Difference between revisions of "Team:Vilnius-Lithuania/Model"

 
(23 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!DOCTYPE html>
 
 
<html>
 
<html>
<head>
+
 
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/main&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
<head>
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/fonts&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/main&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/background&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/fonts&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/contentpage-desktop&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/background&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/contentpage-mobile&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/contentpage-desktop&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/sideindex-desktop&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/contentpage-mobile&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/sideindex-mobile&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/sideindex-desktop&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/navbar&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/sideindex-mobile&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/navmenu-desktop&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/navbar&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/navmenu-mobile&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/navmenu-desktop&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/accesibility-menu-desktop&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/navmenu-mobile&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/accesibility-menu-mobile&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/accesibility-menu-desktop&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/button-pill&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/accesibility-menu-mobile&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/footer&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/button-pill&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/table&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/footer&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/bypass-block&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/table&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  <script type="text/x-mathjax-config">
+
    <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/bypass-block&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css" />
  MathJax.Hub.Config({       TeX: { equationNumbers: { autoNumber: "AMS" } }     });
+
    <script type="text/x-mathjax-config"> MathJax.Hub.Config({ TeX: { equationNumbers: { autoNumber: "AMS" } } }); </script>
  </script>
+
    <script src="https://2021.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
  <script src="https://2021.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
+
</head>
  </script>
+
 
</head>
+
<body>
<body>
+
    <div class="navbar-container">
  <div class="navbar-container">
+
        <nav class="navbar"> <a class="bypass-block-link visually-hidden visible-when-focused" href="#main-content">Skip to main content</a>
  <nav class="navbar">
+
            <a class="navbar-logo" href="/Team:Vilnius-Lithuania"> <img alt="AmebyeLogo" src="https://static.igem.org/mediawiki/2021/b/b0/T--Vilnius-Lithuania--amebyeLogo.svg" /> AmeBye </a>
    <a class="navbar-logo" href="/Team:Vilnius-Lithuania">
+
            <ul class="nav-menu"></ul>
    <img alt="AmebyeLogo" src="../assets/logos/amebyeLogo.svg"/>
+
        </nav>
    AmeBye
+
        <div class="progress-container">
    </a>
+
            <div class="progress-bar"></div>
    <ul class="nav-menu">
+
        </div>
    </ul>
+
        <div class="animation-container">
  </nav>
+
            <script>
  <div class="progress-container">
+
                document.querySelector('body').classList.add("content-hidden");      window.addEventListener("load", function() {          setTimeout(function() {            document.querySelector('body').classList.remove("content-hidden");            document.querySelector('.animation-container').classList.add("loaded");            document.querySelector('.animation-container').innerHTML="";          }, 200);      });
    <div class="progress-bar">
+
            </script>
 +
            <div id="loading-animation"></div>
 +
            <div>Loading...</div>
 +
            <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/lottie&amp;action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
 +
            <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/loading_animation&amp;action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
 +
            <script>
 +
                var animation = bodymovin.loadAnimation({      container: document.getElementById('loading-animation'),      animationData: loading_animation,      renderer: 'svg',      loop: true,      autoplay: true,    });
 +
            </script>
 +
        </div>
 
     </div>
 
     </div>
  </div>
+
    <div class="background">
  </div>
+
        <canvas id="background-canvas"> </canvas>
  <div class="background">
+
        <canvas id="canvas-transition"> </canvas>
  <canvas id="background-canvas">
+
        <div class="app-header">
  </canvas>
+
            <div class="app-header-image-wrapper" id="img">
  <canvas id="canvas-transition">
+
                <h1 id="title">MODEL</h1> <img alt="Header" src="https://static.igem.org/mediawiki/2021/6/6f/T--Vilnius-Lithuania--Model.jpg" /> </div>
  </canvas>
+
        </div>
  <div class="app-header">
+
        <div class="app-content" id="main-content">
    <h1 id="title">
+
            <div class="app-content-text">
    MODEL
+
                <div class="content-page-container">
    </h1>
+
                    <h3 class="index-headline">Introduction            </h3>
    <div class="app-header-image-wrapper" id="img">
+
                    <p> We engineered a metabolic pathway for naringenin production in <i>E. coli</i> Nissle 1917 in order to produce the probiotics for the prevention part of our project. </p>
    <img alt="Header" src="https://static.igem.org/mediawiki/2021/f/ff/T--Vilnius-Lithuania--Excellence.jpg"/>
+
                    <p> We saw an opportunity to expedite the engineering process by using mathematical modeling to pick promoters to use in our engineered pathway. </p>
 +
                    <h3 class="index-headline">Derivation            </h3>
 +
                    <p> Creating a model that would be able to accurately estimate the amount of naringenin produced by the pathway is an infeasible task before doing any practical experiments. However, we are able to write down a simple model with which
 +
                        we could study the speed of the reactions and that would help us decide on the strength of promoters that should be used. </p>
 +
                    <p> To this end, we use the staple of modeling in synthetic biology: Michaelis–Menten kinetics. That is we model the following type of enzymatic reaction: $$[E] + [S] \leftrightarrows [ES] \rightarrow [E] + [P],$$ with differential equations:
 +
                        $$\frac{d [P]}{dt} = k_{cat}[E]\frac{[P]}{K_m + [P]},$$ $$\frac{d [S]}{dt} = -k_{cat}[E]\frac{[P]}{K_m + [P]},$$ here \([E]\), \([S]\), \([P]\) are the concentrations of enzyme, substrate and product respectively (and \([x]\) is
 +
                        going to denote the concentration of species \(x\) in all that follows), \(k_{cat}\) is a constant called the turnover number and \(K_m\) is a constant that is called Michaelis constant. </p>
 +
                    <p> In order to model the concentration of mRNA and enzymes, we use the following differential equations: $$\frac{d[mRNA]}{dt} = \alpha_{mRNA} - \beta_{mRNA}[mRNA],$$ $$\frac{d[Enzyme]}{dt} = \alpha_{enzyme}[mRNA] - \beta_{enzyme}[Enzyme],$$
 +
                        here \(\beta\)’s denote the decay rates, \(\alpha_{mRNA}\) denotes the transcription rate and \(\alpha_{enzyme}\) denotes the translation rate. </p>
 +
                    <p> Our team measured the strengths of candidate promoters relative to each other. In other words, we measured how many times a specific promoter is stronger or weaker than the promoter that was used as the positive control, as can be
 +
                        seen from <b>Table 1.</b></p>
 +
                    <div class="table-container">
 +
                        <div class="table-headline"> <b>Table 1.</b> Promoter strength in comparison to p-slpA.</div>
 +
                        <table class="table table-bordered table-hover table-condensed">
 +
                            <thead>
 +
                                <tr>
 +
                                    <th>Promoter</th>
 +
                                    <th>Relative strength</th>
 +
                                </tr>
 +
                            </thead>
 +
                            <tbody>
 +
                                <tr>
 +
                                    <td>BBa1033225</td>
 +
                                    <td>0.76</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>BBa1033222</td>
 +
                                    <td>0.45</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>BBa1033220 </td>
 +
                                    <td>0.58</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>P-slpA </td>
 +
                                    <td>1.00</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>J23118 </td>
 +
                                    <td>0.35</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>J23117 </td>
 +
                                    <td>0.31</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>J23115</td>
 +
                                    <td>0.27</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>J23114 </td>
 +
                                    <td>0.34</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>J23113 </td>
 +
                                    <td>0.36</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>J23107</td>
 +
                                    <td>0.50</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>J23106</td>
 +
                                    <td>0.47</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>J23103 </td>
 +
                                    <td>0.35</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>J23102</td>
 +
                                    <td>0.37</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>J23101</td>
 +
                                    <td>0.44</td>
 +
                                </tr>
 +
                            </tbody>
 +
                        </table>
 +
                    </div>
 +
                    <p> We would like this measurement to be reflected in our model. Thus, we denote some base transcription rate (specified later) as \(\zeta\) and write: $$\alpha_{mRNA} = \gamma_{mRNA}\zeta.$$ </p>
 +
                    <p> Now, our goal is to model the pathway depicted in <b>Fig. 1.</b></p>
 +
                    <div class="figure-container"> <img alt="" id="Naringenin-pathway-figure" src="https://static.igem.org/mediawiki/2021/7/73/T--Vilnius-Lithuania--Naringenin_synthesis.png" />
 +
                        <div> <b>Fig. 1.</b> Naringenin synthesis pathway. </div>
 +
                    </div>
 +
                    <p> The pathway can be expressed by the following chemical reactions: \begin{equation} \emptyset \rightarrow mRNA(TAL) \rightarrow \emptyset, \end{equation} \begin{equation} \emptyset \rightarrow mRNA(4CL) \rightarrow \emptyset, \end{equation}
 +
                        \begin{equation} \emptyset \rightarrow mRNA(CHS) \rightarrow \emptyset, \end{equation} \begin{equation} \emptyset \rightarrow mRNA(CHI) \rightarrow \emptyset, \end{equation} \begin{equation} mRNA(TAL) \rightarrow mRNA(TAL) + TAL,
 +
                        \end{equation} \begin{equation} TAL \rightarrow \emptyset, \end{equation} \begin{equation} mRNA(4CL) \rightarrow mRNA(4CL) + 4CL, \end{equation} \begin{equation} 4CL \rightarrow \emptyset, \end{equation} \begin{equation} mRNA(CHS)
 +
                        \rightarrow mRNA(CHS) + CHS, \end{equation} \begin{equation} CHS \rightarrow \emptyset, \end{equation} \begin{equation} mRNA(CHI) \rightarrow mRNA(CHI) + CHI, \end{equation} \begin{equation} CHI \rightarrow \emptyset, \end{equation}
 +
                        $$TYR + TAL \rightarrow CACID + TAL,$$ $$CACID + 4CL + CoA \rightarrow CCoA + 4CL,$$ $$CCoA + CHS + 3 \times MalCoA \rightarrow NCHAL + CHS + 4 \times CoA,$$ $$NCHAL + CHI \rightarrow NAR + CHI,$$ $$NAR \rightarrow \emptyset.$$
 +
                        </p>
 +
                    <p> If we assume that there is an infinite (or alternatively very large) amount of tyrosine, CoA and Mal-CoA (if we wished to model the amount of naringenin produced, then assumption that the concentration of Mal-CoA is infinite would
 +
                        be incorrect as this seems to be the major bottleneck of the pathway. However here we only wish to study the reaction speeds, thus we believe that the assumption is valid for this purpose), we can model these reactions by the following
 +
                        system of differential equations: \begin{equation} \frac{d(TAL)}{dt} = \gamma_{TAL}\zeta - \beta_{m(TAL)}(TAL), \end{equation} \begin{equation} \frac{d(4CL)}{dt} = \gamma_{4CL}\zeta - \beta_{m(4CL)}(4CL), \end{equation} \begin{equation}
 +
                        \frac{d(CHS)}{dt} = \gamma_{CHS}\zeta - \beta_{m(CHS)}(CHS), \end{equation} \begin{equation} \frac{d(CHI)}{dt} = \gamma_{CHI}\zeta - \beta_{m(CHI)}(CHI), \end{equation} \begin{equation} \frac{d[TAL]}{dt} = \alpha_{TAL}(TAL) - \beta_{TAL}[TAL],
 +
                        \end{equation} \begin{equation} \frac{d[4CL]}{dt} = \alpha_{4CL}(4CL) - \beta_{4CL}[4CL], \end{equation} \begin{equation} \frac{d[CHS]}{dt} = \alpha_{CHS}(CHS) - \beta_{CHS}[CHS], \end{equation} \begin{equation} \frac{d[CHI]}{dt}
 +
                        = \alpha_{CHI}(CHI) - \beta_{CHI}[CHI], \end{equation} $$\frac{d[CACID]}{dt} = k_{TAL}[TAL] - k_{4CL}[4CL]\frac{[CACID]}{K_{4CL} + [CACID]},$$ $$\frac{d[CCoA]}{dt} = k_{4CL}[4CL]\frac{[CACID]}{K_{4CL} + [CACID]} - k_{CHS}[CHS]\frac{[CCoA]}{K_{CHS}
 +
                        + [CCoA]},$$ $$\frac{d[NCHAL]}{dt} = k_{CHS}[CHS]\frac{[CCoA]}{K_{CHS} + [CCoA]} - k_{CHI}[CHI]\frac{[NCHAL]}{K_{CHI} + [NCHAL]},$$ $$\frac{d[NCHAL]}{dt} = k_{CHI}[CHI]\frac{[NCHAL]}{K_{CHI} + [NCHAL]} - \beta_{NAR}[NAR],$$ here
 +
                        \((x)\) denotes \([mRNA(x)]\), small \(k\)’s denote the appropriate turnover numbers and big \(K\)’s denote the appropriate Michaelis constants. </p>
 +
                    <p> This model is overly complicated for our purposes. We can reduce it by noting that the reactions \((1) - (12)\) happen on a faster time scale then the rest. Therefore, we can assume that the reactions \((1) - (12)\) are in the steady
 +
                        state for the entirety of the process. With this assumption we have additional conditions: \begin{equation} \frac{d(TAL)}{dt} = 0, \end{equation} \begin{equation} \frac{d(4CL)}{dt} = 0, \end{equation} \begin{equation} \frac{d(CHS)}{dt}
 +
                        = 0, \end{equation} \begin{equation} \frac{d(CHI)}{dt} = 0, \end{equation} \begin{equation} \frac{d[TAL]}{dt} = 0, \end{equation} \begin{equation} \frac{d[4CL]}{dt} = 0, \end{equation} \begin{equation} \frac{d[CHS]}{dt} = 0, \end{equation}
 +
                        \begin{equation} \frac{d[CHI]}{dt} = 0. \end{equation} </p>
 +
                    <p> By combining \((13)-(16)\) with \((21)-(24)\) we get $$(x) = \frac{\gamma\zeta}{\beta_{mRNA}},$$ and then by combining \((17)-(20)\) with \((25)-(28)\) we get $$[x] = \frac{\alpha\gamma\zeta}{\beta_{mRNA}\beta_{enzyme}}.$$ </p>
 +
                    <p>
 +
                    We can additionally assume that translation rates and decay rates of mRNA and enzyme are similar for different species. Then by taking the base transcription rate \(\zeta\) such that $$\frac{\alpha\zeta}{\beta_{mRNA}\beta_{enzyme}}$$
 +
                        is equal to 1 we can reduce the original model to a simpler model with less equations: $$\frac{d[CACID]}{dt} = k_{TAL}\gamma_{TAL} - k_{4CL}\gamma_{4CL}\frac{[CACID]}{K_{4CL} + [CACID]},$$ $$\frac{d[CCoA]}{dt} = k_{4CL}\gamma_{4CL}\frac{[CACID]}{K_{4CL}
 +
                        + [CACID]} - k_{CHS}\gamma_{CHS}\frac{[CCoA]}{K_{CHS} + [CCoA]},$$ $$\frac{d[NCHAL]}{dt} = k_{CHS}\gamma_{CHS}\frac{[CCoA]}{K_{CHS} + [CCoA]} - k_{CHI}\gamma_{CHI}\frac{[NCHAL]}{K_{CHI} + [NCHAL]},$$ $$\frac{d[NAR]}{dt} = k_{CHI}\gamma_{CHI}\frac{[NCHAL]}{K_{CHI}
 +
                        + [NCHAL]} - \beta_{NAR}[NAR].$$ </p>
 +
                    <h3 class="index-headline">Analysis            </h3>
 +
                    <p> We see that in the steady state we have $$[NAR] = \frac{k_{TAL}\gamma_{TAL}}{\beta_{NAR}}.$$ This makes intuitive sense - the more substrate one puts in, the more product one expects to get. However, the steady-state might take an
 +
                        exorbitant amount of time to reach depending on the parameters. Thus, we decided to study the system after simulating it for 16 hours (taking the initial concentrations of all proteins in the pathway to be 0) as these are the timescales
 +
                        that the performance of the engineered pathway would be measured in. </p>
 +
                    <p> Next, we researched the literature to compile probable values for turnover numbers and Michaelis constants. We came up with the following figures: </p>
 +
                    <div class="table-container">
 +
                        <div class="table-headline"> <b>Table 2.</b> Turnover numbers (\(k_{cat}\))</div>
 +
                        <table class="table table-bordered table-hover table-condensed">
 +
                            <thead>
 +
                                <tr>
 +
                                    <th>Enzyme </th>
 +
                                    <th>Values (1/s) </th>
 +
                                    <th>Average (1/s) </th>
 +
                                    <th>Reference </th>
 +
                                </tr>
 +
                            </thead>
 +
                            <tbody>
 +
                                <tr>
 +
                                    <td>Tyrosine ammonia-lyase (TAL) </td>
 +
                                    <td>107 </td>
 +
                                    <td>119 </td>
 +
                                    <td> [1] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>114 </td>
 +
                                    <td> </td>
 +
                                    <td> [1] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>115 </td>
 +
                                    <td> </td>
 +
                                    <td> [1] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>139 </td>
 +
                                    <td> </td>
 +
                                    <td> [1] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>4-coumarate-CoA ligase (4CL) </td>
 +
                                    <td>0.2163 </td>
 +
                                    <td>0.3354 </td>
 +
                                    <td> [2] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.2205 </td>
 +
                                    <td> </td>
 +
                                    <td> [2] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.7821 </td>
 +
                                    <td> </td>
 +
                                    <td> [2] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.1225 </td>
 +
                                    <td> </td>
 +
                                    <td> [2] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>Chalcone synthase (CHS) </td>
 +
                                    <td>0.045 </td>
 +
                                    <td>0.0575 </td>
 +
                                    <td> [3] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.178 </td>
 +
                                    <td> </td>
 +
                                    <td> [4] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.11 </td>
 +
                                    <td> </td>
 +
                                    <td> [4] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.085 </td>
 +
                                    <td> </td>
 +
                                    <td> [4] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.05 </td>
 +
                                    <td> </td>
 +
                                    <td> [4] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.0202 </td>
 +
                                    <td> </td>
 +
                                    <td> [5] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.0167 </td>
 +
                                    <td> </td>
 +
                                    <td> [6] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.042 </td>
 +
                                    <td> </td>
 +
                                    <td> [7] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.007 </td>
 +
                                    <td> </td>
 +
                                    <td> [7] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.021 </td>
 +
                                    <td> </td>
 +
                                    <td> [8] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>Chalcone isomerase (CHI) </td>
 +
                                    <td>5 </td>
 +
                                    <td>89.5 </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>7.8 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>9.6 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>35.2 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>56.9 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>130.3 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>134.7 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>197.7 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>228.2 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                            </tbody>
 +
                        </table>
 +
                    </div>
 +
                    <div class="table-container">
 +
                        <div class="table-headline"> <b>Table 3.</b> Michaelis constants (\(K_{M}\))</div>
 +
                        <table class="table table-bordered table-hover table-condensed">
 +
                            <thead>
 +
                                <tr>
 +
                                    <th>Enzyme </th>
 +
                                    <th>Values (mM) </th>
 +
                                    <th>Average (mM) </th>
 +
                                    <th>Reference </th>
 +
                                </tr>
 +
                            </thead>
 +
                            <tbody>
 +
                                <tr>
 +
                                    <td>4-coumarate-CoA ligase (4CL) </td>
 +
                                    <td>0.389 </td>
 +
                                    <td>0.276 </td>
 +
                                    <td> [2] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.155 </td>
 +
                                    <td> </td>
 +
                                    <td> [2] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.283 </td>
 +
                                    <td> </td>
 +
                                    <td> [2] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>Chalcone synthase (CHS) </td>
 +
                                    <td>0.0049 </td>
 +
                                    <td>0.0049 </td>
 +
                                    <td> [7] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>Chalcone isomerase (CHI) </td>
 +
                                    <td>0.0024 </td>
 +
                                    <td>0.007 </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.0048 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.0048 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.0061 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.007 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.0085 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.0086 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.0099 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td> </td>
 +
                                    <td>0.0105 </td>
 +
                                    <td> </td>
 +
                                    <td> [9] </td>
 +
                                </tr>
 +
                            </tbody>
 +
                        </table>
 +
                    </div>
 +
                    <p> From <b>Table 2</b> we see that the reaction producing naringenin chalcone seems to be around 10 times slower than the second slowest one in the pathway. This makes sense since this is a sequential reaction involving 4 molecules. Seeing
 +
                        this, we hypothesized that this reaction is the major bottleneck of the pathway. That is, the only parameters that have a major impact on the output of the model are \(k_{CHS}\) and \(\gamma_{CHS}\). </p>
 +
                    <p> We validated this hypothesis by performing a simple sensitivity analysis as follows: </p>
 +
                    <ol>
 +
                        <li> Generate 10000 samples of parameter values by uniformly sampling from the intervals detailed in <b>Table 4.</b> The average value for \(\beta_{NAR}\) was derived from [10]. </li>
 +
                        <li>Simulate the model with generated random parameters for 16 hours and save the concentration of naringenin. </li>
 +
                        <li>Compute the correlation coefficients between the parameters and concentration of naringenin. </li>
 +
                    </ol>
 +
                    <div class="table-container">
 +
                        <div class="table-headline"> <b>Table 4.</b> Parameter values used in sensitivity analysis</div>
 +
                        <table class="table table-bordered table-hover table-condensed">
 +
                            <thead>
 +
                                <tr>
 +
                                    <th>Parameter </th>
 +
                                    <th>Value range </th>
 +
                                </tr>
 +
                            </thead>
 +
                            <tbody>
 +
                                <tr>
 +
                                    <td>\(\gamma_{TAL}\) </td>
 +
                                    <td>\(0.33 - 3\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(\gamma_{4CL}\) </td>
 +
                                    <td>\(0.33 - 3\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(\gamma_{CHS}\) </td>
 +
                                    <td>\(0.33 - 3\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(\gamma_{CHI}\) </td>
 +
                                    <td>\(0.33 - 3\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(\beta_{NAR}\) </td>
 +
                                    <td>\(3.6\mathrm{e}{-5} \pm 3.6\mathrm{e}{-6} \: (1/s)\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(k_{TAL}\) </td>
 +
                                    <td>\(119 \pm 11.9 \: (1/s)\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(k_{4CL}\) </td>
 +
                                    <td>\(0.3354 \pm 0.034 \: (1/s)\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(k_{CHS}\) </td>
 +
                                    <td>\(0.0575 \pm 0.006 \: (1/s)\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(k_{CHI}\) </td>
 +
                                    <td>\(89.5 \pm 8.95 \: (1/s)\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(K_{4CL}\) </td>
 +
                                    <td>\(0.276 \pm 0.028 \: (mM)\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(K_{CHS}\) </td>
 +
                                    <td>\(0.0049 \pm 0.0005 \: (mM)\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(K_{CHI}\) </td>
 +
                                    <td>\(0.007 \pm 0.0007 \: (mM)\) </td>
 +
                                </tr>
 +
                            </tbody>
 +
                        </table>
 +
                    </div>
 +
                    <p> The results of sensitivity analysis are presented in <b>Table 5.</b></p>
 +
                    <div class="table-container">
 +
                        <div class="table-headline"> <b>Table 5.</b> Results of sensitivity analysis </div>
 +
                        <table class="table table-bordered table-hover table-condensed">
 +
                            <thead>
 +
                                <tr>
 +
                                    <th>Parameter </th>
 +
                                    <th>Correlation coefficient </th>
 +
                                </tr>
 +
                            </thead>
 +
                            <tbody>
 +
                                <tr>
 +
                                    <td>\(\gamma_{TAL}\) </td>
 +
                                    <td>\(0.0242\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(\gamma_{4CL}\) </td>
 +
                                    <td>\(0.0339\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(\gamma_{CHS}\) </td>
 +
                                    <td>\(0.9833\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(\gamma_{CHI}\) </td>
 +
                                    <td>\(0.0008\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(\beta_{NAR}\) </td>
 +
                                    <td>\(-0.0938\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(k_{TAL}\) </td>
 +
                                    <td>\(-0.0113\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(k_{4CL}\) </td>
 +
                                    <td>\(0.0041\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(k_{CHS}\) </td>
 +
                                    <td>\(0.1042\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(k_{CHI}\) </td>
 +
                                    <td>\(-0.0009\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(K_{4CL}\) </td>
 +
                                    <td>\(-0.0161\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(K_{CHS}\) </td>
 +
                                    <td>\(-0.0199\) </td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <td>\(K_{CHI}\) </td>
 +
                                    <td>\(-0.0096\) </td>
 +
                                </tr>
 +
                            </tbody>
 +
                        </table>
 +
                    </div>
 +
                    <p> The sensitivity analysis confirmed our hypothesis. We note that it also showed that another important parameter is the decay rate of naringenin. </p>
 +
                    <h3 class="index-headline">Conclusion            </h3>
 +
                    <p> We derived a simple mathematical model for the naringenin pathway that our team wanted to implement <i>in vivo.</i> By performing sensitivity analysis, we determined that the reaction which turns Coumaryl-CoA to naringenin chalcone
 +
                        synthase is the bottleneck of the naringenin synthesis process.</p>
 +
                    <p> In the end we decided to use the pSlpA promoter to produce the enzyme responsible for the bottleneck reaction as this promoter was the strongest one from the one's that we measured (as can be seen from <b>Table 1</b>). For the rest
 +
                        of the enzymes we could use a weaker promoter according to the model. Thus, we chose BBa_J23101 sequence, since it demonstrated adequate performance in our measurements. </p>
 +
                </div>
 +
                <div class="references-wrapper">
 +
                    <div class="breaker"></div>
 +
                    <h2>References</h2>
 +
                    <div class="references-container">
 +
                        <div class="number">1.</div>
 +
                        <div> Zhou, S., Liu, P., Chen, J., Du, G., Li, H., Zhou, J. (2016). Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 100, 10443-10452. <a href="https://www.pubmed.ncbi.nlm.nih.gov/27401923">To the article.</a>                            </div>
 +
                        <div class="number">2.</div>
 +
                        <div> Gao, S., Yu, H. N., Xu, R. X., Cheng, A. X., &amp; Lou, H. X. (2015). Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum. Phytochemistry, 111, 48–58. <a href="https://pubmed.ncbi.nlm.nih.gov/25593011/">To the article.</a>                            </div>
 +
                        <div class="number">3.</div>
 +
                        <div> Guo, H.-L., Yang, Y.-D., Ma, Y.-D., Liu, W.-B., Feng, J., Luo, Z.-Q., … Ma, L.-Q. (2016). A bifunctional type III polyketide synthase from raspberry (Rubus idaeus L.) with both chalcone synthase and benzalacetone synthase activity.
 +
                            Journal of Plant Biochemistry and Biotechnology, 26(1), 80–90. <a href="https://link.springer.com/article/10.1007/s13562-016-0365-7">To the article.</a> </div>
 +
                        <div class="number">4.</div>
 +
                        <div> Shen, Y., Li, X., Chai, T., &amp; Wang, H. (2016). Outer-sphere residues influence the catalytic activity of a chalcone synthase from Polygonum cuspidatum. FEBS open bio, 6(6), 610–618. <a href="https://pubmed.ncbi.nlm.nih.gov/27419064/">To the article.</a>                            </div>
 +
                        <div class="number">5.</div>
 +
                        <div> Stewart, C., Jr, Woods, K., Macias, G., Allan, A. C., Hellens, R. P., &amp; Noel, J. P. (2017). Molecular architectures of benzoic acid-specific type III polyketide synthases. Acta crystallographica. Section D, Structural biology,
 +
                            73(Pt 12), 1007–1019. <a href="https://pubmed.ncbi.nlm.nih.gov/29199980/">To the article.</a> </div>
 +
                        <div class="number">6.</div>
 +
                        <div> Abe, I., Watanabe, T., &amp; Noguchi, H. (2004). Enzymatic formation of long-chain polyketide pyrones by plant type III polyketide synthases. Phytochemistry, 65(17), 2447–2453. <a href="https://pubmed.ncbi.nlm.nih.gov/15381408/">To the article.</a>                            </div>
 +
                        <div class="number">7.</div>
 +
                        <div> Liu, B., Falkenstein-Paul, H., Schmidt, W., &amp; Beerhues, L. (2003). Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of
 +
                            two polyketide synthases. The Plant journal : for cell and molecular biology, 34(6), 847–855. <a href="https://pubmed.ncbi.nlm.nih.gov/12795704/">To the article.</a> </div>
 +
                        <div class="number">8.</div>
 +
                        <div> Morita, H., Takahashi, Y., Noguchi, H., &amp; Abe, I. (2000). Enzymatic formation of unnatural aromatic polyketides by chalcone synthase. Biochemical and biophysical research communications, 279(1), 190–195. <a href="https://pubmed.ncbi.nlm.nih.gov/11112437/">To the article.</a>                            </div>
 +
                        <div class="number">9.</div>
 +
                        <div> Park, S. H., Lee, C. W., Cho, S. M., Lee, H., Park, H., Lee, J., &amp; Lee, J. H. (2018). Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv. PloS one,
 +
                            13(2), e0192415. <a href="https://pubmed.ncbi.nlm.nih.gov/29394293/">To the article.</a> </div>
 +
                        <div class="number">10.</div>
 +
                        <div> Kanaze, F. I., Bounartzi, M. I., Georgarakis, M., &amp; Niopas, I. (2006). Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. European Journal of Clinical
 +
                            Nutrition, 61(4), 472–477. <a href="https://www.nature.com/articles/1602543">To the article.</a> </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
            <div class="index-container">
 +
                <div class="index-header"></div>
 +
                <div class="index-content"></div>
 +
            </div>
 +
        </div>
 +
        <footer>
 +
            <div class="logo-igem">
 +
                <object data="https://static.igem.org/mediawiki/2021/f/ff/T--Vilnius-Lithuania--iGEM-2021.svg"> </object>
 +
            </div>
 +
            <div class="social-container">
 +
                <div>FOLLOW US</div>
 +
                <div>
 +
                    <a class="placeholder-social-icon" href="https://www.facebook.com/VilniusiGEM"> <img src="https://static.igem.org/mediawiki/2021/3/36/T--Vilnius-Lithuania--facebook.svg" /> </a>
 +
                    <a class="placeholder-social-icon" href="https://www.instagram.com/igem_vilnius/"> <img src="https://static.igem.org/mediawiki/2021/6/64/T--Vilnius-Lithuania--instagram.svg" /> </a>
 +
                    <a class="placeholder-social-icon" href="https://www.linkedin.com/company/vilnius-igem/"> <img src="https://static.igem.org/mediawiki/2021/e/e7/T--Vilnius-Lithuania--linkedin.svg" /> </a>
 +
                </div>
 +
            </div>
 +
            <div class="mail-container">
 +
                <div>CONTACT US</div> <a href="mailto:info@vilniusigem.lt">info@vilniusigem.lt</a> </div>
 +
            <div class="grid-sponsors">
 +
                <div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/d/dc/T--Vilnius-Lithuania--VU.svg"> </object>
 +
                    </div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/b/bf/T--Vilnius-Lithuania--Termofisher.svg"> </object>
 +
                    </div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/1/10/T--Vilnius-Lithuania--CityOfVilnius.svg"> </object>
 +
                    </div>
 +
                </div>
 +
                <div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/b/bb/T--Vilnius-Lithuania--GMC.svg"> </object>
 +
                    </div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/9/98/T--Vilnius-Lithuania--Nanodiagnostika.svg"> </object>
 +
                    </div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/1/16/T--Vilnius-Lithuania--Telesoftas.svg"> </object>
 +
                    </div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/7/70/T--Vilnius-Lithuania--Kopicentras.svg"> </object>
 +
                    </div>
 +
                </div>
 +
                <div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/d/df/T--Vilnius-Lithuania--SnapGene.svg"> </object>
 +
                    </div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/3/3e/T--Vilnius-Lithuania--Laborama.svg"> </object>
 +
                    </div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/c/c1/T--Vilnius-Lithuania--Biotecha.svg"> </object>
 +
                    </div>
 +
                    <div>
 +
                        <object data="https://static.igem.org/mediawiki/2021/4/4f/T--Vilnius-Lithuania--Grida.svg"> </object>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </footer>
 
     </div>
 
     </div>
  </div>
+
     <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/navigationTabs&amp;action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
  <div class="app-content" id="main-content">
+
    <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/background&amp;action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
     <div class="app-content-text">
+
    <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/contentpage&amp;action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
    <div class="content-page-container">
+
    <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/navbar&amp;action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
      <h3 class="index-headline">
+
    <script>
      Motivation
+
        contentPage(        "Sections",        true,        300,      )
      </h3>
+
    </script>
      <p>
+
    <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/GlslCanvas&amp;action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
      We engineered a metabolic pathway for naringenin production in
+
    <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/backgroundTransition&amp;action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
      <i>
+
</body>
        E. coli Nissle 1917
+
 
      </i>
+
      in order to produce the probiotics for the prevention part of our project.              We performed mathematical analysis in order to expedite the engineering process              by deciding what promoters to use based on the model for the pathway we derived.
+
      </p>
+
      <h3 class="index-headline">
+
      Derivation
+
      </h3>
+
      <p>
+
      Creating a model that would be able to accurately estimate the amount of naringenin              produced by the pathway is an infeasible task before doing any practical experiments.              However, we are able to write down a simple model with which we could study the speed              of the reactions and that would help us decide on the strength of promoters that should be              used.
+
      </p>
+
      <p>
+
      To this end, we use the staple of modeling in synthetic biology:              Michaelis–Menten kinetics. That is we model the following type of enzymatic reaction:              $$[E] + [S] \leftrightarrows [ES] \rightarrow [E] + [P],$$              with differential equations:              $$\frac{d [P]}{dt} = k_{cat}[E]\frac{[P]}{K_m + [P]},$$              $$\frac{d [S]}{dt} = -k_{cat}[E]\frac{[P]}{K_m + [P]},$$              here \([E]\), \([S]\), \([P]\) are the concentrations of enzyme, substrate and product              respectively (and \([x]\) is going to denote the concentration of species \(x\) in all that follows),              \(k_{cat}\) is a constant called the turnover number and \(K_m\) is a constant              that is called Michaelis constant.
+
      </p>
+
      <p>
+
      In order to model the concentration of mRNA and enzymes, we use the following differential equations:              $$\frac{d[mRNA]}{dt} = \alpha_{mRNA} - \beta_{mRNA}[mRNA],$$              $$\frac{d[Enzyme]}{dt} = \alpha_{enzyme}[mRNA] - \beta_{enzyme}[Enzyme],$$              here \(\beta\)’s denote the decay rates, \(\alpha_{mRNA}\) denotes the transcription              rate and \(\alpha_{enzyme}\) denotes the translation rate.
+
      </p>
+
      <p>
+
      Our team measured the strengths of candidate promoters relative to each other.              In other words, we measured how many times a specific promoter is stronger or              weaker than the promoter that was used as the positive control, as can be seen from
+
      <b>
+
        Table 1
+
      </b>
+
      .
+
      </p>
+
      <p>
+
      We would like this measurement to be reflected in our model.              Thus, we denote some base transcription rate (specified later) as \(\zeta\) and write:              $$\alpha_{mRNA} = \gamma_{mRNA}\zeta.$$
+
      </p>
+
      <p>
+
      Now, our goal is to model the pathway depicted in
+
      <b>
+
        Figure 1
+
      </b>
+
      .
+
      </p>
+
      <div class="figure-container">
+
      <img alt="" id="Naringenin-pathway-figure" src="../assets/images/T--Vilnius-Lithuania--Naringenin_synthesis.png"/>
+
      <div>
+
        <b>
+
        Fig. 1.
+
        </b>
+
        Naringenin synthesis pathway.
+
      </div>
+
      </div>
+
      <p>
+
      The pathway can be expressed by the following chemical reactions:              \begin{equation}              \emptyset \rightarrow mRNA(TAL) \rightarrow \emptyset,              \end{equation}              \begin{equation}              \emptyset \rightarrow mRNA(4CL) \rightarrow \emptyset,              \end{equation}              \begin{equation}              \emptyset \rightarrow mRNA(CHS) \rightarrow \emptyset,              \end{equation}              \begin{equation}              \emptyset \rightarrow mRNA(CHI) \rightarrow \emptyset,              \end{equation}              \begin{equation}              mRNA(TAL) \rightarrow mRNA(TAL) + TAL,              \end{equation}              \begin{equation}              TAL \rightarrow \emptyset,              \end{equation}              \begin{equation}              mRNA(4CL) \rightarrow mRNA(4CL) + 4CL,              \end{equation}              \begin{equation}              4CL \rightarrow \emptyset,              \end{equation}              \begin{equation}              mRNA(CHS) \rightarrow mRNA(CHS) + CHS,              \end{equation}              \begin{equation}              CHS \rightarrow \emptyset,              \end{equation}              \begin{equation}              mRNA(CHI) \rightarrow mRNA(CHI) + CHI,              \end{equation}              \begin{equation}              CHI \rightarrow \emptyset,              \end{equation}              $$TYR + TAL \rightarrow CACID + TAL,$$              $$CACID + 4CL + CoA \rightarrow CCoA + 4CL,$$              $$CCoA + CHS + 3 \times MalCoA \rightarrow NCHAL + CHS + 4 \times CoA,$$              $$NCHAL + CHI \rightarrow NAR + CHI,$$              $$NAR \rightarrow \emptyset.$$
+
      </p>
+
      <p>
+
      If we assume that there is an infinite (or alternatively very large) amount of tyrosine,              CoA and Mal-CoA (if we wished to model the amount of naringenin produced,              then assumption that the concentration of Mal-CoA is infinite would be incorrect as              this seems to be the major bottleneck of the pathway. However here we only wish to              study the reaction speeds, thus we believe that the assumption is valid for this purpose),              we can model these reactions by the following system of differential equations:              \begin{equation}                \frac{d(TAL)}{dt} = \gamma_{TAL}\zeta - \beta_{m(TAL)}(TAL),              \end{equation}              \begin{equation}                \frac{d(4CL)}{dt} = \gamma_{4CL}\zeta - \beta_{m(4CL)}(4CL),              \end{equation}              \begin{equation}                \frac{d(CHS)}{dt} = \gamma_{CHS}\zeta - \beta_{m(CHS)}(CHS),              \end{equation}              \begin{equation}                \frac{d(CHI)}{dt} = \gamma_{CHI}\zeta - \beta_{m(CHI)}(CHI),              \end{equation}              \begin{equation}                \frac{d[TAL]}{dt} = \alpha_{TAL}(TAL) - \beta_{TAL}[TAL],              \end{equation}              \begin{equation}                \frac{d[4CL]}{dt} = \alpha_{4CL}(4CL) - \beta_{4CL}[4CL],              \end{equation}              \begin{equation}                \frac{d[CHS]}{dt} = \alpha_{CHS}(CHS) - \beta_{CHS}[CHS],              \end{equation}              \begin{equation}                \frac{d[CHI]}{dt} = \alpha_{CHI}(CHI) - \beta_{CHI}[CHI],              \end{equation}              $$\frac{d[CACID]}{dt} = k_{TAL}[TAL] - k_{4CL}[4CL]\frac{[CACID]}{K_{4CL} + [CACID]},$$              $$\frac{d[CCoA]}{dt} = k_{4CL}[4CL]\frac{[CACID]}{K_{4CL} + [CACID]} - k_{CHS}[CHS]\frac{[CCoA]}{K_{CHS} + [CCoA]},$$              $$\frac{d[NCHAL]}{dt} = k_{CHS}[CHS]\frac{[CCoA]}{K_{CHS} + [CCoA]} - k_{CHI}[CHI]\frac{[NCHAL]}{K_{CHI} + [NCHAL]},$$              $$\frac{d[NCHAL]}{dt} = k_{CHI}[CHI]\frac{[NCHAL]}{K_{CHI} + [NCHAL]} - \beta_{NAR}[NAR],$$              here \((x)\) denotes \([mRNA(x)]\), small \(k\)’s denote the appropriate turnover numbers              and big \(K\)’s denote the appropriate Michaelis constants.
+
      </p>
+
      <p>
+
      This model is overly complicated for our purposes. We can reduce it by noting that the reactions              \((1) - (12)\) happen on a faster time scale then the rest. Therefore, we can assume that the reactions              \((1) - (12)\) are in the steady state for the entirety of the process. With this assumption we have              additional conditions:              \begin{equation}                \frac{d(TAL)}{dt} = 0,              \end{equation}              \begin{equation}                \frac{d(4CL)}{dt} = 0,              \end{equation}              \begin{equation}                \frac{d(CHS)}{dt} = 0,              \end{equation}              \begin{equation}                \frac{d(CHI)}{dt} = 0,              \end{equation}              \begin{equation}                \frac{d[TAL]}{dt} = 0,              \end{equation}              \begin{equation}                \frac{d[4CL]}{dt} = 0,              \end{equation}              \begin{equation}                \frac{d[CHS]}{dt} = 0,              \end{equation}              \begin{equation}                \frac{d[CHI]}{dt} = 0.              \end{equation}
+
      </p>
+
      <p>
+
      By combining \((13)-(16)\) with \((21)-(24)\) we get              $$(x) = \frac{\gamma\zeta}{\beta_{mRNA}},$$              and then by combining \((17)-(20)\) with \((25)-(28)\) we get              $$[x] = \frac{\alpha\gamma\zeta}{\beta_{mRNA}\beta_{enzyme}}.$$
+
      </p>
+
      <p>
+
      We can additionally assume that translation rates and decay rates              of mRNA and enzyme are similar for different species. Then by taking              the base transcription rate \(\zeta\) such that              $$\frac{\alpha\zeta}{\beta_{mRNA}\beta_{enzyme}}$$              is equal to 1 we can reduce the original model to a simpler model with less equations:              $$\frac{d[CACID]}{dt} = k_{TAL}\gamma_{TAL} - k_{4CL}\gamma_{4CL}\frac{[CACID]}{K_{4CL} + [CACID]},$$              $$\frac{d[CCoA]}{dt} = k_{4CL}\gamma_{4CL}\frac{[CACID]}{K_{4CL} + [CACID]} - k_{CHS}\gamma_{CHS}\frac{[CCoA]}{K_{CHS} + [CCoA]},$$              $$\frac{d[NCHAL]}{dt} = k_{CHS}\gamma_{CHS}\frac{[CCoA]}{K_{CHS} + [CCoA]} - k_{CHI}\gamma_{CHI}\frac{[NCHAL]}{K_{CHI} + [NCHAL]},$$              $$\frac{d[NAR]}{dt} = k_{CHI}\gamma_{CHI}\frac{[NCHAL]}{K_{CHI} + [NCHAL]} - \beta_{NAR}[NAR].$$
+
      </p>
+
      <h3 class="index-headline">
+
      Analysis
+
      </h3>
+
      <p>
+
      We see that in the steady state we have              $$[NAR] = \frac{k_{TAL}\gamma_{TAL}}{\beta_{NAR}}.$$              This makes intuitive sense - the more substrate one puts in,              the more product one expects to get. However, the steady-state might              take an exorbitant amount of time to reach depending on the parameters.              Thus, we decided to study the system after simulating it for 16 hours              (taking the initial concentrations of all proteins in the pathway to be 0)              as these are the timescales that the  performance of the engineered pathway would be measured in.
+
      </p>
+
      <p>
+
      Next, we researched the literature to compile probable values              for turnover numbers and Michaelis constants. We came up with the following figures:
+
      </p>
+
      <div class="table-container">
+
      <div>
+
        <b>
+
        Table 2
+
        </b>
+
        <b>
+
        .
+
        </b>
+
        Turnover numbers (\(k_{cat}\)).
+
      </div>
+
      <table class="table table-bordered table-hover table-condensed">
+
        <thead>
+
        <tr>
+
          <th>
+
          Enzyme
+
          </th>
+
          <th>
+
          Values (1/s)
+
          </th>
+
          <th>
+
          Average (1/s)
+
          </th>
+
          <th>
+
          Reference
+
          </th>
+
        </tr>
+
        </thead>
+
        <tbody>
+
        <tr>
+
          <td>
+
          Tyrosine ammonia-lyase (TAL)
+
          </td>
+
          <td>
+
          107
+
          </td>
+
          <td>
+
          119
+
          </td>
+
          <td>
+
          <b>
+
            [1]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          114
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [1]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          115
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [1]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          139
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [1]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          4-coumarate-CoA ligase (4CL)
+
          </td>
+
          <td>
+
          0.2163
+
          </td>
+
          <td>
+
          0.3354
+
          </td>
+
          <td>
+
          <b>
+
            [2]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.2205
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [2]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.7821
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [2]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.1225
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [2]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          Chalcone synthase (CHS)
+
          </td>
+
          <td>
+
          0.045
+
          </td>
+
          <td>
+
          0.0575
+
          </td>
+
          <td>
+
          <b>
+
            [3]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.178
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [4]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.11
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [4]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.085
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [4]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.05
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [4]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.0202
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [5]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.0167
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [6]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.042
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [7]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.007
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [7]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.021
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [8]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          Chalcone isomerase (CHI)
+
          </td>
+
          <td>
+
          5
+
          </td>
+
          <td>
+
          89.5
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          7.8
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          9.6
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          35.2
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          56.9
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          130.3
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          134.7
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          197.7
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          228.2
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        </tbody>
+
      </table>
+
      </div>
+
      <div class="table-container">
+
      <div>
+
        <b>
+
        Table 3
+
        </b>
+
        <b>
+
        .
+
        </b>
+
        Michaelis constants (\(K_{M}\)).
+
      </div>
+
      <table class="table table-bordered table-hover table-condensed">
+
        <thead>
+
        <tr>
+
          <th>
+
          Enzyme
+
          </th>
+
          <th>
+
          Values (mM)
+
          </th>
+
          <th>
+
          Average (mM)
+
          </th>
+
          <th>
+
          Reference
+
          </th>
+
        </tr>
+
        </thead>
+
        <tbody>
+
        <tr>
+
          <td>
+
          4-coumarate-CoA ligase (4CL)
+
          </td>
+
          <td>
+
          0.389
+
          </td>
+
          <td>
+
          0.276
+
          </td>
+
          <td>
+
          <b>
+
            [2]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.155
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [2]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.283
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [2]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          Chalcone synthase (CHS)
+
          </td>
+
          <td>
+
          0.0049
+
          </td>
+
          <td>
+
          0.0049
+
          </td>
+
          <td>
+
          <b>
+
            [7]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          Chalcone isomerase (CHI)
+
          </td>
+
          <td>
+
          0.0024
+
          </td>
+
          <td>
+
          0.007
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.0048
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.0048
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.0061
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.007
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.0085
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.0086
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.0099
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          </td>
+
          <td>
+
          0.0105
+
          </td>
+
          <td>
+
          </td>
+
          <td>
+
          <b>
+
            [9]
+
          </b>
+
          </td>
+
        </tr>
+
        </tbody>
+
      </table>
+
      </div>
+
      <p>
+
      From
+
      <b>
+
        Table 1
+
      </b>
+
      we see that the reaction producing naringenin chalcone seems to              be around 10 times slower than the second slowest one in the pathway.              This makes sense since this is a sequential reaction involving 4 molecules.              Seeing this, we hypothesized that this reaction is the major bottleneck of the pathway.              That is, the only parameters that have a major impact on the output of the model are              \(k_{CHS}\) and \(\gamma_{CHS}\).
+
      </p>
+
      <p>
+
      We validated this hypothesis by performing a simple sensitivity analysis as follows:
+
      </p>
+
      <ol>
+
      <li>
+
        Generate 10000 samples of parameter values by uniformly sampling from the intervals detailed                in
+
        <b>
+
        Table 4
+
        </b>
+
        . (The average value for \(\beta_{NAR}\) was derived from
+
        <b>
+
        [10]
+
        </b>
+
        ).
+
      </li>
+
      <li>
+
        Simulate the model with generated random parameters for 16 hours and save the concentration of naringenin.
+
      </li>
+
      <li>
+
        Compute the correlation coefficients between the parameters and concentration of naringenin.
+
      </li>
+
      </ol>
+
      <div class="table-container">
+
      <div>
+
        <b>
+
        Table 4
+
        </b>
+
        <b>
+
        .
+
        </b>
+
        Parameter values used in sensitivity analysis.
+
      </div>
+
      <table class="table table-bordered table-hover table-condensed">
+
        <thead>
+
        <tr>
+
          <th>
+
          Parameter
+
          </th>
+
          <th>
+
          Value range
+
          </th>
+
        </tr>
+
        </thead>
+
        <tbody>
+
        <tr>
+
          <td>
+
          \(\gamma_{TAL}\)
+
          </td>
+
          <td>
+
          \(0.33 - 3\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(\gamma_{4CL}\)
+
          </td>
+
          <td>
+
          \(0.33 - 3\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(\gamma_{CHS}\)
+
          </td>
+
          <td>
+
          \(0.33 - 3\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(\gamma_{CHI}\)
+
          </td>
+
          <td>
+
          \(0.33 - 3\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(\beta_{NAR}\)
+
          </td>
+
          <td>
+
          \(3.6\mathrm{e}{-5} \pm 3.6\mathrm{e}{-6}  \: (1/s)\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(k_{TAL}\)
+
          </td>
+
          <td>
+
          \(119 \pm 11.9  \: (1/s)\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(k_{4CL}\)
+
          </td>
+
          <td>
+
          \(0.3354 \pm 0.034  \: (1/s)\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(k_{CHS}\)
+
          </td>
+
          <td>
+
          \(0.0575 \pm 0.006  \: (1/s)\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(k_{CHI}\)
+
          </td>
+
          <td>
+
          \(89.5 \pm 8.95  \: (1/s)\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(K_{4CL}\)
+
          </td>
+
          <td>
+
          \(0.276 \pm 0.028  \: (mM)\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(K_{CHS}\)
+
          </td>
+
          <td>
+
          \(0.0049 \pm 0.0005  \: (mM)\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(K_{CHI}\)
+
          </td>
+
          <td>
+
          \(0.007 \pm 0.0007  \: (mM)\)
+
          </td>
+
        </tr>
+
        </tbody>
+
      </table>
+
      </div>
+
      <p>
+
      The results of sensitivity analysis are presented in
+
      <b>
+
        Table 5
+
      </b>
+
      .
+
      </p>
+
      <div class="table-container">
+
      <div>
+
        <b>
+
        Table 5
+
        </b>
+
        <b>
+
        .
+
        </b>
+
        Results of sensitivity analysis.
+
      </div>
+
      <table class="table table-bordered table-hover table-condensed">
+
        <thead>
+
        <tr>
+
          <th>
+
          Parameter
+
          </th>
+
          <th>
+
          Correlation coefficient
+
          </th>
+
        </tr>
+
        </thead>
+
        <tbody>
+
        <tr>
+
          <td>
+
          \(\gamma_{TAL}\)
+
          </td>
+
          <td>
+
          \(0.0242\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(\gamma_{4CL}\)
+
          </td>
+
          <td>
+
          \(0.0339\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(\gamma_{CHS}\)
+
          </td>
+
          <td>
+
          \(0.9833\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(\gamma_{CHI}\)
+
          </td>
+
          <td>
+
          \(0.0008\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(\beta_{NAR}\)
+
          </td>
+
          <td>
+
          \(-0.0938\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(k_{TAL}\)
+
          </td>
+
          <td>
+
          \(-0.0113\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(k_{4CL}\)
+
          </td>
+
          <td>
+
          \(0.0041\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(k_{CHS}\)
+
          </td>
+
          <td>
+
          \(0.1042\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(k_{CHI}\)
+
          </td>
+
          <td>
+
          \(-0.0009\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(K_{4CL}\)
+
          </td>
+
          <td>
+
          \(-0.0161\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(K_{CHS}\)
+
          </td>
+
          <td>
+
          \(-0.0199\)
+
          </td>
+
        </tr>
+
        <tr>
+
          <td>
+
          \(K_{CHI}\)
+
          </td>
+
          <td>
+
          \(-0.0096\)
+
          </td>
+
        </tr>
+
        </tbody>
+
      </table>
+
      </div>
+
      <p>
+
      The sensitivity analysis confirmed our hypothesis. We note              that it also showed that another important parameter is the decay rate of naringenin.
+
      </p>
+
      <h3 class="index-headline">
+
      Conclusion
+
      </h3>
+
      <p>
+
      We derived a simple mathematical model for the naringenin pathway that our team wanted to              implement
+
      <i>
+
        in vivo
+
      </i>
+
      . By performing sensitivity analysis, we determined that the              reaction which turns Coumaryl-CoA to naringenin, chalcone synthase is the bottleneck              of the naringenin synthesis process. Thus we decided to use a pSlpA that we noticed by              analysing possible promoters for
+
      <i>
+
        E.coli
+
      </i>
+
      and
+
      <i>
+
        L.paracasei
+
      </i>
+
      . Furthermore,              BBa_J23101, also known as one from the Anderson's collection promoter, was compared              and picked up for other naringenin pathway protein expression ().
+
      </p>
+
    </div>
+
    <div class="references-wrapper">
+
      <div class="breaker">
+
      </div>
+
      <h2>
+
      References
+
      </h2>
+
      <div class="references-container">
+
      <div class="number">
+
        1.
+
      </div>
+
      <div>
+
        Zhou, S., Liu, P., Chen, J., Du, G., Li, H., Zhou, J. (2016).                Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis.                Appl. Microbiol. Biotechnol. 100, 10443-10452.
+
        <a href="https://www.pubmed.ncbi.nlm.nih.gov/27401923">
+
        To the article.
+
        </a>
+
      </div>
+
      <div class="number">
+
        2.
+
      </div>
+
      <div>
+
        Gao, S., Yu, H. N., Xu, R. X., Cheng, A. X., &amp; Lou, H. X. (2015).                Cloning and functional characterization of a 4-coumarate CoA ligase                from liverwort Plagiochasma appendiculatum. Phytochemistry, 111, 48–58.
+
        <a href="https://pubmed.ncbi.nlm.nih.gov/25593011/">
+
        To the article.
+
        </a>
+
      </div>
+
      <div class="number">
+
        3.
+
      </div>
+
      <div>
+
        Guo, H.-L., Yang, Y.-D., Ma, Y.-D., Liu, W.-B., Feng, J., Luo, Z.-Q., … Ma, L.-Q. (2016).                A bifunctional type III polyketide synthase from raspberry (Rubus idaeus L.) with both chalcone                synthase and benzalacetone synthase activity. Journal of Plant Biochemistry and Biotechnology, 26(1), 80–90.
+
        <a href="https://link.springer.com/article/10.1007/s13562-016-0365-7">
+
        To the article.
+
        </a>
+
      </div>
+
      <div class="number">
+
        4.
+
      </div>
+
      <div>
+
        Shen, Y., Li, X., Chai, T., &amp; Wang, H. (2016).                Outer-sphere residues influence the catalytic activity of a chalcone synthase                from Polygonum cuspidatum. FEBS open bio, 6(6), 610–618.
+
        <a href="https://pubmed.ncbi.nlm.nih.gov/27419064/">
+
        To the article.
+
        </a>
+
      </div>
+
      <div class="number">
+
        5.
+
      </div>
+
      <div>
+
        Stewart, C., Jr, Woods, K., Macias, G., Allan, A. C., Hellens, R. P., &amp; Noel, J. P. (2017).                Molecular architectures of benzoic acid-specific type III polyketide synthases.                Acta crystallographica. Section D, Structural biology, 73(Pt 12), 1007–1019.
+
        <a href="https://pubmed.ncbi.nlm.nih.gov/29199980/">
+
        To the article.
+
        </a>
+
      </div>
+
      <div class="number">
+
        6.
+
      </div>
+
      <div>
+
        Abe, I., Watanabe, T., &amp; Noguchi, H. (2004).                Enzymatic formation of long-chain polyketide pyrones by plant type III polyketide synthases.                Phytochemistry, 65(17), 2447–2453.
+
        <a href="https://pubmed.ncbi.nlm.nih.gov/15381408/">
+
        To the article.
+
        </a>
+
      </div>
+
      <div class="number">
+
        7.
+
      </div>
+
      <div>
+
        Liu, B., Falkenstein-Paul, H., Schmidt, W., &amp; Beerhues, L. (2003).                Benzophenone synthase and chalcone synthase from Hypericum androsaemum                cell cultures: cDNA cloning, functional expression, and site-directed                mutagenesis of two polyketide synthases. The Plant journal : for cell                and molecular biology, 34(6), 847–855.
+
        <a href="https://pubmed.ncbi.nlm.nih.gov/12795704/">
+
        To the article.
+
        </a>
+
      </div>
+
      <div class="number">
+
        8.
+
      </div>
+
      <div>
+
        Morita, H., Takahashi, Y., Noguchi, H., &amp; Abe, I. (2000).                Enzymatic formation of unnatural aromatic polyketides by chalcone synthase.                Biochemical and biophysical research communications, 279(1), 190–195.
+
        <a href="https://pubmed.ncbi.nlm.nih.gov/11112437/">
+
        To the article.
+
        </a>
+
      </div>
+
      <div class="number">
+
        9.
+
      </div>
+
      <div>
+
        Park, S. H., Lee, C. W., Cho, S. M., Lee, H., Park, H., Lee, J., &amp; Lee, J. H. (2018).                Crystal structure and enzymatic properties of chalcone isomerase from                the Antarctic vascular plant Deschampsia antarctica Desv. PloS one, 13(2), e0192415.
+
        <a href="https://pubmed.ncbi.nlm.nih.gov/29394293/">
+
        To the article.
+
        </a>
+
      </div>
+
      <div class="number">
+
        10.
+
      </div>
+
      <div>
+
        Kanaze, F. I., Bounartzi, M. I., Georgarakis, M., &amp; Niopas, I. (2006).                Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after                single oral administration in human subjects. European Journal of Clinical Nutrition, 61(4), 472–477.
+
        <a href="https://www.nature.com/articles/1602543">
+
        To the article.
+
        </a>
+
      </div>
+
      </div>
+
    </div>
+
    </div>
+
    <div class="index-container">
+
    <div class="index-header">
+
    </div>
+
    <div class="index-content">
+
    </div>
+
    </div>
+
  </div>
+
  <footer>
+
    <div class="logo-igem">
+
    <object data="../assets/logos/T--Vilnius-Lithuania--iGEM-2021.svg">
+
    </object>
+
    </div>
+
    <div class="social-container">
+
    <div>
+
      FOLLOW US
+
    </div>
+
    <div>
+
      <a class="placeholder-social-icon" href="https://www.facebook.com/VilniusiGEM">
+
      <img src="../assets/icons/facebook.svg"/>
+
      </a>
+
      <a class="placeholder-social-icon" href="https://www.instagram.com/igem_vilnius/">
+
      <img src="../assets/icons/instagram.svg"/>
+
      </a>
+
      <a class="placeholder-social-icon" href="https://www.linkedin.com/company/vilnius-igem/">
+
      <img src="../assets/icons/linkedin.svg"/>
+
      </a>
+
    </div>
+
    </div>
+
    <div class="mail-container">
+
    <div>
+
      CONTACT US
+
    </div>
+
    <a href="mailto:info@vilniusigem.lt">
+
      info@vilniusigem.lt
+
    </a>
+
    </div>
+
    <div class="grid-sponsors">
+
    <div>
+
      <div>
+
      <object data="../assets/logos/T--Vilnius-Lithuania--VU.svg">
+
      </object>
+
      </div>
+
      <div>
+
      <object data="../assets/logos/T--Vilnius-Lithuania--Termofisher.svg">
+
      </object>
+
      </div>
+
      <div>
+
      <object data="../assets/logos/CityOfVilnius.svg">
+
      </object>
+
      </div>
+
    </div>
+
    <div>
+
      <div>
+
      <object data="../assets/logos/T--Vilnius-Lithuania--GMC.svg">
+
      </object>
+
      </div>
+
      <div>
+
      <object data="../assets/logos/T--Vilnius-Lithuania--Nanodiagnostika.svg">
+
      </object>
+
      </div>
+
      <div>
+
      <object data="../assets/logos/T--Vilnius-Lithuania--Telesoftas.svg">
+
      </object>
+
      </div>
+
      <div>
+
      <object data="../assets/logos/T--Vilnius-Lithuania--Kopicentras.svg">
+
      </object>
+
      </div>
+
    </div>
+
    <div>
+
      <div>
+
      <object data="../assets/logos/T--Vilnius-Lithuania--SnapGene.svg">
+
      </object>
+
      </div>
+
      <div>
+
      <object data="../assets/logos/T--Vilnius-Lithuania--Laborama.svg">
+
      </object>
+
      </div>
+
      <div>
+
      <object data="../assets/logos/T--Vilnius-Lithuania--Biotecha.svg">
+
      </object>
+
      </div>
+
      <div>
+
      <object data="../assets/logos/T--Vilnius-Lithuania--Grida.svg">
+
      </object>
+
      </div>
+
    </div>
+
    </div>
+
  </footer>
+
  </div>
+
  <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/navigationTabs&amp;action=raw&amp;ctype=text/javascript" type="text/javascript">
+
  </script>
+
  <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/background&amp;action=raw&amp;ctype=text/javascript" type="text/javascript">
+
  </script>
+
  <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/contentpage&amp;action=raw&amp;ctype=text/javascript" type="text/javascript">
+
  </script>
+
  <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/navbar&amp;action=raw&amp;ctype=text/javascript" type="text/javascript">
+
  </script>
+
  <script>
+
  contentPage(        "Sections",        true,        300,      )
+
  </script>
+
  <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/GlslCanvas&amp;action=raw&amp;ctype=text/javascript" type="text/javascript">
+
  </script>
+
  <script src="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/scripts/backgroundTransition&amp;action=raw&amp;ctype=text/javascript" type="text/javascript">
+
  </script>
+
</body>
+
 
</html>
 
</html>

Latest revision as of 20:36, 21 October 2021

MODEL

Header

Introduction

We engineered a metabolic pathway for naringenin production in E. coli Nissle 1917 in order to produce the probiotics for the prevention part of our project.

We saw an opportunity to expedite the engineering process by using mathematical modeling to pick promoters to use in our engineered pathway.

Derivation

Creating a model that would be able to accurately estimate the amount of naringenin produced by the pathway is an infeasible task before doing any practical experiments. However, we are able to write down a simple model with which we could study the speed of the reactions and that would help us decide on the strength of promoters that should be used.

To this end, we use the staple of modeling in synthetic biology: Michaelis–Menten kinetics. That is we model the following type of enzymatic reaction: $$[E] + [S] \leftrightarrows [ES] \rightarrow [E] + [P],$$ with differential equations: $$\frac{d [P]}{dt} = k_{cat}[E]\frac{[P]}{K_m + [P]},$$ $$\frac{d [S]}{dt} = -k_{cat}[E]\frac{[P]}{K_m + [P]},$$ here \([E]\), \([S]\), \([P]\) are the concentrations of enzyme, substrate and product respectively (and \([x]\) is going to denote the concentration of species \(x\) in all that follows), \(k_{cat}\) is a constant called the turnover number and \(K_m\) is a constant that is called Michaelis constant.

In order to model the concentration of mRNA and enzymes, we use the following differential equations: $$\frac{d[mRNA]}{dt} = \alpha_{mRNA} - \beta_{mRNA}[mRNA],$$ $$\frac{d[Enzyme]}{dt} = \alpha_{enzyme}[mRNA] - \beta_{enzyme}[Enzyme],$$ here \(\beta\)’s denote the decay rates, \(\alpha_{mRNA}\) denotes the transcription rate and \(\alpha_{enzyme}\) denotes the translation rate.

Our team measured the strengths of candidate promoters relative to each other. In other words, we measured how many times a specific promoter is stronger or weaker than the promoter that was used as the positive control, as can be seen from Table 1.

Table 1. Promoter strength in comparison to p-slpA.
Promoter Relative strength
BBa1033225 0.76
BBa1033222 0.45
BBa1033220 0.58
P-slpA 1.00
J23118 0.35
J23117 0.31
J23115 0.27
J23114 0.34
J23113 0.36
J23107 0.50
J23106 0.47
J23103 0.35
J23102 0.37
J23101 0.44

We would like this measurement to be reflected in our model. Thus, we denote some base transcription rate (specified later) as \(\zeta\) and write: $$\alpha_{mRNA} = \gamma_{mRNA}\zeta.$$

Now, our goal is to model the pathway depicted in Fig. 1.

Fig. 1. Naringenin synthesis pathway.

The pathway can be expressed by the following chemical reactions: \begin{equation} \emptyset \rightarrow mRNA(TAL) \rightarrow \emptyset, \end{equation} \begin{equation} \emptyset \rightarrow mRNA(4CL) \rightarrow \emptyset, \end{equation} \begin{equation} \emptyset \rightarrow mRNA(CHS) \rightarrow \emptyset, \end{equation} \begin{equation} \emptyset \rightarrow mRNA(CHI) \rightarrow \emptyset, \end{equation} \begin{equation} mRNA(TAL) \rightarrow mRNA(TAL) + TAL, \end{equation} \begin{equation} TAL \rightarrow \emptyset, \end{equation} \begin{equation} mRNA(4CL) \rightarrow mRNA(4CL) + 4CL, \end{equation} \begin{equation} 4CL \rightarrow \emptyset, \end{equation} \begin{equation} mRNA(CHS) \rightarrow mRNA(CHS) + CHS, \end{equation} \begin{equation} CHS \rightarrow \emptyset, \end{equation} \begin{equation} mRNA(CHI) \rightarrow mRNA(CHI) + CHI, \end{equation} \begin{equation} CHI \rightarrow \emptyset, \end{equation} $$TYR + TAL \rightarrow CACID + TAL,$$ $$CACID + 4CL + CoA \rightarrow CCoA + 4CL,$$ $$CCoA + CHS + 3 \times MalCoA \rightarrow NCHAL + CHS + 4 \times CoA,$$ $$NCHAL + CHI \rightarrow NAR + CHI,$$ $$NAR \rightarrow \emptyset.$$

If we assume that there is an infinite (or alternatively very large) amount of tyrosine, CoA and Mal-CoA (if we wished to model the amount of naringenin produced, then assumption that the concentration of Mal-CoA is infinite would be incorrect as this seems to be the major bottleneck of the pathway. However here we only wish to study the reaction speeds, thus we believe that the assumption is valid for this purpose), we can model these reactions by the following system of differential equations: \begin{equation} \frac{d(TAL)}{dt} = \gamma_{TAL}\zeta - \beta_{m(TAL)}(TAL), \end{equation} \begin{equation} \frac{d(4CL)}{dt} = \gamma_{4CL}\zeta - \beta_{m(4CL)}(4CL), \end{equation} \begin{equation} \frac{d(CHS)}{dt} = \gamma_{CHS}\zeta - \beta_{m(CHS)}(CHS), \end{equation} \begin{equation} \frac{d(CHI)}{dt} = \gamma_{CHI}\zeta - \beta_{m(CHI)}(CHI), \end{equation} \begin{equation} \frac{d[TAL]}{dt} = \alpha_{TAL}(TAL) - \beta_{TAL}[TAL], \end{equation} \begin{equation} \frac{d[4CL]}{dt} = \alpha_{4CL}(4CL) - \beta_{4CL}[4CL], \end{equation} \begin{equation} \frac{d[CHS]}{dt} = \alpha_{CHS}(CHS) - \beta_{CHS}[CHS], \end{equation} \begin{equation} \frac{d[CHI]}{dt} = \alpha_{CHI}(CHI) - \beta_{CHI}[CHI], \end{equation} $$\frac{d[CACID]}{dt} = k_{TAL}[TAL] - k_{4CL}[4CL]\frac{[CACID]}{K_{4CL} + [CACID]},$$ $$\frac{d[CCoA]}{dt} = k_{4CL}[4CL]\frac{[CACID]}{K_{4CL} + [CACID]} - k_{CHS}[CHS]\frac{[CCoA]}{K_{CHS} + [CCoA]},$$ $$\frac{d[NCHAL]}{dt} = k_{CHS}[CHS]\frac{[CCoA]}{K_{CHS} + [CCoA]} - k_{CHI}[CHI]\frac{[NCHAL]}{K_{CHI} + [NCHAL]},$$ $$\frac{d[NCHAL]}{dt} = k_{CHI}[CHI]\frac{[NCHAL]}{K_{CHI} + [NCHAL]} - \beta_{NAR}[NAR],$$ here \((x)\) denotes \([mRNA(x)]\), small \(k\)’s denote the appropriate turnover numbers and big \(K\)’s denote the appropriate Michaelis constants.

This model is overly complicated for our purposes. We can reduce it by noting that the reactions \((1) - (12)\) happen on a faster time scale then the rest. Therefore, we can assume that the reactions \((1) - (12)\) are in the steady state for the entirety of the process. With this assumption we have additional conditions: \begin{equation} \frac{d(TAL)}{dt} = 0, \end{equation} \begin{equation} \frac{d(4CL)}{dt} = 0, \end{equation} \begin{equation} \frac{d(CHS)}{dt} = 0, \end{equation} \begin{equation} \frac{d(CHI)}{dt} = 0, \end{equation} \begin{equation} \frac{d[TAL]}{dt} = 0, \end{equation} \begin{equation} \frac{d[4CL]}{dt} = 0, \end{equation} \begin{equation} \frac{d[CHS]}{dt} = 0, \end{equation} \begin{equation} \frac{d[CHI]}{dt} = 0. \end{equation}

By combining \((13)-(16)\) with \((21)-(24)\) we get $$(x) = \frac{\gamma\zeta}{\beta_{mRNA}},$$ and then by combining \((17)-(20)\) with \((25)-(28)\) we get $$[x] = \frac{\alpha\gamma\zeta}{\beta_{mRNA}\beta_{enzyme}}.$$

We can additionally assume that translation rates and decay rates of mRNA and enzyme are similar for different species. Then by taking the base transcription rate \(\zeta\) such that $$\frac{\alpha\zeta}{\beta_{mRNA}\beta_{enzyme}}$$ is equal to 1 we can reduce the original model to a simpler model with less equations: $$\frac{d[CACID]}{dt} = k_{TAL}\gamma_{TAL} - k_{4CL}\gamma_{4CL}\frac{[CACID]}{K_{4CL} + [CACID]},$$ $$\frac{d[CCoA]}{dt} = k_{4CL}\gamma_{4CL}\frac{[CACID]}{K_{4CL} + [CACID]} - k_{CHS}\gamma_{CHS}\frac{[CCoA]}{K_{CHS} + [CCoA]},$$ $$\frac{d[NCHAL]}{dt} = k_{CHS}\gamma_{CHS}\frac{[CCoA]}{K_{CHS} + [CCoA]} - k_{CHI}\gamma_{CHI}\frac{[NCHAL]}{K_{CHI} + [NCHAL]},$$ $$\frac{d[NAR]}{dt} = k_{CHI}\gamma_{CHI}\frac{[NCHAL]}{K_{CHI} + [NCHAL]} - \beta_{NAR}[NAR].$$

Analysis

We see that in the steady state we have $$[NAR] = \frac{k_{TAL}\gamma_{TAL}}{\beta_{NAR}}.$$ This makes intuitive sense - the more substrate one puts in, the more product one expects to get. However, the steady-state might take an exorbitant amount of time to reach depending on the parameters. Thus, we decided to study the system after simulating it for 16 hours (taking the initial concentrations of all proteins in the pathway to be 0) as these are the timescales that the performance of the engineered pathway would be measured in.

Next, we researched the literature to compile probable values for turnover numbers and Michaelis constants. We came up with the following figures:

Table 2. Turnover numbers (\(k_{cat}\))
Enzyme Values (1/s) Average (1/s) Reference
Tyrosine ammonia-lyase (TAL) 107 119 [1]
114 [1]
115 [1]
139 [1]
4-coumarate-CoA ligase (4CL) 0.2163 0.3354 [2]
0.2205 [2]
0.7821 [2]
0.1225 [2]
Chalcone synthase (CHS) 0.045 0.0575 [3]
0.178 [4]
0.11 [4]
0.085 [4]
0.05 [4]
0.0202 [5]
0.0167 [6]
0.042 [7]
0.007 [7]
0.021 [8]
Chalcone isomerase (CHI) 5 89.5 [9]
7.8 [9]
9.6 [9]
35.2 [9]
56.9 [9]
130.3 [9]
134.7 [9]
197.7 [9]
228.2 [9]
Table 3. Michaelis constants (\(K_{M}\))
Enzyme Values (mM) Average (mM) Reference
4-coumarate-CoA ligase (4CL) 0.389 0.276 [2]
0.155 [2]
0.283 [2]
Chalcone synthase (CHS) 0.0049 0.0049 [7]
Chalcone isomerase (CHI) 0.0024 0.007 [9]
0.0048 [9]
0.0048 [9]
0.0061 [9]
0.007 [9]
0.0085 [9]
0.0086 [9]
0.0099 [9]
0.0105 [9]

From Table 2 we see that the reaction producing naringenin chalcone seems to be around 10 times slower than the second slowest one in the pathway. This makes sense since this is a sequential reaction involving 4 molecules. Seeing this, we hypothesized that this reaction is the major bottleneck of the pathway. That is, the only parameters that have a major impact on the output of the model are \(k_{CHS}\) and \(\gamma_{CHS}\).

We validated this hypothesis by performing a simple sensitivity analysis as follows:

  1. Generate 10000 samples of parameter values by uniformly sampling from the intervals detailed in Table 4. The average value for \(\beta_{NAR}\) was derived from [10].
  2. Simulate the model with generated random parameters for 16 hours and save the concentration of naringenin.
  3. Compute the correlation coefficients between the parameters and concentration of naringenin.
Table 4. Parameter values used in sensitivity analysis
Parameter Value range
\(\gamma_{TAL}\) \(0.33 - 3\)
\(\gamma_{4CL}\) \(0.33 - 3\)
\(\gamma_{CHS}\) \(0.33 - 3\)
\(\gamma_{CHI}\) \(0.33 - 3\)
\(\beta_{NAR}\) \(3.6\mathrm{e}{-5} \pm 3.6\mathrm{e}{-6} \: (1/s)\)
\(k_{TAL}\) \(119 \pm 11.9 \: (1/s)\)
\(k_{4CL}\) \(0.3354 \pm 0.034 \: (1/s)\)
\(k_{CHS}\) \(0.0575 \pm 0.006 \: (1/s)\)
\(k_{CHI}\) \(89.5 \pm 8.95 \: (1/s)\)
\(K_{4CL}\) \(0.276 \pm 0.028 \: (mM)\)
\(K_{CHS}\) \(0.0049 \pm 0.0005 \: (mM)\)
\(K_{CHI}\) \(0.007 \pm 0.0007 \: (mM)\)

The results of sensitivity analysis are presented in Table 5.

Table 5. Results of sensitivity analysis
Parameter Correlation coefficient
\(\gamma_{TAL}\) \(0.0242\)
\(\gamma_{4CL}\) \(0.0339\)
\(\gamma_{CHS}\) \(0.9833\)
\(\gamma_{CHI}\) \(0.0008\)
\(\beta_{NAR}\) \(-0.0938\)
\(k_{TAL}\) \(-0.0113\)
\(k_{4CL}\) \(0.0041\)
\(k_{CHS}\) \(0.1042\)
\(k_{CHI}\) \(-0.0009\)
\(K_{4CL}\) \(-0.0161\)
\(K_{CHS}\) \(-0.0199\)
\(K_{CHI}\) \(-0.0096\)

The sensitivity analysis confirmed our hypothesis. We note that it also showed that another important parameter is the decay rate of naringenin.

Conclusion

We derived a simple mathematical model for the naringenin pathway that our team wanted to implement in vivo. By performing sensitivity analysis, we determined that the reaction which turns Coumaryl-CoA to naringenin chalcone synthase is the bottleneck of the naringenin synthesis process.

In the end we decided to use the pSlpA promoter to produce the enzyme responsible for the bottleneck reaction as this promoter was the strongest one from the one's that we measured (as can be seen from Table 1). For the rest of the enzymes we could use a weaker promoter according to the model. Thus, we chose BBa_J23101 sequence, since it demonstrated adequate performance in our measurements.

References

1.
Zhou, S., Liu, P., Chen, J., Du, G., Li, H., Zhou, J. (2016). Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 100, 10443-10452. To the article.
2.
Gao, S., Yu, H. N., Xu, R. X., Cheng, A. X., & Lou, H. X. (2015). Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum. Phytochemistry, 111, 48–58. To the article.
3.
Guo, H.-L., Yang, Y.-D., Ma, Y.-D., Liu, W.-B., Feng, J., Luo, Z.-Q., … Ma, L.-Q. (2016). A bifunctional type III polyketide synthase from raspberry (Rubus idaeus L.) with both chalcone synthase and benzalacetone synthase activity. Journal of Plant Biochemistry and Biotechnology, 26(1), 80–90. To the article.
4.
Shen, Y., Li, X., Chai, T., & Wang, H. (2016). Outer-sphere residues influence the catalytic activity of a chalcone synthase from Polygonum cuspidatum. FEBS open bio, 6(6), 610–618. To the article.
5.
Stewart, C., Jr, Woods, K., Macias, G., Allan, A. C., Hellens, R. P., & Noel, J. P. (2017). Molecular architectures of benzoic acid-specific type III polyketide synthases. Acta crystallographica. Section D, Structural biology, 73(Pt 12), 1007–1019. To the article.
6.
Abe, I., Watanabe, T., & Noguchi, H. (2004). Enzymatic formation of long-chain polyketide pyrones by plant type III polyketide synthases. Phytochemistry, 65(17), 2447–2453. To the article.
7.
Liu, B., Falkenstein-Paul, H., Schmidt, W., & Beerhues, L. (2003). Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. The Plant journal : for cell and molecular biology, 34(6), 847–855. To the article.
8.
Morita, H., Takahashi, Y., Noguchi, H., & Abe, I. (2000). Enzymatic formation of unnatural aromatic polyketides by chalcone synthase. Biochemical and biophysical research communications, 279(1), 190–195. To the article.
9.
Park, S. H., Lee, C. W., Cho, S. M., Lee, H., Park, H., Lee, J., & Lee, J. H. (2018). Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv. PloS one, 13(2), e0192415. To the article.
10.
Kanaze, F. I., Bounartzi, M. I., Georgarakis, M., & Niopas, I. (2006). Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. European Journal of Clinical Nutrition, 61(4), 472–477. To the article.