Difference between revisions of "Team:CPU CHINA/Contribution"

 
(9 intermediate revisions by 3 users not shown)
Line 57: Line 57:
 
                     <path id="凹形遮罩"
 
                     <path id="凹形遮罩"
 
                         d="M1433.18,439.801C1433.18,439.801 1001.08,524.071 607.621,524.374C219.99,524.673 -217.935,439.801 -217.935,439.801L-217.935,944.811L1433.18,944.811L1433.18,439.801Z"
 
                         d="M1433.18,439.801C1433.18,439.801 1001.08,524.071 607.621,524.374C219.99,524.673 -217.935,439.801 -217.935,439.801L-217.935,944.811L1433.18,944.811L1433.18,439.801Z"
                         style="fill:#FAFAFA;" />
+
                         style="fill:#FFFFFF;" />
 
                 </g>
 
                 </g>
 
             </g>
 
             </g>
Line 93: Line 93:
 
                 </ul>
 
                 </ul>
 
             </nav>
 
             </nav>
             <img src="https://static.igem.org/mediawiki/2021/b/b2/T--CPU_CHINA--experimentalize.png" alt="">
+
             <img src="https://static.igem.org/mediawiki/2021/3/38/T--CPU_CHINA--flying.png" alt="">
 
         </div>
 
         </div>
 
         <div id="detail" class="clearfix">
 
         <div id="detail" class="clearfix">
Line 126: Line 126:
 
             <div class="section" id="section2">
 
             <div class="section" id="section2">
 
                 <h2 id='contribution-2'><span>CONTRIBUTION</span></h2>
 
                 <h2 id='contribution-2'><span>CONTRIBUTION</span></h2>
                 <p><strong>P<sub>AOX1</sub></strong></p>
+
                 <h4><strong>P<sub>AOX1</sub></strong></h4>
 
                 <p>&#x200B; The <strong>AOX1 promoter</strong>&#xFF08;P<sub>AOX1</sub>&#xFF09; region from <em>Pichia
 
                 <p>&#x200B; The <strong>AOX1 promoter</strong>&#xFF08;P<sub>AOX1</sub>&#xFF09; region from <em>Pichia
 
                         pastoris</em>.
 
                         pastoris</em>.
Line 140: Line 140:
 
                 <p>&#x200B; In order to test the function of P<sub>AOX1</sub>, we construct
 
                 <p>&#x200B; In order to test the function of P<sub>AOX1</sub>, we construct
 
                     &quot;<strong>P<sub>AOX1</sub>-&#x3B1;-factor-sfGFP-AOX1
 
                     &quot;<strong>P<sub>AOX1</sub>-&#x3B1;-factor-sfGFP-AOX1
                         terminator&quot;(<a href="http://parts.igem.org/Part:BBa_K383050">BBa_K383050</a>)</strong>. If
+
                         terminator&quot;(<a href="http://parts.igem.org/Part:BBa_K3853050">BBa_K3853050</a>)</strong>. If
 
                     P<sub>AOX1</sub> is functional, we
 
                     P<sub>AOX1</sub> is functional, we
 
                     can test the <strong>fluorescence intensity</strong> of sfGFP in <strong>supernatant
 
                     can test the <strong>fluorescence intensity</strong> of sfGFP in <strong>supernatant
 
                         samples</strong> obtained
 
                         samples</strong> obtained
                     from the culture of recombinant <em>P.pastoris</em> GS115 strain.</p>
+
                     from the culture of recombinant <em>P.pastoris</em> strain GS115.</p>
 
                 <p>&#x200B; Our results matched the general expected trend (Fig 1). After fermentation experiment in
 
                 <p>&#x200B; Our results matched the general expected trend (Fig 1). After fermentation experiment in
 
                     BMMY medium
 
                     BMMY medium
 
                     containing 0.5% methanol. The <strong>fluorescence intensity</strong> of the supernatant samples of
 
                     containing 0.5% methanol. The <strong>fluorescence intensity</strong> of the supernatant samples of
 
                     recombinant
 
                     recombinant
                     <em>P.pastoris</em> GS115 containing the sfGFP gene gradually <strong>increased over time</strong>,
+
                     <em>P.pastoris</em> strain GS115 containing the sfGFP gene gradually <strong>increased over time</strong>,
 
                     while that of
 
                     while that of
                     wild-type <em>P.pastoris</em> GS115 remained <strong>basically unchanged</strong>, which is in line
+
                     wild-type <em>P.pastoris</em> strain GS115 remained <strong>basically unchanged</strong>, which is in line
 
                     with
 
                     with
 
                     literature description<sup>[1]</sup>. SDS-PAGE results (Fig 2) also verified this phenomenon, almost
 
                     literature description<sup>[1]</sup>. SDS-PAGE results (Fig 2) also verified this phenomenon, almost
Line 161: Line 161:
 
                     continuously induce the expression of the protein. At the same time, by measuring <strong>the growth
 
                     continuously induce the expression of the protein. At the same time, by measuring <strong>the growth
 
                         curve</strong> of the strains (Fig 3), we observed that the OD<sub>600</sub> of the recombinant
 
                         curve</strong> of the strains (Fig 3), we observed that the OD<sub>600</sub> of the recombinant
                     <em>P.pastoris</em> GS115 containing the sfGFP gene was <strong>slightly lower</strong> than the
+
                     <em>P.pastoris</em> strain GS115 containing the sfGFP gene was <strong>slightly lower</strong> than the
 
                     wild-type
 
                     wild-type
                     <em>P.pastoris</em> GS115 , the phenomenon of which may be attributed to the expression of sfGFP.
+
                     <em>P.pastoris</em> strain GS115 , the phenomenon of which may be attributed to the expression of sfGFP.
 
                     The results
 
                     The results
 
                     showed that the expression of foreign genes would <strong>partly inhibit cell growth</strong>, but
 
                     showed that the expression of foreign genes would <strong>partly inhibit cell growth</strong>, but
Line 171: Line 171:
 
                 <img src="https://static.igem.org/mediawiki/2021/7/72/T--CPU_CHINA--Parts--Contributions--fig1.png"
 
                 <img src="https://static.igem.org/mediawiki/2021/7/72/T--CPU_CHINA--Parts--Contributions--fig1.png"
 
                         referrerpolicy="no-referrer">
 
                         referrerpolicy="no-referrer">
                 <p class="imgdescribe"><span>Fig. 1 Fluorescence intensity of supernatant samples obtained at
+
                 <p class="imgdescribe"><strong><span>Fig. 1 Fluorescence intensity of supernatant samples obtained at
 
                         different time points from
 
                         different time points from
 
                         the
 
                         the
                         culture of wild-type <em>P.pastoris</em> GS115 and corresponding recombinant <em>P.pastoris</em>
+
                         culture of wild-type <em>P.pastoris</em> strain GS115 and corresponding recombinant <em>P.pastoris</em> strain
 
                         GS115
 
                         GS115
 
                         containing
 
                         containing
                         sfGFP gene.</span></p>
+
                         sfGFP gene.</span></strong></p>
 
                 <img src="https://static.igem.org/mediawiki/2021/f/f2/T--CPU_CHINA--Parts--Contributions--fig2.png"
 
                 <img src="https://static.igem.org/mediawiki/2021/f/f2/T--CPU_CHINA--Parts--Contributions--fig2.png"
 
                         referrerpolicy="no-referrer"></p>
 
                         referrerpolicy="no-referrer"></p>
                 <p class="imgdescribe"><span>Fig. 2 SDS-PAGE gel analysis of supernatant samples of the recombinant
+
                 <p class="imgdescribe"><strong><span>Fig. 2 SDS-PAGE gel analysis of supernatant samples of the recombinant
                         <em>P.pastoris</em> GS115
+
                         <em>P.pastoris</em> strain GS115
                         containing the sfGFP gene during the fermentation</span></p>
+
                         containing the sfGFP gene during the fermentation</span></strong></p>
 
                 <p>&nbsp;</p>
 
                 <p>&nbsp;</p>
 
                 <img src="https://static.igem.org/mediawiki/2021/4/44/T--CPU_CHINA--Parts--Contributions--fig3.png"
 
                 <img src="https://static.igem.org/mediawiki/2021/4/44/T--CPU_CHINA--Parts--Contributions--fig3.png"
 
                         referrerpolicy="no-referrer">
 
                         referrerpolicy="no-referrer">
                 <p class="imgdescribe"><span>Fig. 3 OD</span><sub><span>600</span></sub><span> absorbance obtained at
+
                 <p class="imgdescribe"><strong><span>Fig. 3 OD</span><sub><span>600</span></sub><span> absorbance obtained at
 
                         different time
 
                         different time
 
                         points
 
                         points
                         from the culture of wild-type <em>P.pastoris</em> GS115 and recombinant <em>P.pastoris</em>
+
                         from the culture of wild-type <em>P.pastoris</em> strain GS115 and recombinant <em>P.pastoris</em> strain
 
                         GS115 that
 
                         GS115 that
 
                         contains
 
                         contains
                         sfGFP gene</span><span>.</span></p>
+
                         sfGFP gene</span><span>.</span></strong></p>
                 <p><strong><span>Reference</span></strong></p>
+
                 <h4><strong><span>Reference</span></strong></h4>
 
                 <p class="reference"><span>[1] Xuan, Y. </span><em><span>et al.</span></em><span> An upstream activation
 
                 <p class="reference"><span>[1] Xuan, Y. </span><em><span>et al.</span></em><span> An upstream activation
 
                         sequence controls
 
                         sequence controls
 
                         the
 
                         the
 
                         expression of AOX1 gene in Pichia pastoris. </span><em><span>FEMS yeast
 
                         expression of AOX1 gene in Pichia pastoris. </span><em><span>FEMS yeast
                             research</span></em><span>,
+
                             research</span></em> <span><strong>9</strong>,
 
                         1271-1282, doi:10.1111/j.1567-1364.2009.00571.x (2009).</span></p>
 
                         1271-1282, doi:10.1111/j.1567-1364.2009.00571.x (2009).</span></p>
 
             </div>
 
             </div>
Line 218: Line 218:
 
                 </li>
 
                 </li>
 
                 <li>
 
                 <li>
                     <a href="mailto:cpu_china2021@163.com">
+
                     <a href="mailto:cpuchina2021@163.com">
                         <img src="https://static.igem.org/mediawiki/2021/9/92/T--CPU_CHINA--emailLogo.png" alt="">
+
                         <img src="https://static.igem.org/mediawiki/2021/9/92/T--CPU_CHINA--emailLogo.png" style="margin-bottom: 2vw;" alt="">
                         <p>cpu_china2021@163.com</p>
+
                         <p>cpuchina2021@163.com</p>
 
                     </a>
 
                     </a>
 
                 </li>
 
                 </li>
 
                 <li>
 
                 <li>
                     <a href="">
+
                     <a href="https://github.com/cpu-igem/cpu-igem2021">
 
                         <img src="https://static.igem.org/mediawiki/2021/9/98/T--CPU_CHINA--GithubLogo.png" alt="">
 
                         <img src="https://static.igem.org/mediawiki/2021/9/98/T--CPU_CHINA--GithubLogo.png" alt="">
 
                         <p>Like our Website?</p>
 
                         <p>Like our Website?</p>
Line 249: Line 249:
  
 
</html>
 
</html>
 +
<span><span>

Latest revision as of 04:04, 22 October 2021

OVERVIEW

​ Hoping to make a useful contribution for future iGEM teams, we completed the experimental characterization of an existing part Ethanol regulated promoter AOX1(BBa_I764001) and provided new data for it.

Biobricks codes in the lab Quantitative Characterization
BBa_I764001 promoter fluorescence intensity

The details are in the part registrations page.

CONTRIBUTION

PAOX1

​ The AOX1 promoter(PAOX1) region from Pichia pastoris. It was first registered in 2007 and used as a strong promoter in Pichia pastoris. A complex pathway for the metabolism of methanol exists within some species of the Komagataella genus. Alcohol oxidase (AO) appears to be the first and major enzyme produced in this metabolic pathway. Transcribed from its gene (AOX1), AO converts methanol to formaldehyde within the yeast's peroxisome.

​ In order to test the function of PAOX1, we construct "PAOX1-α-factor-sfGFP-AOX1 terminator"(BBa_K3853050). If PAOX1 is functional, we can test the fluorescence intensity of sfGFP in supernatant samples obtained from the culture of recombinant P.pastoris strain GS115.

​ Our results matched the general expected trend (Fig 1). After fermentation experiment in BMMY medium containing 0.5% methanol. The fluorescence intensity of the supernatant samples of recombinant P.pastoris strain GS115 containing the sfGFP gene gradually increased over time, while that of wild-type P.pastoris strain GS115 remained basically unchanged, which is in line with literature description[1]. SDS-PAGE results (Fig 2) also verified this phenomenon, almost no protein band before 36 h could be seen. The corresponding protein band began to appear at 36 h, and the clarity and width of the protein band gradually increased over time, which means the AOX1 promoter can continuously induce the expression of the protein. At the same time, by measuring the growth curve of the strains (Fig 3), we observed that the OD600 of the recombinant P.pastoris strain GS115 containing the sfGFP gene was slightly lower than the wild-type P.pastoris strain GS115 , the phenomenon of which may be attributed to the expression of sfGFP. The results showed that the expression of foreign genes would partly inhibit cell growth, but not in an intensive manner.

Fig. 1 Fluorescence intensity of supernatant samples obtained at different time points from the culture of wild-type P.pastoris strain GS115 and corresponding recombinant P.pastoris strain GS115 containing sfGFP gene.

Fig. 2 SDS-PAGE gel analysis of supernatant samples of the recombinant P.pastoris strain GS115 containing the sfGFP gene during the fermentation

 

Fig. 3 OD600 absorbance obtained at different time points from the culture of wild-type P.pastoris strain GS115 and recombinant P.pastoris strain GS115 that contains sfGFP gene.

Reference

[1] Xuan, Y. et al. An upstream activation sequence controls the expression of AOX1 gene in Pichia pastoris. FEMS yeast research 9, 1271-1282, doi:10.1111/j.1567-1364.2009.00571.x (2009).