Difference between revisions of "Team:CPU CHINA/Design"

(Created page with "<html lang="en"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-sc...")
 
 
(13 intermediate revisions by 4 users not shown)
Line 15: Line 15:
 
     <style>
 
     <style>
 
         #header #title {
 
         #header #title {
             left: 30%;
+
             left: 35%;
 
         }
 
         }
  
Line 89: Line 89:
 
                     </li>
 
                     </li>
 
                     <li class="num">
 
                     <li class="num">
                         <a href="#section2" title="PE DEGRADING ELEMENTS">PE DEGRADING ELEMENTS</a>
+
                         <a href="#section2" title="TO DETERMINE A CENTRAL PE DEGRADATION ELEMENT">TO DETERMINE A CENTRAL
 +
                            PE DEGRADATION ELEMENT</a>
 
                     </li>
 
                     </li>
 
                     <li class="num">
 
                     <li class="num">
                         <a href="#section3" title="ASSEMBLY SYSTEM">ASSEMBLY SYSTEM</a>
+
                         <a href="#section3" title="TO ENHANCE THE PE-DEGRADING EFFICIENCY OF MnP">TO ENHANCE THE
 +
                            PE-DEGRADING EFFICIENCY OF MnP</a>
 
                     </li>
 
                     </li>
 
                     <li class="num">
 
                     <li class="num">
                         <a href="#section4" title="HOW DO OUR COMPLEX REALIZES ITS OPTIMAL FUNCTION?">HOW DO OUR COMPLEX
+
                         <a href="#section4" title="TO CONVERGE THE ADVANTAGES OF THREE FUNCTIONAL PROTEINS">TO CONVERGE
                             REALIZES ITS OPTIMAL FUNCTION?</a>
+
                             THE
 +
                            ADVANTAGES OF THREE FUNCTIONAL PROTEINS</a>
 
                     </li>
 
                     </li>
 
                     <li class="num">
 
                     <li class="num">
                         <a href="#section5" title="ELEMENT DESIGN">ELEMENT DESIGN</a>
+
                         <a href="#section5" title="THE OVERALL DIAGRAM">THE OVERALL DIAGRAM</a>
                    </li>
+
                    <li class="num">
+
                        <a href="#section6" title="EXPRESSION SYSTEM">EXPRESSION SYSTEM</a>
+
                    </li>
+
                    <li class="num">
+
                        <a href="#section7" title="REFERENCES">REFERENCES</a>
+
 
                     </li>
 
                     </li>
 
                 </ul>
 
                 </ul>
Line 112: Line 109:
 
         </div>
 
         </div>
 
         <div id="detail" class="clearfix">
 
         <div id="detail" class="clearfix">
 +
 +
 
             <div class="section" id="section1">
 
             <div class="section" id="section1">
                 <h2 class="mume-header" id="overview">OVERVIEW</h2>
+
                 <h2 id='overview'><span>OVERVIEW</span></h2>
 
+
                 <p><span>Currently, the major disposal methods for PE are
                 <p><strong>Plastic pollution</strong> has long been an old yet tricky problem that <strong>remains
+
                     </span><strong><span>incineration</span></strong><span> and
                        poorly tackled</strong>. However, traditional plastic materials, <strong>exemplified by
+
                    </span><strong><span>landfill</span></strong><span>, both of which are not the optimal way of
                        polyethylene (PE)</strong>, are still widely applied in different aspects of human activities in
+
                        disposing
                     large quantities, inevitably causing severe environmental <strong>contamination</strong>, as well as
+
                        PE, for these two methods have led to </span><strong><span>negative environmental
                    posting a great <strong>threat</strong> to species diversity. Therefore, it is of <strong>vital
+
                            consequences</span></strong><span> not limited to the </span><strong><span>release of
                        urgency</strong> to search for <strong>green and efficient</strong> methods to better
+
                             hazardous
                    <strong>degrade</strong> these kinds of plastics.</p>
+
                             substances</span></strong><span>, and the </span><strong><span>occupancy of enormous land
                <p>As we were in search of ideal management method of disposed polyethylene waste, three functional
+
                            resources</span></strong><span>.</span></p>
                    proteins, including two enzymes, were selected to reach our goal:</p>
+
                 <p><span>Therefore, we decided to take advantage of the power of nature, seeking
                <ul>
+
                     </span><strong><span>specific agents</span></strong><span> that possess the unique
                    <li>
+
                     </span><strong><span>ability of degrading PE</span></strong><span>, and further
                        <p><strong>Manganese Peroxidase (MnP)</strong> : the key PE-degrading element.</p>
+
                     </span><strong><span>modify</span></strong><span> and
                        <p>It is derived from fungi and utilizes <strong>hydrogen peroxide</strong> to produce
+
                     </span><strong><span>optimize</span></strong><span> it to realize green and efficient degradation of
                             high-redox-potential <strong>trivalent manganese ions</strong> that can
+
                         PE.</span></p>
                             <strong>oxidize</strong> a considerable variety of substances, including
+
                            <strong>PE</strong>.</p>
+
                    </li>
+
                    <li>
+
                        <p><strong>Aryl Alcohol Oxidase (AAO)</strong>: assists the function of MnP.</p>
+
                        <p>It is a type of hydrogen-peroxide-producing enzyme for <strong>activating fungal
+
                                peroxidases</strong> in the natural lignin decomposition process.</p>
+
                    </li>
+
                    <li>
+
                        <p><strong>Hydrophobin-1 (HFB1)</strong>: enhances substrate adherence.</p>
+
                        <p>A type of surface-activating protein. It is applied aiming to decrease the hydrophobicity of
+
                            <strong>PE</strong> surface, thereby increasing the degradation efficacy of our enzymes.</p>
+
                    </li>
+
                </ul>
+
                 <p>To further <strong>converge</strong> the <strong>advantages</strong> provided by the three
+
                    PE-degrading elements for improved performance, we began to consider the possibility of
+
                     <strong>applying</strong> an <strong>integrated assembly</strong> system, consisting of the
+
                    following two subsystems:</p>
+
                <ul>
+
                     <li>
+
                        <p><strong>SpyCatcher/SpyTag system</strong></p>
+
                        <p>It enables random proteins fused with reciprocal Spy domains to be linked together through
+
                            the formation of a covalent bond.</p>
+
                     </li>
+
                    <li>
+
                        <p><strong>CRISPR/dCas9 system</strong></p>
+
                        <p>It promotes a programmable, specific binding of single strand RNA-guided deactivated CRISPR
+
                            associated protein 9 (sgRNA:dCas9) towards a designed double-stranded DNA with variable
+
                            interval, proportion and order.</p>
+
                     </li>
+
                </ul>
+
                <p>Eventually, by combining the three PE-degrading elements with the two assembly systems, we are able
+
                    to construct a new type of protein-nucleic-acid complex that possesses an enhanced ability for PE
+
                    degradation.</p>
+
                <p>A demonstrative graph is shown below (Fig. 1).</p>
+
                <p><img src="C:%5CUsers%5CLyernotLeere%5CDesktop%5CCPU_CHINA%5CTypora%E6%96%87%E7%A8%BF%5CDesign%E9%83%A8%E5%88%86%E5%88%9D%E7%A8%BF%5Cfigures%5CT--CPU_CHINA--Design-1.png"
+
                         alt="T--CPU_CHINA--Design-1"></p>
+
                <p><strong>Fig.1 Graphical abstract of our PE-degrading complex.</strong></p>
+
                <p>Further explanations and detailed information regarding elements, systems and chassis applied in our
+
                    design can be found in the following contents.</p>
+
 
             </div>
 
             </div>
 
             <div class="section" id="section2">
 
             <div class="section" id="section2">
                 <h2 class="mume-header" id="pe-degrading-elements">PE DEGRADING ELEMENTS</h2>
+
                 <h2 id='to-determine-a-central-pe-degradation-element'><span>TO DETERMINE A CENTRAL PE DEGRADATION
 
+
                        ELEMENT</span></h2>
                 <p>As is briefly described earlier, each PE-degrading element plays a different but irreplaceable role
+
                <h3 id='agent-selection'><span>AGENT SELECTION</span></h3>
                    in the whole integrated system. Their detailed characteristics and division of labor are displayed
+
                 <p><span>During our preliminary stage of literature research, strains of microorganism as well as
                    below.</p>
+
                        enzymes
                <h3 class="mume-header" id="manganese-peroxidase-mnp">MANGANESE PEROXIDASE (MnP)</h3>
+
                        that both had the </span><strong><span>potential of PE degradation</span></strong><span> were
 
+
                        obtained by us. An either-or decision must be made upon the selection of the PE-degrading agent.
                 <p>Manganese Peroxidase (MnP) is a highly glycosylated lignin peroxidase with <strong>heme</strong>. It
+
                        Without much hesitation, we selected </span><strong><span>enzymes</span></strong><span> instead
                    can <strong>oxidize Mn<sup>2+</sup> to Mn<sup>3+</sup></strong>, which can be chelated by ligands
+
                        of
                    like oxalic acid, forming the <strong>Mn<sup>3+</sup>-ligand chelate compound</strong> that can
+
                        strains due to a more definite origin and characteristics provided by online databases. After
                    diffuse outside the enzyme for further degrading of lignin or other refractory chemicals.</p>
+
                        screening through potential candidates, the very </span><strong><span>manganese
                 <p>![Fig2](C:\Users\LyernotLeere\Desktop\iGEM wiki\Project\Design\Fig2.png)</p>
+
                            peroxidase</span></strong><span> (MnP) was selected as our </span><strong><span>central
                 <p><strong>Fig. 2 The catalytic cycle of MnP.</strong></p>
+
                            functional element</span></strong><span>.</span></p>
                 <p>Moreover, it has been reported that <strong>MnP has a significant degradation efficiency on PE
+
                 <p><span>It is a highly glycosylated lignin peroxidase with
                        film</strong>. As reported before, the weight-average molecular weight (Mw) of PE was halved by
+
                        heme</span><sup><span>[1,2]</span></sup><span>
                    MnP after being treated for two days. Thus, MnP was chosen by us as the key element for PE
+
                        that can </span><strong><span>oxidize Mn</span><sup><span>2+</span></sup><span> to
                    degradation.</p>
+
                            Mn</span><sup><span>3+</span></sup></strong><span>, the latter can be
                 <p>In our complex, MnP is assisted by two other elements. This enables MnP to gain
+
                    </span><strong><span>chelated</span></strong><span> by ligands like </span><strong><span>oxalic
                     H<sub>2</sub>O<sub>2</sub> in a stable and consistent rate, as well as to get closer to PE. Under
+
                            acid</span></strong><span>, forming the
                    such coordination, MnP could achieve a better function and accelerate PE degradation.</p>
+
                    </span><strong><span>Mn</span><sup><span>3+</span></sup><span>-ligand chelate
                <h3 class="mume-header" id="aryl-alcohol-oxidase-aao"><strong>ARYL ALCOHOL OXIDASE (AAO)</strong></h3>
+
                            compound</span></strong><span> that can </span><strong><span>diffuse</span></strong><span>
 
+
                        outside the enzyme for further degradation of lignin or other refractory
                 <p>Aryl alcohol oxidase, a member of the glucose-methanol-choline oxidase/dehydrogenase (GMC)
+
                        chemicals</span><sup><span>[3]</span></sup><span>. </span></p>
                    superfamily, is an enzyme containing <strong>flavin-adenine-dinucleotide (FAD)</strong> that
+
                 <p><img src="https://static.igem.org/mediawiki/2021/5/5e/T--CPU_CHINA--K3853008_Fig1.png"
                    catalyzes the oxidation of aromatic and aliphatic allylic primary alcohols to the corresponding
+
                        referrerpolicy="no-referrer" alt="T--CPU_CHINA--Design-1"></p>
                    aldehydes while <strong>reducing molecular oxygen to H<sub>2</sub>O<sub>2</sub></strong> (the
+
                 <p class="imgdescribe"><strong><span>Fig. 1 The catalytic cycle of MnP.</span></strong></p>
                    corresponding mechanism is shown on Fig. 3).</p>
+
                 <p><span>It has been reported that </span><strong><span>MnP has a significant degradation efficiency on
                 <p>![Fig3-Transparent](C:\Users\LyernotLeere\Desktop\iGEM wiki\Project\Design\Fig3-Transparent.png)</p>
+
                            PE
                 <p><strong>Fig. 3 The mechanism of AAO reducing molecular oxygen to H<sub>2</sub>O<sub>2</sub> by
+
                            film</span></strong><span>. As reported before, the weight-average molecular weight (Mw) of
                        oxidizing 4-methoxybenzyl alcohol.</strong></p>
+
                        PE
                 <p>In our project, we plan to use AAO as a H<sub>2</sub>O<sub>2</sub>-producing enzyme to assist MnP to
+
                        was halved by MnP treatment for two days, showing its </span><strong><span>remarkable
                     play its role.</p>
+
                            degradation
                <h3 class="mume-header" id="hydrophobin-1-hfb1"><strong>HYDROPHOBIN-1 (HFB1)</strong></h3>
+
                            efficacy</span></strong><sup><span>[4]</span></sup><span>. Thus, MnP was chosen by us as the
 
+
                        key
                <p>Hydrophobin (HFB) is a type of <strong>biosurfactant</strong> rich in hydrophobic amino acids,
+
                        element for PE degradation.</span></p>
                    possessing <strong>surface activity</strong>. By <strong>self-assembling</strong> at
+
                 <h3 id='using-aao-as-a-better-approach-to-provide-substrate-for-mnp'><span>USING AAO AS A BETTER
                    hydrophilic-hydrophobic interfaces autonomously, HFBs can <strong>enhance the affinity</strong>
+
                        APPROACH TO
                     between hydrophilic proteins and hydrophobic materials, <strong>such as PE</strong>, thus
+
                        PROVIDE SUBSTRATE FOR MnP</span></h3>
                    facilitating its contact with aqueous environment. <strong>Hydrophobin-1</strong> (HFB1) is a kind
+
                <p><span>It is shown on the catalytic cycle of MnP above that
                    of class &#x2161; HFBs derived from <em>Trichoderma reesei</em>. Compared with other members of
+
                     </span><strong><span>H</span><sub><span>2</span></sub><span>O</span><sub><span>2</span></sub></strong><span>
                    HFBs, HFB1 has <strong>better stability</strong> and <strong>higher surface activity</strong>, which
+
                        is required as its </span><strong><span>essential substrate</span></strong><span> for activating
                    means it can maintain its function of adherence on hydrophobic substances <strong>more
+
                        the
                         firmly</strong> for a <strong>longer period of time</strong>.</p>
+
                        enzymatic reaction. Yet an </span><strong><span>abnormally high</span></strong><span>
                <p>Therefore, in our project, HFB1 is used as a biosurfactant to produce consistent surface activity on
+
                        concentration
                     PE, therefore <strong>adhering</strong> the whole <strong>molecular machine</strong> on the PE
+
                        of H</span><sub><span>2</span></sub><span>O</span><sub><span>2</span></sub><span> could also
                     surface, which will eventually <strong>improve</strong> the degradation <strong>efficacy</strong> of
+
                    </span><strong><span>inhibit</span></strong><span>, even
                    our protein-nucleic acid complex.</p>
+
                    </span><strong><span>deactivate</span></strong><span> the enzyme, which might happen when
 +
                        H</span><sub><span>2</span></sub><span>O</span><sub><span>2</span></sub><span> was added into
 +
                        the
 +
                        system manually and periodically. </span></p>
 +
                 <p><span>Therefore, a more in-depth investigation was carried out to seek a solution. As a result, we
 +
                        discovered a specific type of enzyme, namely </span><strong><span>aryl alcohol oxidase
 +
                            (AAO)</span></strong><span>. It is an enzyme containing flavin-adenine-dinucleotide
 +
                        (FAD)</span><sup><span>[5]</span></sup><span> that catalyzes the oxidation of aromatic and
 +
                        aliphatic
 +
                        allylic primary alcohols (which are far less oxidative when compared to
 +
                        Mn</span><sup><span>3+</span></sup><span> and
 +
                        H</span><sub><span>2</span></sub><span>O</span><sub><span>2</span></sub><span>) to the
 +
                        corresponding
 +
                        aldehydes while </span><strong><span>reducing molecular oxygen to
 +
                            H</span><sub><span>2</span></sub><span>O</span><sub><span>2</span></sub></strong><sup><span>[6]</span></sup><span>.</span>
 +
                </p>
 +
                 <p><img src="https://static.igem.org/mediawiki/2021/e/e7/T--CPU_CHINA--BBa_K3853009_fig_1.png"
 +
                        referrerpolicy="no-referrer" alt="T--CPU_CHINA--Design-2"></p>
 +
                 <p class="imgdescribe"><strong><span>Fig. 2 The mechanism of AAO reducing molecular oxygen to
 +
                            H</span><sub><span>2</span></sub><span>O</span><sub><span>2</span></sub><span> by oxidizing
 +
                            4-methoxybenzyl alcohol.</span></strong><sup><span>[7]</span></sup></p>
 +
                 <p><span>We learned from the literature</span><sup><span>[8]</span></sup><span> that AAO is able to
 +
                        produce
 +
                        H</span><sub><span>2</span></sub><span>O</span><sub><span>2</span></sub><span> in a
 +
                     </span><strong><span>low but steady</span></strong><span> rate. Therefore, the
 +
                    </span><strong><span>inhibition</span></strong><span> of MnP </span><strong><span>due
 +
                            to</span></strong><span> </span><strong><span>an</span></strong><span>
 +
                     </span><strong><span>excess of
 +
                            H</span><sub><span>2</span></sub><span>O</span><sub><span>2</span></sub></strong><span>
 +
                        concentration can be </span><strong><span>effectively prevented</span></strong><span> when
 +
                        applying
 +
                        AAO as the source of
 +
                        H</span><sub><span>2</span></sub><span>O</span><sub><span>2</span></sub><span>.
 +
                        This would allow MnP to </span><strong><span>catalyze</span></strong><span> the PE-degrading
 +
                         reaction </span><strong><span>over a longer period of time</span></strong><span>, realizing a
 +
                        more
 +
                     </span><strong><span>complete degradation</span></strong><span> of PE. In addition, since the two
 +
                        enzymes work in tandem, the </span><strong><span>cascade reaction</span></strong><span> mediated
 +
                        by
 +
                        the two can only be initiated when substrates of AAO is introduced to the system. Therefore, we
 +
                        can
 +
                     </span><strong><span>achieve precise control</span></strong><span> to the onset and termination of
 +
                        the
 +
                        reactions via adding specific amount of substrates to the system in a given time, preventing
 +
                        uncontrollable situations from happening. As a result, we decided to select AAO as the assistant
 +
                        of
 +
                        MnP.</span></p>
 +
                <p><img src="https://static.igem.org/mediawiki/2021/a/a4/T--CPU_CHINA--Design-3.jpg"
 +
                        referrerpolicy="no-referrer" alt="T--CPU_CHINA--Design-3"></p>
 +
                <p class="imgdescribe"><strong><span>Fig. 3 The synergistic PE degradation effect of MnP and
 +
                            AAO.</span></strong></p>
 
             </div>
 
             </div>
 
             <div class="section" id="section3">
 
             <div class="section" id="section3">
                 <h2 class="mume-header" id="assembly-system">ASSEMBLY SYSTEM</h2>
+
                 <h2 id='to-enhance-the-pe-degrading-efficiency-of-mnp'><span>TO ENHANCE THE PE-DEGRADING EFFICIENCY OF
 
+
                        MnP</span></h2>
                 <p>In order to maximize the advantage of the three elements, two kinds of assembly systems were selected
+
                <h3 id='optimize-the-degradation-competence-of-mnp-by-directed-evolution'><span>OPTIMIZE THE DEGRADATION
                     and cooperatively introduced into our system to integrate and align the enzymes and biosurfactant on
+
                        COMPETENCE OF MnP BY DIRECTED EVOLUTION</span></h3>
                     one double-stranded DNA. In this way, the whole complex can be successfully constructed.</p>
+
                <p><span>As our key PE-degrading enzyme, manganese peroxidase (MnP) undertakes a
                 <h3 class="mume-header" id="spycatcherspytag-connect-system"><strong>SPYCATCHER/SPYTAG CONNECT
+
                    </span><strong><span>fundamental</span></strong><span> role of inflicting oxidation to PE by
                        SYSTEM</strong></h3>
+
                        continuously producing Mn</span><sup><span>3+</span></sup><span> ions. Therefore,
 
+
                    </span><strong><span>enhancing</span></strong><span> the degradation
                 <p>SpyCatcher/SpyTag system is a convenient technique used for <strong>protein ligation</strong>. It
+
                    </span><strong><span>efficiency</span></strong><span> of MnP is beneficial to reach
                     contains two elements:</p>
+
                    </span><strong><span>a more complete destruction</span></strong><span> of PE films.</span></p>
 +
                 <p><span>In theory, there are </span><strong><span>two approaches</span></strong><span> of reinforce the
 +
                        degradation efficacy of MnP, whether by </span><strong><span>increasing the
 +
                            activity</span></strong><span> of MnP to realize a stronger oxidative capacity, or by
 +
                    </span><strong><span>improving the stability</span></strong><span> of MnP to prolong its duration of
 +
                        effect. However, since the substrate and catalysate of MnP are both highly-oxidative, simply
 +
                        increasing its activity without restrictions is bound to cause irreversible harm not only to the
 +
                        MnP
 +
                        itself, but also to other affiliated elements in our design, AAO for instance. Therefore, we
 +
                        decided
 +
                        to </span><strong><span>improve the stability</span></strong><span> of MnP by proposing a
 +
                    </span><strong><span>semi-rational directed evolution
 +
                            strategy</span></strong><sup><span>[9]</span></sup><span>towards it, with the hope to
 +
                        increase
 +
                        its tolerance of high temperature, acidic pH, as well as different types of organic solvents,
 +
                        all of
 +
                        which are common inhibitory physiochemical properties that may severely impact the activity of
 +
                        MnP.</span></p>
 +
                <p><span>For the results of our directed-evolution attempt, see
 +
                    </span><strong><em><span><a href="https://2021.igem.org/Team:CPU_CHINA/Improve">Improvement</a></span></em><span> </span></strong></p>
 +
                <h3 id='facilitate-the-surface-adherence-of-mnp-by-introducing-hfb1'><span>FACILITATE THE SURFACE
 +
                        ADHERENCE
 +
                        OF MnP BY INTRODUCING HFB1</span></h3>
 +
                <p><span>Back to the stage where we were searching for agents with PE degradation efficacy, we noticed
 +
                        that
 +
                        certain bacterial or fungal strains capable of degrading PE could produce
 +
                     </span><strong><span>biosurfactant</span></strong><span> to assist their adherence and colonization
 +
                        on
 +
                        the hydrophobic surface of plastics, so that they could degrade PE in a faster pace. This
 +
                        inspired
 +
                        us to introduce biosurfactant into our design, aiming to </span><strong><span>increase the
 +
                            hydrophilicity</span></strong><span> of the surface of PE. </span></p>
 +
                <p><span>As a result, our focus was concentrated on hydrophobin-1 (HFB1), a kind of class Ⅱ HFBs derived
 +
                        from </span><em><span>Trichoderma reesei</span></em><sup><span>[38]</span></sup><span>. It is
 +
                        rich
 +
                        in hydrophobic amino acids, endowing its surface activity. By
 +
                     </span><strong><span>self-assembling</span></strong><span> at hydrophilic-hydrophobic interfaces
 +
                        autonomously, HFB1 can </span><strong><span>enhance the affinity</span></strong><span> between
 +
                        hydrophilic proteins and hydrophobic
 +
                        materials</span><sup><span>[11]</span></sup><strong><span>such
 +
                            as PE</span></strong><span>, thus facilitating its contact with aqueous environment, thereby
 +
                        facilitating MnP to degrade PE. </span></p>
 +
                <p><span>What&#39;s more, compared with other members of HFBs, HFB1 has </span><strong><span>better
 +
                            stability</span></strong><span> and </span><strong><span>higher surface
 +
                            activity</span></strong><span>, which means it can maintain its function of adherence on
 +
                        hydrophobic substances </span><strong><span>more firmly</span></strong><span> for a
 +
                    </span><strong><span>longer period of time</span></strong><span>.</span></p>
 +
                 <p><span>Therefore, in our project, HFB1 is selected and used as a biosurfactant to produce consistent
 +
                        surface activity on PE, thereby promoting the adherence of MnP on PE surface, which helps to
 +
                    </span><strong><span>improve</span></strong><span> the degradation
 +
                    </span><strong><span>efficacy</span></strong><span> of this enzyme.</span></p>
 +
            </div>
 +
            <div class="section" id="section4">
 +
                <h2 id='to-converge-the-advantages-of-three-functional-proteins'><span>TO CONVERGE THE ADVANTAGES OF
 +
                        THREE
 +
                        FUNCTIONAL PROTEINS</span></h2>
 +
                <p><span>Now that the three functional proteins were selected, all of which possesses individual
 +
                        functions
 +
                        that could contribute to the degradation of PE, instead of directly applying all of them by
 +
                        simply
 +
                        adding them into the system separately, we began to consider the possibility of
 +
                    </span><strong><span>combining</span></strong><span> these discrete parts into a
 +
                    </span><strong><span>composite entity</span></strong><span>, enabling the production of a strong
 +
                        synergistic effect which may lead to an significant improvement on efficacy. </span></p>
 +
                <h3 id='getting-closer-to-the-surface-of-pe'><span>GETTING CLOSER TO THE SURFACE OF PE</span></h3>
 +
                 <p><span>The first idea that struck us was that we could minimize the spatial distance between MnP and
 +
                        PE by
 +
                    </span><strong><span>fusing HFB1</span></strong><span> on the enzyme. Similar strategy could also be
 +
                        applied on AAO to generate fusion protein as well. In this way, our functional enzymes can
 +
                        simultaneously be anchored to the PE surface with the aid of fused HFB1, so that the
 +
                    </span><strong><span>diffusion distance</span></strong><span> of
 +
                        Mn</span><sup><span>3+</span></sup><span>-ligand chelate compound towards PE could be
 +
                    </span><strong><span>significantly lessened</span></strong><span>, enabling a more efficient
 +
                        degradation
 +
                        outcome. Meanwhile, the
 +
                        H</span><sub><span>2</span></sub><span>O</span><sub><span>2</span></sub><span> generated by AAO
 +
                        can
 +
                        also become more accessible to MnP when the two enzymes are </span><strong><span>closely
 +
                            anchored</span></strong><span> to the surface of PE.</span></p>
 +
                <p><span>Therefore, we delved into literatures and previous iGEM projects to look for ideal solutions.
 +
                        It
 +
                        turned out that there existed a versatile protein ligation system, i.e.
 +
                     </span><strong><span>SpyCatcher/SpyTag system</span></strong><sup><span>[12,13]</span></sup><span>,
 +
                        that
 +
                        has been widely adopted by many laboratories and iGEM teams for construction of multi-domain
 +
                        protein. This system contains </span><strong><span>two essential elements</span></strong><span>:
 +
                    </span></p>
 
                 <ul>
 
                 <ul>
                     <li><strong>SpyCatcher:</strong> a modified immunoglobulin-like domain CnaB2 from a
+
                     <li><strong><span>SpyCatcher:</span></strong><span> a modified immunoglobulin-like domain CnaB2 from
                         <em>Streptococcus pyogenes</em> surface protein</li>
+
                            a
                     <li><strong>SpyTag:</strong> a cognate 13-amino-acid peptide</li>
+
                         </span><em><span>Streptococcus pyogenes</span></em><span> surface protein</span></li>
 +
                     <li><strong><span>SpyTag:</span></strong><span> a cognate 13-amino-acid peptide</span></li>
 
                 </ul>
 
                 </ul>
                 <p>The two domains can <strong>autonomously form a covalent isopeptide bond</strong> between each other,
+
                 <p><img src="https://static.igem.org/mediawiki/2021/b/b6/T--CPU_CHINA--Design-4.1.png"
                    thereby linking the two portions together. Moreover, scientists commonly apply <strong>elastin-like
+
                        referrerpolicy="no-referrer" alt="T--CPU_CHINA--Design-4"></p>
                        protein</strong> (ELP) or <strong>serine/glycine link</strong> (Ser/Gly link) as
+
                <p class="imgdescribe"><strong><span>Fig. 4 The isopepide-forming mechanism between the two Spy
                    <strong>bridges</strong> between SpyCatcher/SpyTag and other functional proteins. By linking the Spy
+
                            domains.</span></strong><span>
                    domains on the N-terminal or C-terminal of the target protein, its structure and function are
+
                    </span><em><span>Glu77 &amp; Lys31 are the residues on SpyCatcher; Asp117 is the residue on
                    generally unaffected, while the formation of isopeptide bond between SpyCatcher and SpyTag remains
+
                            SpyTag.</span></em></p>
                    effective and efficient. In this way, both the enzyme and the SpyCatcher/SpyTag system can function
+
                <p><span>The two domains can </span><strong><span>autonomously form a covalent isopeptide
                    orthogonally.<br>
+
                            bond</span></strong><span> between each other, thereby linking the two portions together. By
                    <span class="katex-display"><span class="katex"><span class="katex-mathml"><math
+
                        linking the Spy domains on the N-terminal or C-terminal of the target protein with
                                    xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
                    </span><strong><span>elastin-like protein</span></strong><span> (ELP) or
                                    <semantics>
+
                    </span><strong><span>serine/glycine link</span></strong><span> (Ser/Gly
                                        <mrow>
+
                        link)</span><sup><span>[14]</span></sup><span>, its structure and function are generally
                                            <mi>A</mi>
+
                    </span><strong><span>unaffected</span></strong><span>, while the formation of isopeptide bond
                                            <mo>+</mo>
+
                        between
                                            <mi>l</mi>
+
                        SpyCatcher and SpyTag remains effective and efficient. By adopting this system, MnP and AAO that
                                            <mi>i</mi>
+
                        was
                                            <mi>n</mi>
+
                        fused with HFB1 are able to stick to surface of PE, realizing a better spatial concentration on
                                            <mi>k</mi>
+
                        it.</span></p>
                                            <mi>e</mi>
+
                <h3 id='getting-closer-with-each-other'><span>GETTING CLOSER WITH EACH OTHER</span></h3>
                                            <mi>r</mi>
+
                <p><span>Albeit introducing SpyCatcher/SpyTag connect system into our design could have a positive
                                            <mo>+</mo>
+
                        influence
                                            <mi>S</mi>
+
                        on accelerating PE degradation, several <strong>shortcomings</strong> are not yet solved. For example, the
                                            <mi>p</mi>
+
                        adherence
                                            <mi>y</mi>
+
                        of MnP-HFB1 and AAO-HFB1 fusion proteins on the surface of PE are <strong>likely to be unordered</strong> instead
                                            <mi>T</mi>
+
                        of
                                            <mi>a</mi>
+
                        evenly distributed. Protein clusters of the same type of fusion protein are likely to be formed
                                            <mi>g</mi>
+
                        on
                                            <mspace width="1em"></mspace>
+
                        the PE surface, preventing thorough substance exchange between discrete protein molecules. Also,
                                            <mi mathvariant="normal">&amp;</mi>
+
                        the
                                            <mspace width="1em"></mspace>
+
                        <strong>maintenance of optimum functioning ratio</strong> between MnP and AAO <strong>cannot</strong> be guaranteed due to the
                                            <mi>B</mi>
+
                        arbitrary distribution on the PE surface. Both of the two uncontrollable conditions will reduce
                                            <mo>+</mo>
+
                        the
                                            <mi>l</mi>
+
                        efficacy of PE degradation.</span></p>
                                            <mi>i</mi>
+
                <p><img src="https://static.igem.org/mediawiki/2021/7/7e/T--CPU_CHINA--Design-5.PNG"
                                            <mi>n</mi>
+
                        referrerpolicy="no-referrer" alt="T--CPU_CHINA--Design-5"></p>
                                            <mi>k</mi>
+
                <p class="imgdescribe"><strong><span>Fig. 5 The potentially huge differences between ideality and
                                            <mi>e</mi>
+
                            reality.</span></strong></p>
                                            <mi>r</mi>
+
                <p><span>To enable the binding of MnP and AAO on the surface of PE in a more organized manner, we
                                            <mo>+</mo>
+
                        adopted a
                                            <mi>S</mi>
+
                        recently reported <strong>CRISPR/Cas-based DNA anchoring system</strong></span><sup><span>[15]</span></sup><span>
                                            <mi>p</mi>
+
                        to
                                            <mi>y</mi>
+
                        our design. This system utilizes an deactivated CRISPR-associated protein 9 linked to a
                                            <mi>C</mi>
+
                        SpyCatcher
                                            <mi>a</mi>
+
                        domain (<strong>dCas9-SpyCatcher</strong>), which can not only form a covalent bond with proteins fused with
                                            <mi>t</mi>
+
                        <strong>SpyTag
                                            <mi>h</mi>
+
                        domain</strong>, but also recognize and bind to complementary DNA sequences after incorporating a
                                            <mi>e</mi>
+
                        single-guide RNA (<strong>sgRNA</strong>) without cleavage activity.</span>
                                            <mi>r</mi>
+
                    <span>Therefore, by specially designing a double-stranded DNA (<strong>dsDNA</strong>) with multiple sequence
                                            <mspace linebreak="newline"></mspace>
+
                        segments
                                            <mo>&#x21D3;</mo>
+
                        complementary to different sgRNAs, the dCas9-SpyCatcher incorporated with different types of
                                            <mspace linebreak="newline"></mspace>
+
                        sgRNAs
                                            <mi>i</mi>
+
                        and functional proteins can be anchored to the double-stranded DNA in a predetermined number and
                                            <mi>n</mi>
+
                         proportion. </span>
                                            <mi>t</mi>
+
                                            <mi>r</mi>
+
                                            <mi>a</mi>
+
                                            <mi>c</mi>
+
                                            <mi>e</mi>
+
                                            <mi>l</mi>
+
                                            <mi>l</mi>
+
                                            <mi>u</mi>
+
                                            <mi>l</mi>
+
                                            <mi>a</mi>
+
                                            <mi>r</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi>e</mi>
+
                                            <mi>x</mi>
+
                                            <mi>p</mi>
+
                                            <mi>r</mi>
+
                                            <mi>e</mi>
+
                                            <mi>s</mi>
+
                                            <mi>s</mi>
+
                                            <mi>i</mi>
+
                                            <mi>o</mi>
+
                                            <mi>n</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi mathvariant="normal">&amp;</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi>c</mi>
+
                                            <mi>o</mi>
+
                                            <mi>n</mi>
+
                                            <mi>n</mi>
+
                                            <mi>e</mi>
+
                                            <mi>c</mi>
+
                                            <mi>t</mi>
+
                                            <mi>i</mi>
+
                                            <mi>o</mi>
+
                                            <mi>n</mi>
+
                                            <mspace linebreak="newline"></mspace>
+
                                            <mo>&#x21D3;</mo>
+
                                            <mspace linebreak="newline"></mspace>
+
                                            <mi>a</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi>m</mi>
+
                                            <mi>u</mi>
+
                                            <mi>l</mi>
+
                                            <mi>t</mi>
+
                                            <mi>i</mi>
+
                                            <mo>&#x2212;</mo>
+
                                            <mi>e</mi>
+
                                            <mi>n</mi>
+
                                            <mi>z</mi>
+
                                            <mi>y</mi>
+
                                            <mi>m</mi>
+
                                            <mi>e</mi>
+
                                            <mspace width="1em"></mspace>
+
                                            <mi>c</mi>
+
                                            <mi>o</mi>
+
                                            <mi>m</mi>
+
                                            <mi>p</mi>
+
                                            <mi>l</mi>
+
                                            <mi>e</mi>
+
                                            <mi>x</mi>
+
                                        </mrow>
+
                                        <annotation encoding="application/x-tex">A+linker+SpyTag\quad\&amp;\quad
+
                                            B+linker+SpyCather\\
+
                                            \Downarrow \\
+
                                            intracellular\quad expression\quad\&amp;\quad connection\\
+
                                            \Downarrow\\
+
                                            a\quad multi-enzyme\quad complex</annotation>
+
                                    </semantics>
+
                                </math></span><span class="katex-html" aria-hidden="true"><span class="base"><span
+
                                        class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span
+
                                        class="mord mathnormal">A</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span><span
+
                                        class="mbin">+</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.77777em;vertical-align:-0.08333em;"></span><span
+
                                        class="mord mathnormal" style="margin-right:0.01968em;">l</span><span
+
                                        class="mord mathnormal" style="margin-right:0.03148em;">ink</span><span
+
                                        class="mord mathnormal" style="margin-right:0.02778em;">er</span><span
+
                                        class="mspace" style="margin-right:0.2222222222222222em;"></span><span
+
                                        class="mbin">+</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mord mathnormal">Sp</span><span class="mord mathnormal"
+
                                        style="margin-right:0.03588em;">y</span><span class="mord mathnormal"
+
                                        style="margin-right:0.13889em;">T</span><span
+
                                        class="mord mathnormal">a</span><span class="mord mathnormal"
+
                                        style="margin-right:0.03588em;">g</span><span class="mspace"
+
                                        style="margin-right:1em;"></span><span class="mord">&amp;</span><span
+
                                        class="mspace" style="margin-right:1em;"></span><span class="mord mathnormal"
+
                                        style="margin-right:0.05017em;">B</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span><span
+
                                        class="mbin">+</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.77777em;vertical-align:-0.08333em;"></span><span
+
                                        class="mord mathnormal" style="margin-right:0.01968em;">l</span><span
+
                                        class="mord mathnormal" style="margin-right:0.03148em;">ink</span><span
+
                                        class="mord mathnormal" style="margin-right:0.02778em;">er</span><span
+
                                        class="mspace" style="margin-right:0.2222222222222222em;"></span><span
+
                                        class="mbin">+</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mord mathnormal">Sp</span><span class="mord mathnormal"
+
                                        style="margin-right:0.03588em;">y</span><span class="mord mathnormal"
+
                                        style="margin-right:0.07153em;">C</span><span
+
                                        class="mord mathnormal">a</span><span class="mord mathnormal">t</span><span
+
                                        class="mord mathnormal">h</span><span class="mord mathnormal"
+
                                        style="margin-right:0.02778em;">er</span></span><span
+
                                    class="mspace newline"></span><span class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mrel">&#x21D3;</span></span><span class="mspace newline"></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mord mathnormal">in</span><span class="mord mathnormal">t</span><span
+
                                        class="mord mathnormal" style="margin-right:0.02778em;">r</span><span
+
                                        class="mord mathnormal">a</span><span class="mord mathnormal">ce</span><span
+
                                        class="mord mathnormal" style="margin-right:0.01968em;">ll</span><span
+
                                        class="mord mathnormal">u</span><span class="mord mathnormal"
+
                                        style="margin-right:0.01968em;">l</span><span
+
                                        class="mord mathnormal">a</span><span class="mord mathnormal"
+
                                        style="margin-right:0.02778em;">r</span><span class="mspace"
+
                                        style="margin-right:1em;"></span><span class="mord mathnormal">e</span><span
+
                                        class="mord mathnormal">x</span><span class="mord mathnormal">p</span><span
+
                                        class="mord mathnormal">ress</span><span class="mord mathnormal">i</span><span
+
                                        class="mord mathnormal">o</span><span class="mord mathnormal">n</span><span
+
                                        class="mspace" style="margin-right:1em;"></span><span
+
                                        class="mord">&amp;</span><span class="mspace"
+
                                        style="margin-right:1em;"></span><span class="mord mathnormal">co</span><span
+
                                        class="mord mathnormal">nn</span><span class="mord mathnormal">ec</span><span
+
                                        class="mord mathnormal">t</span><span class="mord mathnormal">i</span><span
+
                                        class="mord mathnormal">o</span><span
+
                                        class="mord mathnormal">n</span></span><span class="mspace newline"></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mrel">&#x21D3;</span></span><span class="mspace newline"></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.77777em;vertical-align:-0.08333em;"></span><span
+
                                        class="mord mathnormal">a</span><span class="mspace"
+
                                        style="margin-right:1em;"></span><span class="mord mathnormal">m</span><span
+
                                        class="mord mathnormal">u</span><span class="mord mathnormal">lt</span><span
+
                                        class="mord mathnormal">i</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span><span
+
                                        class="mbin">&#x2212;</span><span class="mspace"
+
                                        style="margin-right:0.2222222222222222em;"></span></span><span
+
                                    class="base"><span class="strut"
+
                                        style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span
+
                                        class="mord mathnormal">e</span><span class="mord mathnormal">n</span><span
+
                                        class="mord mathnormal" style="margin-right:0.03588em;">zy</span><span
+
                                        class="mord mathnormal">m</span><span class="mord mathnormal">e</span><span
+
                                        class="mspace" style="margin-right:1em;"></span><span
+
                                        class="mord mathnormal">co</span><span class="mord mathnormal">m</span><span
+
                                        class="mord mathnormal" style="margin-right:0.01968em;">pl</span><span
+
                                        class="mord mathnormal">e</span><span
+
                                        class="mord mathnormal">x</span></span></span></span></span><br>
+
                    This unique covalent-bond-formation capacity between the two domains is capable of promoting the
+
                    binding of two random proteins into one multi-enzyme complex both <em>in vitro</em> and <em>in
+
                         vivo</em>. Therefore, this interaction has been utilized in several laboratories for
+
                    bioligation, and the system has been reported in various applications such as vaccine optimization,
+
                    hydrogel synthesis, and catalytic biofilm construction.
+
 
                 </p>
 
                 </p>
                 <p>Therefore, in our project, we use SpyCatcher/SpyTag system with ELP and Ser/Gly links to construct
+
                 <p><span>In our eventual design, the three functional proteins are all fused with SpyTag, covalently
                    various fusion proteins for assembly of our protein-nucleic-acid complex.</p>
+
                         linked
                <h3 class="mume-header" id="crisprdcas9-anchor-system"><strong>CRISPR/dCas9 ANCHOR SYSTEM</strong></h3>
+
                         with dCas9-SpyCatcher, and anchored to the same dsDNA. In this way, <strong>the spatial distance</strong> between
 
+
                        MnP
                <p>CRISPR/Cas9 technology is a genome engineering tool based on the adaptive immunity in prokaryotes:
+
                        and AAO could be <strong>remarkably reduced</strong>. The close proximity and determined proportion between the
                </p>
+
                         two
                <ul>
+
                         enzymes can greatly <strong>facilitate substance exchange</strong>, thereby <strong>releasing a steady flow of
                    <li>
+
                        PE-oxidizing
                        <p>CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)</p>
+
                        agent when given sufficient substrate</strong>. Moreover, instead of pulling one individual enzyme once
                        <p>It is a cluster of short palindromic repeats with regular intervals in the prokaryotic
+
                        for
                            genome.</p>
+
                        all, HFB1, or HFB1s, can now paste the whole protein-nucleic-acid complex onto the surface of PE
                    </li>
+
                        <strong>synergistically</strong>. </span></p>
                    <li>
+
                        <p>CRISPR associated protein 9 (Cas9)</p>
+
                        <p>It can cleave the target double-stranded DNA (dsDNA) complementary to CRISPR derived RNA
+
                            (crRNA), under the guidance of tracrRNA/crRNA complex, which is formed by crRNA and
+
                            trans-activating crRNA (tracrRNA) <sup>[1]</sup>; or the single-guide RNA (sgRNA).</p>
+
                    </li>
+
                    <li>
+
                         <p>The deactivated CRISPR associated protein 9 (dCas9)</p>
+
                         <p>It is a nuclease-deactivated variant of Cas9 created from S.pyogens. Though losing the
+
                            DNA-cleavage activity, it can still specifically target and bind to DNA under the mediation
+
                            of sgRNA<sup>[3]</sup>.</p>
+
                    </li>
+
                </ul>
+
                <p>Previous studies have reported that<sup>[4]</sup>, random enzymes can be organized into a
+
                    programmable assembly with the cooperation between dCas9 and the SpyCatcher/SpyTag system. In this
+
                    complex, enzymes containing SpyTag are conjugated to the dCas9 containing SpyCatcher, and then
+
                    anchored to a particular location on the DNA template by the guidance of appropriate sgRNA.</p>
+
                <p>In our project, we intend to use this CRISPR/Cas-based strategy, in tandem with SpyCatcher/SpyTag
+
                    system, to establish a multi-enzyme complex containing MnP, AAO, and HFB1. Together, the functions
+
                    of the three elements could be aggregated, yielding a maximum PE degradation efficacy.</p>
+
            </div>
+
            <div class="section" id="section4">
+
                <h2 class="mume-header" id="how-do-our-complex-realizes-its-optimal-function">HOW DO OUR COMPLEX
+
                    REALIZES ITS OPTIMAL FUNCTION?</h2>
+
 
+
                <p>In overview, a brief introduction of various elements and systems included in our project were
+
                    displayed. Yet the reasons and considerations of putting forward such a design were not specified.
+
                    Thus, it is of vital significance to state our explanation regarding how we managed to select and
+
                    modify these PE-degrading elements, and to choose the right assembly system to merge their
+
                    individual function into a fine-tuned symphony.</p>
+
                <p>Initially, as our crucial PE-degrading enzyme, manganese peroxidase (MnP) undertakes a fundamental
+
                    role of inflicting oxidation to PE by continuously producing Mn<sup>3+</sup> ions. Therefore,
+
                    increasing or maintaining its activity, as well as prolonging its stability should be the top
+
                    priority for us in order to enlarge and reinforce the degradation efficacy of MnP towards PE.
+
                    However, since the substrate and catalysate of MnP are both highly-oxidative, simply increasing its
+
                    activity without restrictions is bound to cause irreversible harm to not only the MnP itself, but
+
                    also other affiliated elements of our complex. Therefore, we decided to propose a semi-rational
+
                    directed evolution strategy towards MnP, with the hope to increase its tolerance of high
+
                    temperature, acidic pH, as well as different types of organic solvents, all of which are common
+
                    inhibitory physiochemical properties that may severely impact the activity of MnP (For detailed
+
                    information about the results of directed evolution, see <em>improvement</em> page).</p>
+
                <p>Secondary, in our design, for assisting MnP to perform its function, we selected aryl alcohol oxidase
+
                    (AAO), a H<sub>2</sub>O<sub>2</sub>-producing enzyme that requires mainly aromatic alcohols as
+
                    substrates for oxidation. This is because, due to the <strong>low but steady</strong> production
+
                    rate of H<sub>2</sub>O<sub>2</sub> by AAO, the <strong>inhibition</strong> of MnP <strong>due
+
                         to</strong> <strong>an</strong> <strong>excess of H<sub>2</sub>O<sub>2</sub></strong>
+
                    concentration, which could be the case when H<sub>2</sub>O<sub>2</sub> is added manually, <strong>is
+
                         effectively prevented</strong>. This will allow MnP to <strong>catalyze</strong> the
+
                    PE-degrading reaction <strong>over a longer period of time</strong>, realizing a more
+
                    <strong>complete degradation</strong> of PE. In addition, the <strong>cascade reaction</strong>
+
                    mediated by the two enzymes can only be initiated when substrates of AAO is introduced to the
+
                    system. Therefore, we can <strong>achieve precise control</strong> to the onset and termination of
+
                    the reactions via adding specific amount of substrates to the system in a given time.</p>
+
                <p>Thirdly, as we were researching for means of enhancing PE degradation efficacy, we noticed that
+
                    certain bacteria strains capable of degrading PE could produce biosurfactant to assist their
+
                    adherence and growth on the hydrophobic surface of plastics. This inspired us to introduce
+
                    hydrophobin-1, an amphipathic protein that could increase the hydropilicity of PE surface, thereby
+
                    facilitating MnP to degrade PE.</p>
+
                <p>Last but not least, instead of directly apply the three PE-degrading elements on PE, we selected the
+
                    SpyCatcher/SpyTag connect system, as well as the CRISPR/dCas9 anchor system, to assemble the three
+
                    elements into one compact complex. There are several advantages that can be provided by this
+
                    assemblage. Firstly, the spatial distance between MnP and AAO is remarkably reduced by anchoring
+
                    them in close proximity, which makes the H<sub>2</sub>O<sub>2</sub> produced by AAO be more readily
+
                    consumed by MnP, enhancing its catalytic activity; Secondary, the spatial distance between the
+
                    complex and PE surface is also remarkably reduced, thanks to the surface activity of HFB1. This can
+
                    lessen the the diffusion distance of Mn<sup>3+</sup>-chelate compound towards PE, in other words,
+
                    lessen the occurrence of side reactions between Mn<sup>3+</sup>-chelate compound and other
+
                    interfering substances before it reaches the surface of PE. In addition, the reduced Mn<sup>2+</sup>
+
                    after PE oxidation can be easily reabsorbed and oxidized to Mn<sup>3+</sup> by activated MnP due to
+
                    the close proximity of enzyme and substrate. In this way, the rate of PE degradation can be
+
                    remarkably accelerated.</p>
+
 
             </div>
 
             </div>
 
             <div class="section" id="section5">
 
             <div class="section" id="section5">
                 <h2 class="mume-header" id="element-design"><strong>ELEMENT DESIGN</strong></h2>
+
                 <h2 id='the-overall-diagram'><span>THE OVERALL DIAGRAM</span></h2>
 
+
                 <p><span>Eventually, by combining the three PE-degrading elements with the two assembly systems, we are
                 <h4 class="mume-header" id="fusion-protein-design">FUSION PROTEIN DESIGN</h4>
+
                        able
 
+
                        to construct a new type of protein-nucleic-acid complex that possesses an enhanced ability for
                <p>According to the sequence of SpyTag and SpyCatcher, combining with PE degradation elements described
+
                        PE
                    above, the following four fusion proteins are designed for the assembly of PE degradation complex.
+
                        degradation. And we name it, <strong>polyethylene degradist</strong>.</span></p>
                </p>
+
                 <p><span>A demonstrative graph is shown below. </span></p>
                 <p>![Fig 7](C:\Users\LyernotLeere\Desktop\iGEM wiki\Project\Design\Fig 7.png)</p>
+
                 <p><img src="https://static.igem.org/mediawiki/2021/e/ee/T--CPU_CHINA--Design-6.jpg"
                 <p><strong>Fig. 7 Fusion protein plasmid maps.</strong> <em>A: pPIC9K-SpyTag-MnP; B: pPIC9K-SpyTag-AAO;
+
                         referrerpolicy="no-referrer" alt="Fig6"></p>
                         C: pET-28a-SpyTag-HFB1; D: pET-28a-dCas9-SpyCatcher)</em></p>
+
                 <p class="imgdescribe"><strong><span>Fig. 6 The final conceptual design overview of our PE-degrading
                 <p>The genes that are fused with SpyTag in the N-terminus through the ELP sequence:</p>
+
                            system.</span></strong></p>
                <ul>
+
                <p>&nbsp;</p>
                    <li><em>mnp1</em> (Genbank accession number:AAA33744.1) from <em>Phanerochaete chrysosporium</em>
+
                <p><strong><span>Reference:</span></strong></p>
                        strain ATCC20696</li>
+
                <p class="reference">[1] Martinez A T, RuizMartinez A T, Ruiz--Duenas F J, Camarero S, et al. Oxidoreductases on
                    <li><em>peaao2</em> (Genbank accession number:MT711371.1) from <em>Pleurotus eryngii</em> strain P34
+
                        their
                    </li>
+
                        way to industrial biotransformations[J]. Biotechnology Advances, 2017, 35(6): 81535(6):
                    <li><em>hfb1</em> (Gene ID:18488188) from <em>Trichoderma reesei</em> <em>6MQa</em> strain ATCC13631
+
                        815--831.831.</span></p>
                    </li>
+
                 <p class="reference">[2] Chandra R, Kumar, V., Yadav, S. Extremophilic Enzymatic Processing of Lignocellulosic
                </ul>
+
                        FChandra
                 <p>Meanwhile, the TEV site and 6&#xD7;His-tag are introduced to the N-terminus of SpyTag for His-tag
+
                        R, Kumar, V., Yadav, S. Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to
                    removal and protein purification, respectively.</p>
+
                        Bioenergy[M]. Springer International Publishing, 2017</span></p>
                 <p>We inserted the gene sequence of SpyTag-MnP and SpyTag-AAO into the <strong>pPIC9K plasmid</strong>
+
                 <p class="reference">[3] Saez--Jimenez V, Baratto M C, Pogni R, et al. Demonstration of LigninJimenez V, Baratto M
                    with the EcoRI at the N-terminus and NotI at the C-terminus. Subsequently, the recombinant plasmids
+
                        C,
                    will be transferred into <em>Pichia pastoris</em> for heterogenous expression.</p>
+
                        Pogni R, et al. Demonstration of Lignin--toto--Peroxidase DirePeroxidase Direct Electron
                 <p>We inserted the gene sequence of SpyTag-HFB1 into the <strong>pET-28a plasmid</strong> with the EcoRI
+
                        Transfer A
                    at the N-terminus and NotI at the C-terminus. Subsequently, the recombinant plasmid will be
+
                        TRANSIENT--STATE KINETICS, DIRECTED MUTAGENESIS, EPR, ASTATE KINETICS, DIRECTED MUTAGENESIS,
                    transferred into <em>Escherichia coli</em> Rosetta(DE3) for heterogenous expression.</p>
+
                        EPR,
                 <p>The gene that is fused with SpyCatcher in the C-terminus through a Ser/Gly link:</p>
+
                        AND NMR STUDY[J]. Journal of Biological Chemistry, 2015, 290(38): 23201--23213.23213</span></p>
                <ul>
+
                 <p class="reference">[4] Iiyoshi Y, Tsutsumi Y, Nishida T. Polyethylene degradation by ligninida T. Polyethylene
                    <li>
+
                        degradation by lignin--degrading fungi and degrading fungi and managanese peroxidase[J]. Journal
                         <p>dCas9</p>
+
                        of
                        <p>The gene of <em>cas9</em> (Gene ID: 57852564) is derived from <em>Streptococcus pyogenes</em>
+
                        Wood Science, 1998, 44(3): 222--229.229.</span></p>
                            strain: NGAS638. Introducing single point mutations into each domain (D10A and H840A,
+
                 <p class="reference">[5] Farmer V C, Henderson M E, Russell J D. Aromatic alcohol oxidase activity in the growth
                            correspondingly) to obtain the deactivated <em>cas9</em> gene.</p>
+
                        medium
                    </li>
+
                         of Polystictus versic olor[J]. The Biochemical journal, 1960, 74: 257 62.</span></p>
                </ul>
+
                <p class="reference">[6] Ruiz Duenas F J, Martinez A T. Microbial degradation of lignin: how a bulky recalcitrant
                 <p>Meanwhile, the TEV site and 6&#xD7;His-tag are introduced to the N-terminus of dCas9.</p>
+
                        polymer is efficiently recycled in nature and how w e can take advantage of this[J]. Microbial
                <p>We inserted the gene sequence of dCas9-SpyCatcher into the <strong>pET-28a plasmid</strong> to form
+
                        Biotechnology, 2009, 2(2): 164 177.</span></p>
                    pET-28a-dCas9-SpyCatcher. Subsequently, the recombinant plasmid will be transferred into
+
                <p class="reference">[7] Serrano A, Carro J, Martinez A T. Reaction mechanisms and applications of aryl alcohol
                    <em>Escherichia coli</em> BL21(DE3) for heterogenous expression.</p>
+
                        oxidase[J]. The Enzymes, 2020, 47: 167 192.</span></p>
                 <h4 class="mume-header" id="sgrna-and-dsdna-template-synthesis">sgRNA AND dsDNA TEMPLATE SYNTHESIS</h4>
+
                 <p class="reference">[8] Sugano Y, Matsushima Y, Shoda M. Complete decolorization of the anthraquinone dye Reactive
 
+
                        blue
                <p>The design of the sgRNA and dsDNA sequences was referred to Samuel Lim et al (2020)[1]. All three
+
                        5 by the concerted action of two peroxidases from Thanatephorus cucumeris Dec 1.
                    target sequences in dsDNA have a PAM sequence of CGG at their downstream. The sequences of the dsDNA
+
                    </span><em><span>Appl Microbiol Biotechnol</span></em><span>. 2006;73(4):862-871.
                    and the gRNA scaffold used to synthesize sgRNAs were contained in one plasmid.</p>
+
                        </span></p>
                 <p>sgRNAs for each binding site were then transcribed from their corresponding templates using <em>in
+
                 <p class="reference">[9] Steiner K, Schwab H. Recent advances in rational approaches for enzyme engineering[J].
                         vitro</em> transcription. The dsDNA scaffold was similarly PCR amplified from a DNA plasmid
+
                        Computational and structural biotechnology journal, 2012, 2: e201209010.</span></p>
                    (pUC-19) containing the target sequence using a forward primer and a reverse primer. The products
+
                 <p class="reference">[10] Nakari T, Alatalo E, Penttila M E. ISOLATION OF TRICHODERMA REESEI GENES HIGHLY EXPRESSED
                    were separated by agarose gel electrophoresis and the target bands were recovered by gel DNA
+
                         ON
                    extraction kit.</p>
+
                        GLUCOSE CONTAINING MEDIA CHARACTERIZATION OF THE TEF1 GENE ENCODING TRANSLATION ELONGATI ON
            </div>
+
                        FACTOR 1
            <div class="section" id="section6">
+
                        ALPHA[J]. Gene, 1993, 136(1 2): 313 318.</span></p>
                <h2 class="mume-header" id="expression-system"><strong>EXPRESSION SYSTEM</strong></h2>
+
                <p class="reference">[11] Linder M B, Szilvay G R, Nakari Setala T, et al. Hydrophobins: the protein amphiphiles of
 
+
                        filamentous fungi[J]. Fems Microbiology Reviews, 2005, 29(5): 877 896.</span></p>
                 <h3 class="mume-header" id="pichia-pstoris"><em><strong>Pichia pstoris</strong></em></h3>
+
                 <p class="reference">[12] Kang H J, Baker E N. Intramolecular isopeptide bonds: protein crosslinks built for stress?
 
+
                        [J]. Trends in biochemical sciences, 2011, 36(4): 229 237.</span></p>
                 <p>This year, we used the <em>Pichia pastoris</em> as the eukaryotic chassis to express our
+
                 <p class="reference">[13] Hagan R M, Björnsson R, Mcmahon S A, et al. NMR spectroscopic and theoretical analysis of
                    fungal-derived proteins, due to the following advantages it provides:</p>
+
                        a
                <ul>
+
                         spontaneously formed Lys Asp isopeptide bond[J]. Angewandte Chemie (International ed. in
                    <li><em>Pichia pastoris</em> is a <strong>methylotrophic yeast</strong> which can use methanol as
+
                        English),
                         the sole carbon source.</li>
+
                        2010, 49(45): 8421 8425.</span></p>
                    <li><em>Pichia pastoris</em> has <strong>protein folding</strong>, <strong>post-translational
+
                <p class="reference">[14] Reddington SC, Howarth M. Secrets of a covalent interaction for biomaterials and
                            modification</strong>, <strong>protein glycosylation</strong> and other functions that make
+
                         biotechnology: SpyTag and SpyCatcher. </span><em><span>Curr Opin Chem Biol</span></em><span>.
                         it an excellent eukaryotic expression system.</li>
+
                         2015;29:94-99.</span></p>
                    <li><em>Pichia pastoris</em> has <strong>fast, simple, low-cost and higher level of expression
+
                 <p class="reference">[15] Lim S, Kim J, Kim Y, Xu D, Clark DS. CRISPR/Cas-directed programmable assembly of
                            characteristics</strong></li>
+
                        multi-enzyme
                    <li>Combined with <strong>pPIC9K plasmid,</strong> cells can express exogenous proteins at high
+
                        complexes. </span><em><span>Chem Commun (Camb)</span></em><span>. 2020;56(36):4950-4953.
                         levels under methanol induction.</li>
+
                        </span></p>
                </ul>
+
                 <p>The heterogenous coding sequences carried by pPIC9K can be integrated to the downstream of a strong
+
                    promoter P<sub>AOX1</sub> by homologous recombination. Under methanol induction, the
+
                    P<sub>AOX1</sub> will be activated, driving the expression of the heterogenous protein.</p>
+
                <p>Therefore, we chose the <em>Pichia pastoris</em> expression system to express our fusion proteins
+
                    SpyTag-MnP and SpyTag -AAO.</p>
+
            </div>
+
            <div class="section" id="section7">
+
                <h2 class="mume-header" id="references">REFERENCES</h2>
+
 
             </div>
 
             </div>
 
         </div>
 
         </div>

Latest revision as of 03:52, 22 October 2021

OVERVIEW

Currently, the major disposal methods for PE are incineration and landfill, both of which are not the optimal way of disposing PE, for these two methods have led to negative environmental consequences not limited to the release of hazardous substances, and the occupancy of enormous land resources.

Therefore, we decided to take advantage of the power of nature, seeking specific agents that possess the unique ability of degrading PE, and further modify and optimize it to realize green and efficient degradation of PE.

TO DETERMINE A CENTRAL PE DEGRADATION ELEMENT

AGENT SELECTION

During our preliminary stage of literature research, strains of microorganism as well as enzymes that both had the potential of PE degradation were obtained by us. An either-or decision must be made upon the selection of the PE-degrading agent. Without much hesitation, we selected enzymes instead of strains due to a more definite origin and characteristics provided by online databases. After screening through potential candidates, the very manganese peroxidase (MnP) was selected as our central functional element.

It is a highly glycosylated lignin peroxidase with heme[1,2] that can oxidize Mn2+ to Mn3+, the latter can be chelated by ligands like oxalic acid, forming the Mn3+-ligand chelate compound that can diffuse outside the enzyme for further degradation of lignin or other refractory chemicals[3].

T--CPU_CHINA--Design-1

Fig. 1 The catalytic cycle of MnP.

It has been reported that MnP has a significant degradation efficiency on PE film. As reported before, the weight-average molecular weight (Mw) of PE was halved by MnP treatment for two days, showing its remarkable degradation efficacy[4]. Thus, MnP was chosen by us as the key element for PE degradation.

USING AAO AS A BETTER APPROACH TO PROVIDE SUBSTRATE FOR MnP

It is shown on the catalytic cycle of MnP above that H2O2 is required as its essential substrate for activating the enzymatic reaction. Yet an abnormally high concentration of H2O2 could also inhibit, even deactivate the enzyme, which might happen when H2O2 was added into the system manually and periodically.

Therefore, a more in-depth investigation was carried out to seek a solution. As a result, we discovered a specific type of enzyme, namely aryl alcohol oxidase (AAO). It is an enzyme containing flavin-adenine-dinucleotide (FAD)[5] that catalyzes the oxidation of aromatic and aliphatic allylic primary alcohols (which are far less oxidative when compared to Mn3+ and H2O2) to the corresponding aldehydes while reducing molecular oxygen to H2O2[6].

T--CPU_CHINA--Design-2

Fig. 2 The mechanism of AAO reducing molecular oxygen to H2O2 by oxidizing 4-methoxybenzyl alcohol.[7]

We learned from the literature[8] that AAO is able to produce H2O2 in a low but steady rate. Therefore, the inhibition of MnP due to an excess of H2O2 concentration can be effectively prevented when applying AAO as the source of H2O2. This would allow MnP to catalyze the PE-degrading reaction over a longer period of time, realizing a more complete degradation of PE. In addition, since the two enzymes work in tandem, the cascade reaction mediated by the two can only be initiated when substrates of AAO is introduced to the system. Therefore, we can achieve precise control to the onset and termination of the reactions via adding specific amount of substrates to the system in a given time, preventing uncontrollable situations from happening. As a result, we decided to select AAO as the assistant of MnP.

T--CPU_CHINA--Design-3

Fig. 3 The synergistic PE degradation effect of MnP and AAO.

TO ENHANCE THE PE-DEGRADING EFFICIENCY OF MnP

OPTIMIZE THE DEGRADATION COMPETENCE OF MnP BY DIRECTED EVOLUTION

As our key PE-degrading enzyme, manganese peroxidase (MnP) undertakes a fundamental role of inflicting oxidation to PE by continuously producing Mn3+ ions. Therefore, enhancing the degradation efficiency of MnP is beneficial to reach a more complete destruction of PE films.

In theory, there are two approaches of reinforce the degradation efficacy of MnP, whether by increasing the activity of MnP to realize a stronger oxidative capacity, or by improving the stability of MnP to prolong its duration of effect. However, since the substrate and catalysate of MnP are both highly-oxidative, simply increasing its activity without restrictions is bound to cause irreversible harm not only to the MnP itself, but also to other affiliated elements in our design, AAO for instance. Therefore, we decided to improve the stability of MnP by proposing a semi-rational directed evolution strategy[9]towards it, with the hope to increase its tolerance of high temperature, acidic pH, as well as different types of organic solvents, all of which are common inhibitory physiochemical properties that may severely impact the activity of MnP.

For the results of our directed-evolution attempt, see Improvement

FACILITATE THE SURFACE ADHERENCE OF MnP BY INTRODUCING HFB1

Back to the stage where we were searching for agents with PE degradation efficacy, we noticed that certain bacterial or fungal strains capable of degrading PE could produce biosurfactant to assist their adherence and colonization on the hydrophobic surface of plastics, so that they could degrade PE in a faster pace. This inspired us to introduce biosurfactant into our design, aiming to increase the hydrophilicity of the surface of PE.

As a result, our focus was concentrated on hydrophobin-1 (HFB1), a kind of class Ⅱ HFBs derived from Trichoderma reesei[38]. It is rich in hydrophobic amino acids, endowing its surface activity. By self-assembling at hydrophilic-hydrophobic interfaces autonomously, HFB1 can enhance the affinity between hydrophilic proteins and hydrophobic materials[11]such as PE, thus facilitating its contact with aqueous environment, thereby facilitating MnP to degrade PE.

What's more, compared with other members of HFBs, HFB1 has better stability and higher surface activity, which means it can maintain its function of adherence on hydrophobic substances more firmly for a longer period of time.

Therefore, in our project, HFB1 is selected and used as a biosurfactant to produce consistent surface activity on PE, thereby promoting the adherence of MnP on PE surface, which helps to improve the degradation efficacy of this enzyme.

TO CONVERGE THE ADVANTAGES OF THREE FUNCTIONAL PROTEINS

Now that the three functional proteins were selected, all of which possesses individual functions that could contribute to the degradation of PE, instead of directly applying all of them by simply adding them into the system separately, we began to consider the possibility of combining these discrete parts into a composite entity, enabling the production of a strong synergistic effect which may lead to an significant improvement on efficacy.

GETTING CLOSER TO THE SURFACE OF PE

The first idea that struck us was that we could minimize the spatial distance between MnP and PE by fusing HFB1 on the enzyme. Similar strategy could also be applied on AAO to generate fusion protein as well. In this way, our functional enzymes can simultaneously be anchored to the PE surface with the aid of fused HFB1, so that the diffusion distance of Mn3+-ligand chelate compound towards PE could be significantly lessened, enabling a more efficient degradation outcome. Meanwhile, the H2O2 generated by AAO can also become more accessible to MnP when the two enzymes are closely anchored to the surface of PE.

Therefore, we delved into literatures and previous iGEM projects to look for ideal solutions. It turned out that there existed a versatile protein ligation system, i.e. SpyCatcher/SpyTag system[12,13], that has been widely adopted by many laboratories and iGEM teams for construction of multi-domain protein. This system contains two essential elements:

  • SpyCatcher: a modified immunoglobulin-like domain CnaB2 from a Streptococcus pyogenes surface protein
  • SpyTag: a cognate 13-amino-acid peptide

T--CPU_CHINA--Design-4

Fig. 4 The isopepide-forming mechanism between the two Spy domains. Glu77 & Lys31 are the residues on SpyCatcher; Asp117 is the residue on SpyTag.

The two domains can autonomously form a covalent isopeptide bond between each other, thereby linking the two portions together. By linking the Spy domains on the N-terminal or C-terminal of the target protein with elastin-like protein (ELP) or serine/glycine link (Ser/Gly link)[14], its structure and function are generally unaffected, while the formation of isopeptide bond between SpyCatcher and SpyTag remains effective and efficient. By adopting this system, MnP and AAO that was fused with HFB1 are able to stick to surface of PE, realizing a better spatial concentration on it.

GETTING CLOSER WITH EACH OTHER

Albeit introducing SpyCatcher/SpyTag connect system into our design could have a positive influence on accelerating PE degradation, several shortcomings are not yet solved. For example, the adherence of MnP-HFB1 and AAO-HFB1 fusion proteins on the surface of PE are likely to be unordered instead of evenly distributed. Protein clusters of the same type of fusion protein are likely to be formed on the PE surface, preventing thorough substance exchange between discrete protein molecules. Also, the maintenance of optimum functioning ratio between MnP and AAO cannot be guaranteed due to the arbitrary distribution on the PE surface. Both of the two uncontrollable conditions will reduce the efficacy of PE degradation.

T--CPU_CHINA--Design-5

Fig. 5 The potentially huge differences between ideality and reality.

To enable the binding of MnP and AAO on the surface of PE in a more organized manner, we adopted a recently reported CRISPR/Cas-based DNA anchoring system[15] to our design. This system utilizes an deactivated CRISPR-associated protein 9 linked to a SpyCatcher domain (dCas9-SpyCatcher), which can not only form a covalent bond with proteins fused with SpyTag domain, but also recognize and bind to complementary DNA sequences after incorporating a single-guide RNA (sgRNA) without cleavage activity. Therefore, by specially designing a double-stranded DNA (dsDNA) with multiple sequence segments complementary to different sgRNAs, the dCas9-SpyCatcher incorporated with different types of sgRNAs and functional proteins can be anchored to the double-stranded DNA in a predetermined number and proportion.

In our eventual design, the three functional proteins are all fused with SpyTag, covalently linked with dCas9-SpyCatcher, and anchored to the same dsDNA. In this way, the spatial distance between MnP and AAO could be remarkably reduced. The close proximity and determined proportion between the two enzymes can greatly facilitate substance exchange, thereby releasing a steady flow of PE-oxidizing agent when given sufficient substrate. Moreover, instead of pulling one individual enzyme once for all, HFB1, or HFB1s, can now paste the whole protein-nucleic-acid complex onto the surface of PE synergistically.

THE OVERALL DIAGRAM

Eventually, by combining the three PE-degrading elements with the two assembly systems, we are able to construct a new type of protein-nucleic-acid complex that possesses an enhanced ability for PE degradation. And we name it, polyethylene degradist.

A demonstrative graph is shown below.

Fig6

Fig. 6 The final conceptual design overview of our PE-degrading system.

 

Reference:

[1] Martinez A T, RuizMartinez A T, Ruiz--Duenas F J, Camarero S, et al. Oxidoreductases on their way to industrial biotransformations[J]. Biotechnology Advances, 2017, 35(6): 81535(6): 815--831.831.

[2] Chandra R, Kumar, V., Yadav, S. Extremophilic Enzymatic Processing of Lignocellulosic FChandra R, Kumar, V., Yadav, S. Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy[M]. Springer International Publishing, 2017

[3] Saez--Jimenez V, Baratto M C, Pogni R, et al. Demonstration of LigninJimenez V, Baratto M C, Pogni R, et al. Demonstration of Lignin--toto--Peroxidase DirePeroxidase Direct Electron Transfer A TRANSIENT--STATE KINETICS, DIRECTED MUTAGENESIS, EPR, ASTATE KINETICS, DIRECTED MUTAGENESIS, EPR, AND NMR STUDY[J]. Journal of Biological Chemistry, 2015, 290(38): 23201--23213.23213

[4] Iiyoshi Y, Tsutsumi Y, Nishida T. Polyethylene degradation by ligninida T. Polyethylene degradation by lignin--degrading fungi and degrading fungi and managanese peroxidase[J]. Journal of Wood Science, 1998, 44(3): 222--229.229.

[5] Farmer V C, Henderson M E, Russell J D. Aromatic alcohol oxidase activity in the growth medium of Polystictus versic olor[J]. The Biochemical journal, 1960, 74: 257 62.

[6] Ruiz Duenas F J, Martinez A T. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how w e can take advantage of this[J]. Microbial Biotechnology, 2009, 2(2): 164 177.

[7] Serrano A, Carro J, Martinez A T. Reaction mechanisms and applications of aryl alcohol oxidase[J]. The Enzymes, 2020, 47: 167 192.

[8] Sugano Y, Matsushima Y, Shoda M. Complete decolorization of the anthraquinone dye Reactive blue 5 by the concerted action of two peroxidases from Thanatephorus cucumeris Dec 1. Appl Microbiol Biotechnol. 2006;73(4):862-871.

[9] Steiner K, Schwab H. Recent advances in rational approaches for enzyme engineering[J]. Computational and structural biotechnology journal, 2012, 2: e201209010.

[10] Nakari T, Alatalo E, Penttila M E. ISOLATION OF TRICHODERMA REESEI GENES HIGHLY EXPRESSED ON GLUCOSE CONTAINING MEDIA CHARACTERIZATION OF THE TEF1 GENE ENCODING TRANSLATION ELONGATI ON FACTOR 1 ALPHA[J]. Gene, 1993, 136(1 2): 313 318.

[11] Linder M B, Szilvay G R, Nakari Setala T, et al. Hydrophobins: the protein amphiphiles of filamentous fungi[J]. Fems Microbiology Reviews, 2005, 29(5): 877 896.

[12] Kang H J, Baker E N. Intramolecular isopeptide bonds: protein crosslinks built for stress? [J]. Trends in biochemical sciences, 2011, 36(4): 229 237.

[13] Hagan R M, Björnsson R, Mcmahon S A, et al. NMR spectroscopic and theoretical analysis of a spontaneously formed Lys Asp isopeptide bond[J]. Angewandte Chemie (International ed. in English), 2010, 49(45): 8421 8425.

[14] Reddington SC, Howarth M. Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr Opin Chem Biol. 2015;29:94-99.

[15] Lim S, Kim J, Kim Y, Xu D, Clark DS. CRISPR/Cas-directed programmable assembly of multi-enzyme complexes. Chem Commun (Camb). 2020;56(36):4950-4953.