Line 8: | Line 8: | ||
<body> | <body> | ||
− | <h1>Pruebas</h1> | + | <div style="display: flex; flex-direction: row; justify-content: flex-start; flex-wrap: nowrap;align-items: center;"> |
+ | <img style = "width: 70px; height: 70px;margin-right: 10px;" src="https://static.igem.org/mediawiki/2021/1/1c/T--TecCEM--logo.png" alt=""> | ||
+ | <h1 style="display: inline">Pruebas</h1> | ||
+ | </div> | ||
+ | |||
<div class="general"> | <div class="general"> | ||
<div class="left"> | <div class="left"> |
Revision as of 19:35, 10 August 2021
Pruebas
Left
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Dolorem modi quos consequatur at ex magnam earum facere dicta optio eligendi, nemo reiciendis nobis a ducimus, in autem fugiat fugit. Natus.
Right
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Dolorem modi quos consequatur at ex magnam earum facere dicta optio eligendi, nemo reiciendis nobis a ducimus, in autem fugiat fugit. Natus.
Como se fue demostrado por Ramirez en
[1]
Referencia
[1] Secretaría de Salud: Datos abiertos dirección general de epidemiología (2021), https://www. gob.mx/salud/documentos/datos-abiertos-152127.
(Senin, 2008)
Referencia
[2] Senin, P. (2008). Dynamic Time Warping Algorithm Review. Science, 2007(December), 1–23. http://129.173.35.31/~pf/Linguistique/Treillis/ReviewDTW.pdf.
Altan A et al. (2020)
Referencia
[3] Altan, A., & Karasu, S. (2020). Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique. Chaos, Solitons and Fractals, 140, 110071. https://doi.org/10.1016/j.chaos.2020.110071