 +
                    ADHERENCE OF MnP BY INTRODUCING HFB1</h3>
  
                 <p>SpyCatcher/SpyTag system is a convenient technique used for <strong>protein ligation</strong>. It
+
                 <p>Back to the stage where we were searching for agents with PE degradation efficacy, we noticed that
                     contains two elements:</p>
+
                    certain
 +
                    bacterial or fungal strains capable of degrading PE could produce biosurfactant to assist their
 +
                    adherence and
 +
                    colonization on the hydrophobic surface of plastics, so that they could degrade PE in a faster pace.
 +
                    This inspired
 +
                    us to introduce biosurfactant into our design, aiming to increase the hydrophilicity of the surface
 +
                    of PE.</p>
 +
                <p>As a result, our focus was concentrated on hydrophobin-1 (HFB1), a kind of class &#x2161; HFBs
 +
                    derived from
 +
                    <em>Trichoderma reesei</em>. It is rich in hydrophobic amino acids, endowing its surface activity.
 +
                    By
 +
                    <strong>self-assembling</strong> at hydrophilic-hydrophobic interfaces autonomously, HFB1 can
 +
                    <strong>enhance the
 +
                        affinity</strong> between hydrophilic proteins and hydrophobic materials <strong>such as
 +
                        PE</strong>, thus
 +
                    facilitating its contact with aqueous environment, thereby facilitating MnP to degrade PE.
 +
                </p>
 +
                <p>What&apos;s more, compared with other members of HFBs, HFB1 has <strong>better stability</strong> and
 +
                    <strong>higher surface activity</strong>, which means it can maintain its function of adherence on
 +
                    hydrophobic
 +
                    substances <strong>more firmly</strong> for a <strong>longer period of time</strong>.
 +
                </p>
 +
                <p>Therefore, in our project, HFB1 is selected and used as a biosurfactant to produce consistent surface
 +
                    activity on
 +
                    PE, thereby promoting the adherence of MnP on PE surface, which helps to <strong>improve</strong>
 +
                    the degradation
 +
                    <strong>efficacy</strong> of this enzyme.
 +
                </p>
 +
            </div>
 +
            <div class="section" id="section4">
 +
                <h2 class="mume-header" id="tertiary-goal-converge-the-advantages-of-three-functional-proteins">TERTIARY
 +
                    GOAL:
 +
                    CONVERGE THE ADVANTAGES OF THREE FUNCTIONAL PROTEINS</h2>
 +
 
 +
                <p>Now that the three functional proteins were selected, all of which possesses individual functions
 +
                    that could
 +
                    contribute to the degradation of PE, instead of directly applying all of them by simply adding them
 +
                    into the
 +
                    system separately, we began to consider the possibility of combining these discrete parts into a
 +
                    composite entity,
 +
                    enabling the production of a strong synergistic effect which may lead to an significant improvement
 +
                    on efficacy.
 +
                </p>
 +
                <h3 class="mume-header" id="getting-closer-to-the-surface-of-pe">GETTING CLOSER TO THE SURFACE OF PE
 +
                </h3>
 +
 
 +
                <p>The first idea that struck us was that we could minimize the spatial distance between MnP and PE by
 +
                    fusing HFB1
 +
                    on the enzyme. Similar strategy could also be applied on AAO to generate fusion protein as well. In
 +
                    this way, our
 +
                    functional enzymes can simultaneously be anchored to the PE surface with the aid of fused HFB1, so
 +
                    that the
 +
                    diffusion distance of Mn<sup>3+</sup>-ligand chelate compound towards PE could be significantly
 +
                    lessened, enabling
 +
                    a more efficient degradation outcome. Meanwhile, the H<sub>2</sub>O<sub>2</sub> generated by AAO can
 +
                    also become
 +
                    more accessible to MnP when the two enzymes are closely anchored to the surface of PE.</p>
 +
                <p>Therefore, we delved into literatures and previous iGEM projects to look for ideal solutions. It
 +
                     turned out that
 +
                    there existed a versatile protein ligation system, i.e. SpyCatcher/SpyTag system, that has been
 +
                    widely adopted by
 +
                    many laboratories and iGEM teams for construction of multi-domain protein. This system contains two
 +
                    essential
 +
                    elements:</p>
 
                 <ul>
 
                 <ul>
 
                     <li><strong>SpyCatcher:</strong> a modified immunoglobulin-like domain CnaB2 from a
 
                     <li><strong>SpyCatcher:</strong> a modified immunoglobulin-like domain CnaB2 from a
                         <em>Streptococcus pyogenes</em> surface protein</li>
+
                         <em>Streptococcus
 +
                            pyogenes</em> surface protein</li>
 
                     <li><strong>SpyTag:</strong> a cognate 13-amino-acid peptide</li>
 
                     <li><strong>SpyTag:</strong> a cognate 13-amino-acid peptide</li>
 
                 </ul>
 
                 </ul>
 +
                <img src="">
 +
                <p class="imgdescribe"><strong>Fig. 3 The isopepide-forming mechanism between the two Spy domains.</strong> <em>Glu77 &amp;
 +
                        Lys31 are
 +
                        the residues on SpyCatcher; Asp117 is the residue on SpyTag.</em></p>
 
                 <p>The two domains can <strong>autonomously form a covalent isopeptide bond</strong> between each other,
 
                 <p>The two domains can <strong>autonomously form a covalent isopeptide bond</strong> between each other,
                     thereby linking the two portions together. Moreover, scientists commonly apply <strong>elastin-like
+
                     thereby
                        protein</strong> (ELP) or <strong>serine/glycine link</strong> (Ser/Gly link) as
+
                    linking the two portions together. By linking the Spy domains on the N-terminal or C-terminal of the
                     <strong>bridges</strong> between SpyCatcher/SpyTag and other functional proteins. By linking the Spy
+
                    target
                    domains on the N-terminal or C-terminal of the target protein, its structure and function are
+
                    protein with <strong>elastin-like protein</strong> (ELP) or <strong>serine/glycine link</strong>
                    generally unaffected, while the formation of isopeptide bond between SpyCatcher and SpyTag remains
+
                    (Ser/Gly link),
                    effective and efficient. In this way, both the enzyme and the SpyCatcher/SpyTag system can function
+
                     its structure and function are generally unaffected, while the formation of isopeptide bond between
                    orthogonally.<br>
+
                    SpyCatcher and
                    <span class="katex-display"><span class="katex"><span class="katex-mathml"><math
+
                    SpyTag remains effective and efficient. By adopting this system, MnP and AAO that was fused with
                                    xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
                     HFB1 are able to
                                    <semantics>
+
                     stick to surface of PE, realizing a better spatial concentration on it.</p>
                                        <mrow>
+
                 <h3 class="mume-header" id="getting-closer-with-each-other">GETTING CLOSER WITH EACH OTHER</h3>
                                            <mi>A</mi>
+
                                            <mo>+</mo>
+
                                            <mi>l</mi>
+
                                            <mi>i</mi>
+
                                            <mi>n</mi>
+
                                            <mi>k</mi>
+
                                            <mi>e</mi>
+
                                            <mi>r</mi>
+
                                            <mo>+</mo>
+
                                            <mi>S</mi>
+
                                            <mi>p</mi>
+
                                            <mi>y</mi>
+
                                            <mi>T</mi>
+
                                            <mi>a</mi>
+
                                            <mi>g</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi mathvariant="normal">&amp;</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi>B</mi>
+
                                            <mo>+</mo>
+
                                            <mi>l</mi>
+
                                            <mi>i</mi>
+
                                            <mi>n</mi>
+
                                            <mi>k</mi>
+
                                            <mi>e</mi>
+
                                            <mi>r</mi>
+
                                            <mo>+</mo>
+
                                            <mi>S</mi>
+
                                            <mi>p</mi>
+
                                            <mi>y</mi>
+
                                            <mi>C</mi>
+
                                            <mi>a</mi>
+
                                            <mi>t</mi>
+
                                            <mi>h</mi>
+
                                            <mi>e</mi>
+
                                            <mi>r</mi>
+
                                            <mspace linebreak="newline"></mspace>
+
                                            <mo>&#x21D3;</mo>
+
                                            <mspace linebreak="newline"></mspace>
+
                                            <mi>i</mi>
+
                                            <mi>n</mi>
+
                                            <mi>t</mi>
+
                                            <mi>r</mi>
+
                                            <mi>a</mi>
+
                                            <mi>c</mi>
+
                                            <mi>e</mi>
+
                                            <mi>l</mi>
+
                                            <mi>l</mi>
+
                                            <mi>u</mi>
+
                                            <mi>l</mi>
+
                                            <mi>a</mi>
+
                                            <mi>r</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi>e</mi>
+
                                            <mi>x</mi>
+
                                            <mi>p</mi>
+
                                            <mi>r</mi>
+
                                            <mi>e</mi>
+
                                            <mi>s</mi>
+
                                            <mi>s</mi>
+
                                            <mi>i</mi>
+
                                            <mi>o</mi>
+
                                            <mi>n</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi mathvariant="normal">&amp;</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi>c</mi>
+
                                            <mi>o</mi>
+
                                            <mi>n</mi>
+
                                            <mi>n</mi>
+
                                            <mi>e</mi>
+
                                            <mi>c</mi>
+
                                            <mi>t</mi>
+
                                            <mi>i</mi>
+
                                            <mi>o</mi>
+
                                            <mi>n</mi>
+
                                            <mspace linebreak="newline"></mspace>
+
                                            <mo>&#x21D3;</mo>
+
                                            <mspace linebreak="newline"></mspace>
+
                                            <mi>a</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi>m</mi>
+
                                            <mi>u</mi>
+
                                            <mi>l</mi>
+
                                            <mi>t</mi>
+
                                            <mi>i</mi>
+
                                            <mo>&#x2212;</mo>
+
                                            <mi>e</mi>
+
                                            <mi>n</mi>
+
                                            <mi>z</mi>
+
                                            <mi>y</mi>
+
                                            <mi>m</mi>
+
                                            <mi>e</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi>c</mi>
+
                                            <mi>o</mi>
+
                                            <mi>m</mi>
+
                                            <mi>p</mi>
+
                                            <mi>l</mi>
+
                                            <mi>e</mi>
+
                                            <mi>x</mi>
+
                                        </mrow>
+
                                        <annotation encoding="application/x-tex">A+linker+SpyTag\quad\&amp;\quad
+
                                            B+linker+SpyCather\\
+
                                            \Downarrow \\
+
                                            intracellular\quad expression\quad\&amp;\quad connection\\
+
                                            \Downarrow\\
+
                                            a\quad multi-enzyme\quad complex</annotation>
+
                                    </semantics>
+
                                </math></span><span class="katex-html" aria-hidden="true"><span class="base"><span
+
                                        class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span
+
                                        class="mord mathnormal">A</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span><span
+
                                        class="mbin">+</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.77777em;vertical-align:-0.08333em;"></span><span
+
                                        class="mord mathnormal" style="margin-right:0.01968em;">l</span><span
+
                                        class="mord mathnormal" style="margin-right:0.03148em;">ink</span><span
+
                                        class="mord mathnormal" style="margin-right:0.02778em;">er</span><span
+
                                        class="mspace" style="margin-right:0.2222222222222222em;"></span><span
+
                                        class="mbin">+</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mord mathnormal">Sp</span><span class="mord mathnormal"
+
                                        style="margin-right:0.03588em;">y</span><span class="mord mathnormal"
+
                                        style="margin-right:0.13889em;">T</span><span
+
                                        class="mord mathnormal">a</span><span class="mord mathnormal"
+
                                        style="margin-right:0.03588em;">g</span><span class="mspace"
+
                                        style="margin-right:1em;"></span><span class="mord">&amp;</span><span
+
                                        class="mspace" style="margin-right:1em;"></span><span class="mord mathnormal"
+
                                        style="margin-right:0.05017em;">B</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span><span
+
                                        class="mbin">+</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.77777em;vertical-align:-0.08333em;"></span><span
+
                                        class="mord mathnormal" style="margin-right:0.01968em;">l</span><span
+
                                        class="mord mathnormal" style="margin-right:0.03148em;">ink</span><span
+
                                        class="mord mathnormal" style="margin-right:0.02778em;">er</span><span
+
                                        class="mspace" style="margin-right:0.2222222222222222em;"></span><span
+
                                        class="mbin">+</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mord mathnormal">Sp</span><span class="mord mathnormal"
+
                                        style="margin-right:0.03588em;">y</span><span class="mord mathnormal"
+
                                        style="margin-right:0.07153em;">C</span><span
+
                                        class="mord mathnormal">a</span><span class="mord mathnormal">t</span><span
+
                                        class="mord mathnormal">h</span><span class="mord mathnormal"
+
                                        style="margin-right:0.02778em;">er</span></span><span
+
                                    class="mspace newline"></span><span class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mrel">&#x21D3;</span></span><span class="mspace newline"></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mord mathnormal">in</span><span class="mord mathnormal">t</span><span
+
                                        class="mord mathnormal" style="margin-right:0.02778em;">r</span><span
+
                                        class="mord mathnormal">a</span><span class="mord mathnormal">ce</span><span
+
                                        class="mord mathnormal" style="margin-right:0.01968em;">ll</span><span
+
                                        class="mord mathnormal">u</span><span class="mord mathnormal"
+
                                        style="margin-right:0.01968em;">l</span><span
+
                                        class="mord mathnormal">a</span><span class="mord mathnormal"
+
                                        style="margin-right:0.02778em;">r</span><span class="mspace"
+
                                        style="margin-right:1em;"></span><span class="mord mathnormal">e</span><span
+
                                        class="mord mathnormal">x</span><span class="mord mathnormal">p</span><span
+
                                        class="mord mathnormal">ress</span><span class="mord mathnormal">i</span><span
+
                                        class="mord mathnormal">o</span><span class="mord mathnormal">n</span><span
+
                                        class="mspace" style="margin-right:1em;"></span><span
+
                                        class="mord">&amp;</span><span class="mspace"
+
                                        style="margin-right:1em;"></span><span class="mord mathnormal">co</span><span
+
                                        class="mord mathnormal">nn</span><span class="mord mathnormal">ec</span><span
+
                                        class="mord mathnormal">t</span><span class="mord mathnormal">i</span><span
+
                                        class="mord mathnormal">o</span><span
+
                                        class="mord mathnormal">n</span></span><span class="mspace newline"></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mrel">&#x21D3;</span></span><span class="mspace newline"></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.77777em;vertical-align:-0.08333em;"></span><span
+
                                        class="mord mathnormal">a</span><span class="mspace"
+
                                        style="margin-right:1em;"></span><span class="mord mathnormal">m</span><span
+
                                        class="mord mathnormal">u</span><span class="mord mathnormal">lt</span><span
+
                                        class="mord mathnormal">i</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span><span
+
                                        class="mbin">&#x2212;</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mord mathnormal">e</span><span class="mord mathnormal">n</span><span
+
                                        class="mord mathnormal" style="margin-right:0.03588em;">zy</span><span
+
                                        class="mord mathnormal">m</span><span class="mord mathnormal">e</span><span
+
                                        class="mspace" style="margin-right:1em;"></span><span
+
                                        class="mord mathnormal">co</span><span class="mord mathnormal">m</span><span
+
                                        class="mord mathnormal" style="margin-right:0.01968em;">pl</span><span
+
                                        class="mord mathnormal">e</span><span
+
                                        class="mord mathnormal">x</span></span></span></span></span><br>
+
                    This unique covalent-bond-formation capacity between the two domains is capable of promoting the
+
                    binding of two random proteins into one multi-enzyme complex both <em>in vitro</em> and <em>in
+
                        vivo</em>. Therefore, this interaction has been utilized in several laboratories for
+
                    bioligation, and the system has been reported in various applications such as vaccine optimization,
+
                     hydrogel synthesis, and catalytic biofilm construction.
+
                </p>
+
                <p>Therefore, in our project, we use SpyCatcher/SpyTag system with ELP and Ser/Gly links to construct
+
                     various fusion proteins for assembly of our protein-nucleic-acid complex.</p>
+
                 <h3 class="mume-header" id="crisprdcas9-anchor-system"><strong>CRISPR/dCas9 ANCHOR SYSTEM</strong></h3>
+
  
                 <p>CRISPR/Cas9 technology is a genome engineering tool based on the adaptive immunity in prokaryotes:
+
                 <p>Albeit introducing SpyCatcher/SpyTag connect system into our design could have a positive influence
                </p>
+
                     on
                <ul>
+
                     accelerating PE degradation, several shortcomings are not yet solved. For example, the adherence of
                     <li>
+
                     MnP-HFB1 and
                        <p>CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)</p>
+
                     AAO-HFB1 fusion proteins on the surface of PE are likely to be unordered instead of evenly
                        <p>It is a cluster of short palindromic repeats with regular intervals in the prokaryotic
+
                     distributed. Protein
                            genome.</p>
+
                     clusters of the same type of fusion protein are likely to be formed on the PE surface, preventing
                     </li>
+
                     thorough
                    <li>
+
                     substrate exchange for those protein molecules in the middle of the cluster. Also, the maintenance
                        <p>CRISPR associated protein 9 (Cas9)</p>
+
                     of optimum
                        <p>It can cleave the target double-stranded DNA (dsDNA) complementary to CRISPR derived RNA
+
                     functioning ratio between MnP and AAO cannot be guaranteed due to the arbitrary distribution on the
                            (crRNA), under the guidance of tracrRNA/crRNA complex, which is formed by crRNA and
+
                     PE surface.
                            trans-activating crRNA (tracrRNA) <sup>[1]</sup>; or the single-guide RNA (sgRNA).</p>
+
                     Both of the two uncontrollable conditions will exert an negative impact on the efficacy of PE
                    </li>
+
                     degradation.</p>
                    <li>
+
                 <p>To enable the binding of MnP and AAO on the surface of PE in a more organized manner, we adopted a
                        <p>The deactivated CRISPR associated protein 9 (dCas9)</p>
+
                     recently
                        <p>It is a nuclease-deactivated variant of Cas9 created from S.pyogens. Though losing the
+
                     reported CRISPR/Cas-based DNA anchoring system to our design. This system utilizes an deactivated
                            DNA-cleavage activity, it can still specifically target and bind to DNA under the mediation
+
                     CRISPR-associated protein 9 linked to a SpyCatcher domain (dCas9-SpyCatcher), which can not only
                            of sgRNA<sup>[3]</sup>.</p>
+
                     form covalent
                     </li>
+
                     bond with proteins fused with SpyTag domain, but also recognize and bind to complementary DNA
                </ul>
+
                     sequences after
                <p>Previous studies have reported that<sup>[4]</sup>, random enzymes can be organized into a
+
                     incorporating a single-guide RNA (sgRNA) without cleavage activity.<br>
                    programmable assembly with the cooperation between dCas9 and the SpyCatcher/SpyTag system. In this
+
                    Therefore, by specially designing a double-stranded DNA with multiple sequence segments
                     complex, enzymes containing SpyTag are conjugated to the dCas9 containing SpyCatcher, and then
+
                     complementary to different
                    anchored to a particular location on the DNA template by the guidance of appropriate sgRNA.</p>
+
                     sgRNAs, the dCas9-SpyCatcher incorporated with different types of sgRNAs and functional proteins can
                <p>In our project, we intend to use this CRISPR/Cas-based strategy, in tandem with SpyCatcher/SpyTag
+
                     be anchored
                    system, to establish a multi-enzyme complex containing MnP, AAO, and HFB1. Together, the functions
+
                     to the double-stranded DNA in a predetermined number and proportion, which</p>
                    of the three elements could be aggregated, yielding a maximum PE degradation efficacy.</p>
+
                <p>In our project,</p>
            </div>
+
            <div class="section" id="section4">
+
                <h2 class="mume-header" id="how-do-our-complex-realizes-its-optimal-function">HOW DO OUR COMPLEX
+
                    REALIZES ITS OPTIMAL FUNCTION?</h2>
+
 
+
                <p>In overview, a brief introduction of various elements and systems included in our project were
+
                     displayed. Yet the reasons and considerations of putting forward such a design were not specified.
+
                     Thus, it is of vital significance to state our explanation regarding how we managed to select and
+
                    modify these PE-degrading elements, and to choose the right assembly system to merge their
+
                    individual function into a fine-tuned symphony.</p>
+
                <p>Initially, as our crucial PE-degrading enzyme, manganese peroxidase (MnP) undertakes a fundamental
+
                    role of inflicting oxidation to PE by continuously producing Mn<sup>3+</sup> ions. Therefore,
+
                     increasing or maintaining its activity, as well as prolonging its stability should be the top
+
                     priority for us in order to enlarge and reinforce the degradation efficacy of MnP towards PE.
+
                     However, since the substrate and catalysate of MnP are both highly-oxidative, simply increasing its
+
                     activity without restrictions is bound to cause irreversible harm to not only the MnP itself, but
+
                     also other affiliated elements of our complex. Therefore, we decided to propose a semi-rational
+
                     directed evolution strategy towards MnP, with the hope to increase its tolerance of high
+
                    temperature, acidic pH, as well as different types of organic solvents, all of which are common
+
                    inhibitory physiochemical properties that may severely impact the activity of MnP (For detailed
+
                     information about the results of directed evolution, see <em>improvement</em> page).</p>
+
                 <p>Secondary, in our design, for assisting MnP to perform its function, we selected aryl alcohol oxidase
+
                    (AAO), a H<sub>2</sub>O<sub>2</sub>-producing enzyme that requires mainly aromatic alcohols as
+
                     substrates for oxidation. This is because, due to the <strong>low but steady</strong> production
+
                     rate of H<sub>2</sub>O<sub>2</sub> by AAO, the <strong>inhibition</strong> of MnP <strong>due
+
                        to</strong> <strong>an</strong> <strong>excess of H<sub>2</sub>O<sub>2</sub></strong>
+
                    concentration, which could be the case when H<sub>2</sub>O<sub>2</sub> is added manually, <strong>is
+
                        effectively prevented</strong>. This will allow MnP to <strong>catalyze</strong> the
+
                     PE-degrading reaction <strong>over a longer period of time</strong>, realizing a more
+
                    <strong>complete degradation</strong> of PE. In addition, the <strong>cascade reaction</strong>
+
                    mediated by the two enzymes can only be initiated when substrates of AAO is introduced to the
+
                     system. Therefore, we can <strong>achieve precise control</strong> to the onset and termination of
+
                     the reactions via adding specific amount of substrates to the system in a given time.</p>
+
                <p>Thirdly, as we were researching for means of enhancing PE degradation efficacy, we noticed that
+
                    certain bacteria strains capable of degrading PE could produce biosurfactant to assist their
+
                     adherence and growth on the hydrophobic surface of plastics. This inspired us to introduce
+
                     hydrophobin-1, an amphipathic protein that could increase the hydropilicity of PE surface, thereby
+
                    facilitating MnP to degrade PE.</p>
+
                <p>Last but not least, instead of directly apply the three PE-degrading elements on PE, we selected the
+
                     SpyCatcher/SpyTag connect system, as well as the CRISPR/dCas9 anchor system, to assemble the three
+
                     elements into one compact complex. There are several advantages that can be provided by this
+
                    assemblage. Firstly, the spatial distance between MnP and AAO is remarkably reduced by anchoring
+
                     them in close proximity, which makes the H<sub>2</sub>O<sub>2</sub> produced by AAO be more readily
+
                     consumed by MnP, enhancing its catalytic activity; Secondary, the spatial distance between the
+
                    complex and PE surface is also remarkably reduced, thanks to the surface activity of HFB1. This can
+
                    lessen the the diffusion distance of Mn<sup>3+</sup>-chelate compound towards PE, in other words,
+
                    lessen the occurrence of side reactions between Mn<sup>3+</sup>-chelate compound and other
+
                    interfering substances before it reaches the surface of PE. In addition, the reduced Mn<sup>2+</sup>
+
                    after PE oxidation can be easily reabsorbed and oxidized to Mn<sup>3+</sup> by activated MnP due to
+
                    the close proximity of enzyme and substrate. In this way, the rate of PE degradation can be
+
                    remarkably accelerated.</p>
+
 
             </div>
 
             </div>
 
             <div class="section" id="section5">
 
             <div class="section" id="section5">
                 <h2 class="mume-header" id="element-design"><strong>ELEMENT DESIGN</strong></h2>
+
                 <h2 class="mume-header" id="the-overall-diagram">THE OVERALL DIAGRAM</h2>
  
                <h4 class="mume-header" id="fusion-protein-design">FUSION PROTEIN DESIGN</h4>
+
                 <p>Eventually, by combining the three PE-degrading elements with the two assembly systems, we are able
 
+
                     to construct
                 <p>According to the sequence of SpyTag and SpyCatcher, combining with PE degradation elements described
+
                    a new type of protein-nucleic-acid complex that possesses an enhanced ability for PE degradation.
                     above, the following four fusion proteins are designed for the assembly of PE degradation complex.
+
 
                 </p>
 
                 </p>
                 <p>![Fig 7](C:\Users\LyernotLeere\Desktop\iGEM wiki\Project\Design\Fig 7.png)</p>
+
                <p>A demonstrative graph is shown below (Fig. 5).</p>
                <p><strong>Fig. 7 Fusion protein plasmid maps.</strong> <em>A: pPIC9K-SpyTag-MnP; B: pPIC9K-SpyTag-AAO;
+
                 <p>![Fig5](C:\Users\LyernotLeere\Desktop\iGEM wiki\Project\Design\Fig5.JPG)</p>
                        C: pET-28a-SpyTag-HFB1; D: pET-28a-dCas9-SpyCatcher)</em></p>
+
                <p>The genes that are fused with SpyTag in the N-terminus through the ELP sequence:</p>
+
                <ul>
+
                    <li><em>mnp1</em> (Genbank accession number:AAA33744.1) from <em>Phanerochaete chrysosporium</em>
+
                        strain ATCC20696</li>
+
                    <li><em>peaao2</em> (Genbank accession number:MT711371.1) from <em>Pleurotus eryngii</em> strain P34
+
                    </li>
+
                    <li><em>hfb1</em> (Gene ID:18488188) from <em>Trichoderma reesei</em> <em>6MQa</em> strain ATCC13631
+
                    </li>
+
                </ul>
+
                <p>Meanwhile, the TEV site and 6&#xD7;His-tag are introduced to the N-terminus of SpyTag for His-tag
+
                    removal and protein purification, respectively.</p>
+
                <p>We inserted the gene sequence of SpyTag-MnP and SpyTag-AAO into the <strong>pPIC9K plasmid</strong>
+
                    with the EcoRI at the N-terminus and NotI at the C-terminus. Subsequently, the recombinant plasmids
+
                    will be transferred into <em>Pichia pastoris</em> for heterogenous expression.</p>
+
                <p>We inserted the gene sequence of SpyTag-HFB1 into the <strong>pET-28a plasmid</strong> with the EcoRI
+
                    at the N-terminus and NotI at the C-terminus. Subsequently, the recombinant plasmid will be
+
                    transferred into <em>Escherichia coli</em> Rosetta(DE3) for heterogenous expression.</p>
+
                <p>The gene that is fused with SpyCatcher in the C-terminus through a Ser/Gly link:</p>
+
                <ul>
+
                    <li>
+
                        <p>dCas9</p>
+
                        <p>The gene of <em>cas9</em> (Gene ID: 57852564) is derived from <em>Streptococcus pyogenes</em>
+
                            strain: NGAS638. Introducing single point mutations into each domain (D10A and H840A,
+
                            correspondingly) to obtain the deactivated <em>cas9</em> gene.</p>
+
                    </li>
+
                </ul>
+
                <p>Meanwhile, the TEV site and 6&#xD7;His-tag are introduced to the N-terminus of dCas9.</p>
+
                <p>We inserted the gene sequence of dCas9-SpyCatcher into the <strong>pET-28a plasmid</strong> to form
+
                    pET-28a-dCas9-SpyCatcher. Subsequently, the recombinant plasmid will be transferred into
+
                    <em>Escherichia coli</em> BL21(DE3) for heterogenous expression.</p>
+
                <h4 class="mume-header" id="sgrna-and-dsdna-template-synthesis">sgRNA AND dsDNA TEMPLATE SYNTHESIS</h4>
+
 
+
                <p>The design of the sgRNA and dsDNA sequences was referred to Samuel Lim et al (2020)[1]. All three
+
                    target sequences in dsDNA have a PAM sequence of CGG at their downstream. The sequences of the dsDNA
+
                    and the gRNA scaffold used to synthesize sgRNAs were contained in one plasmid.</p>
+
                <p>sgRNAs for each binding site were then transcribed from their corresponding templates using <em>in
+
                        vitro</em> transcription. The dsDNA scaffold was similarly PCR amplified from a DNA plasmid
+
                    (pUC-19) containing the target sequence using a forward primer and a reverse primer. The products
+
                    were separated by agarose gel electrophoresis and the target bands were recovered by gel DNA
+
                    extraction kit.</p>
+
 
             </div>
 
             </div>
 
         </div>
 
         </div>

Revision as of 20:34, 20 October 2021

OVERVIEW

Plastic pollution has long been an old yet tricky problem that remains poorly tackled. However, traditional plastic materials, exemplified by polyethylene (PE), are still widely applied in different aspects of human activities in large quantities, especially in the booming express delivery industry. This inevitably caused severe resource loss and environmental contamination, as well as posted a great threat to species diversity. Therefore, it is of vital urgency to search for green and efficient methods to better degrade this kind of plastics.

PE belongs to other waste. Its major disposal methods under current situation are incineration and landfill, both of which are not the optimal way of disposing PE, for the reason that not only hazardous gas or harmful organic pollutants are produced, but also the occupancy of enormous land resources is observed.

Under the encouragement of government policy, recent years have seen a rise of PE recycling and reusing industry. However, its relatively small scale and high technological barrier have temporary hindered its further promotion, and constrained its ability to cleanse PE waste to a larger extent.

Therefore, in order to cope with the environment issue posted by the majority of unrecyclable PE, by integrating facts and data in literatures, as well as the on-site observations and feedback from our Human Practices members, we decided to take advantage of the power of nature, seeking specific agents that possess the unique ability of degrading PE.

————————————

PRIMARY GOAL: TO SELECT A CENTRAL PE DEGRADATION AGENT

AGENT SELECTION

During our preliminary stage of literature research, strains of microorganism as well as enzymes that both had the potential of PE degradation were obtained by us. An either-or decision must be made upon the selection of the PE-degrading agent. Without much hesitation, we selected enzymes instead of strains due to a more definite origin and characteristics provided by online databases. After screening through potential candidates, the very manganese peroxidase (MnP) was selected as our central functional element.

It is a highly glycosylated lignin peroxidase with heme[1,2] that can oxidize Mn2+ to Mn3+, the latter can be chelated by ligands like oxalic acid, forming the Mn3+-ligand chelate compound that can diffuse outside the enzyme for further degradation of lignin or other refractory chemicals[3].

Fig. 1 The catalytic cycle of MnP.

It has been reported that MnP has a significant degradation efficiency on PE film. As reported before, the weight-average molecular weight (Mw) of PE was halved by MnP treatment for two days, showing its remarkable degradation efficacy[4]. Thus, MnP was chosen by us as the key element for PE degradation.

USING AAO AS A BETTER APPROACH TO PROVIDE SUBSTRATE FOR MnP

It is shown on the catalytic cycle of MnP above that H2O2 is required as its essential substrate for activating the enzymatic reaction. Yet an abnormally high concentration of H2O2 could also inhibit, even deactivate the enzyme, which might happen when H2O2 was added into the system manually and periodically.

Therefore, a more in-depth investigation was carried out to seek a solution. As a result, we discovered a specific type of enzyme, namely aryl alcohol oxidase (AAO). It is an enzyme containing flavin-adenine-dinucleotide (FAD) that catalyzes the oxidation of aromatic and aliphatic allylic primary alcohols (which are far less oxidative when compared to Mn3+ and H2O2) to the corresponding aldehydes while reducing molecular oxygen to H2O2.

Fig. 2 The mechanism of AAO reducing molecular oxygen to H2O2 by oxidizing 4-methoxybenzyl alcohol.

We learned from the literature that AAO is able to produce H2O2 in a low but steady rate. Therefore, the inhibition of MnP due to an excess of H2O2 concentration can be effectively prevented when applying AAO as the source of H2O2. This would allow MnP to catalyze the PE-degrading reaction over a longer period of time, realizing a more complete degradation of PE. In addition, since the two enzymes work in tandem, the cascade reaction mediated by the two can only be initiated when substrates of AAO is introduced to the system. Therefore, we can achieve precise control to the onset and termination of the reactions via adding specific amount of substrates to the system in a given time, preventing uncontrollable situations from happening. As a result, we decided to select AAO as the assistant of MnP.

SECONDARY GOAL: TO ENHANCE THE PE-DEGRADING EFFICIENCY OF MnP.

OPTIMIZE THE DEGRADATION COMPETENCE OF MnP BY DIRECTED EVOLUTION

As our key PE-degrading enzyme, manganese peroxidase (MnP) undertakes a fundamental role of inflicting oxidation to PE by continuously producing Mn3+ ions. Therefore, enhancing the degradation efficiency of MnP is beneficial to reach a more complete destruction of PE films.

In theory, there are two approaches of reinforce the degradation efficacy of MnP, whether by increasing the activity of MnP to realize a stronger oxidative capacity, or by improving the stability of MnP to prolong its duration of effect. However, since the substrate and catalysate of MnP are both highly-oxidative, simply increasing its activity without restrictions is bound to cause irreversible harm not only to the MnP itself, but also to other affiliated elements in our design, AAO for instance. Therefore, we decided to improve the stability of MnP by proposing a semi-rational directed evolution strategy towards it, with the hope to increase its tolerance of high temperature, acidic pH, as well as different types of organic solvents, all of which are common inhibitory physiochemical properties that may severely impact the activity of MnP.

FACILITATE THE SURFACE ADHERENCE OF MnP BY INTRODUCING HFB1

Back to the stage where we were searching for agents with PE degradation efficacy, we noticed that certain bacterial or fungal strains capable of degrading PE could produce biosurfactant to assist their adherence and colonization on the hydrophobic surface of plastics, so that they could degrade PE in a faster pace. This inspired us to introduce biosurfactant into our design, aiming to increase the hydrophilicity of the surface of PE.

As a result, our focus was concentrated on hydrophobin-1 (HFB1), a kind of class Ⅱ HFBs derived from Trichoderma reesei. It is rich in hydrophobic amino acids, endowing its surface activity. By self-assembling at hydrophilic-hydrophobic interfaces autonomously, HFB1 can enhance the affinity between hydrophilic proteins and hydrophobic materials such as PE, thus facilitating its contact with aqueous environment, thereby facilitating MnP to degrade PE.

What's more, compared with other members of HFBs, HFB1 has better stability and higher surface activity, which means it can maintain its function of adherence on hydrophobic substances more firmly for a longer period of time.

Therefore, in our project, HFB1 is selected and used as a biosurfactant to produce consistent surface activity on PE, thereby promoting the adherence of MnP on PE surface, which helps to improve the degradation efficacy of this enzyme.

TERTIARY GOAL: CONVERGE THE ADVANTAGES OF THREE FUNCTIONAL PROTEINS

Now that the three functional proteins were selected, all of which possesses individual functions that could contribute to the degradation of PE, instead of directly applying all of them by simply adding them into the system separately, we began to consider the possibility of combining these discrete parts into a composite entity, enabling the production of a strong synergistic effect which may lead to an significant improvement on efficacy.

GETTING CLOSER TO THE SURFACE OF PE

The first idea that struck us was that we could minimize the spatial distance between MnP and PE by fusing HFB1 on the enzyme. Similar strategy could also be applied on AAO to generate fusion protein as well. In this way, our functional enzymes can simultaneously be anchored to the PE surface with the aid of fused HFB1, so that the diffusion distance of Mn3+-ligand chelate compound towards PE could be significantly lessened, enabling a more efficient degradation outcome. Meanwhile, the H2O2 generated by AAO can also become more accessible to MnP when the two enzymes are closely anchored to the surface of PE.

Therefore, we delved into literatures and previous iGEM projects to look for ideal solutions. It turned out that there existed a versatile protein ligation system, i.e. SpyCatcher/SpyTag system, that has been widely adopted by many laboratories and iGEM teams for construction of multi-domain protein. This system contains two essential elements:

  • SpyCatcher: a modified immunoglobulin-like domain CnaB2 from a Streptococcus pyogenes surface protein
  • SpyTag: a cognate 13-amino-acid peptide

Fig. 3 The isopepide-forming mechanism between the two Spy domains. Glu77 & Lys31 are the residues on SpyCatcher; Asp117 is the residue on SpyTag.

The two domains can autonomously form a covalent isopeptide bond between each other, thereby linking the two portions together. By linking the Spy domains on the N-terminal or C-terminal of the target protein with elastin-like protein (ELP) or serine/glycine link (Ser/Gly link), its structure and function are generally unaffected, while the formation of isopeptide bond between SpyCatcher and SpyTag remains effective and efficient. By adopting this system, MnP and AAO that was fused with HFB1 are able to stick to surface of PE, realizing a better spatial concentration on it.

GETTING CLOSER WITH EACH OTHER

Albeit introducing SpyCatcher/SpyTag connect system into our design could have a positive influence on accelerating PE degradation, several shortcomings are not yet solved. For example, the adherence of MnP-HFB1 and AAO-HFB1 fusion proteins on the surface of PE are likely to be unordered instead of evenly distributed. Protein clusters of the same type of fusion protein are likely to be formed on the PE surface, preventing thorough substrate exchange for those protein molecules in the middle of the cluster. Also, the maintenance of optimum functioning ratio between MnP and AAO cannot be guaranteed due to the arbitrary distribution on the PE surface. Both of the two uncontrollable conditions will exert an negative impact on the efficacy of PE degradation.

To enable the binding of MnP and AAO on the surface of PE in a more organized manner, we adopted a recently reported CRISPR/Cas-based DNA anchoring system to our design. This system utilizes an deactivated CRISPR-associated protein 9 linked to a SpyCatcher domain (dCas9-SpyCatcher), which can not only form covalent bond with proteins fused with SpyTag domain, but also recognize and bind to complementary DNA sequences after incorporating a single-guide RNA (sgRNA) without cleavage activity.
Therefore, by specially designing a double-stranded DNA with multiple sequence segments complementary to different sgRNAs, the dCas9-SpyCatcher incorporated with different types of sgRNAs and functional proteins can be anchored to the double-stranded DNA in a predetermined number and proportion, which

In our project,

THE OVERALL DIAGRAM

Eventually, by combining the three PE-degrading elements with the two assembly systems, we are able to construct a new type of protein-nucleic-acid complex that possesses an enhanced ability for PE degradation.

A demonstrative graph is shown below (Fig. 5).

![Fig5](C:\Users\LyernotLeere\Desktop\iGEM wiki\Project\Design\Fig5.JPG)