Difference between revisions of "Team:CPU CHINA/Improve"

Line 118: Line 118:
 
                         (SASA)
 
                         (SASA)
 
                         and </span><em><span>so forth</span></em><span>, comprehensive analysis of these datas, we
 
                         and </span><em><span>so forth</span></em><span>, comprehensive analysis of these datas, we
                     </span><b><span>established a single point mutation database</span></b><span> (File 1) based on
+
                     </span><strong><span>established a single point mutation database</span></strong><span> (File 1) based on
 
                         FoldX,
 
                         FoldX,
                         also we established a </span><b><span>multifunctional enzyme library</span></b><span> (File 2)
+
                         also we established a </span><strong><span>multifunctional enzyme library</span></strong><span> (File 2)
 
                         based
 
                         based
 
                         on Rosetta and Funclib for activity analysis. It is expected that manganese peroxidase with
 
                         on Rosetta and Funclib for activity analysis. It is expected that manganese peroxidase with
 
                         higher
 
                         higher
 
                         temperature stability can be obtained.</span></p>
 
                         temperature stability can be obtained.</span></p>
                 <p><b><span>Table 1 Mutation sites of ten mutants with the smallest ΔΔG according to computational
+
                 <p><strong><span>Table 1 Mutation sites of ten mutants with the smallest ΔΔG according to computational
                             simulation.</span></b></p>
+
                             simulation.</span></strong></p>
 
                 <figure>
 
                 <figure>
 
                     <table class="lab">
 
                     <table class="lab">
Line 203: Line 203:
 
                 <p><span> </span><span>By analyzing the established single mutation library, ten mutants with the
 
                 <p><span> </span><span>By analyzing the established single mutation library, ten mutants with the
 
                         smallest
 
                         smallest
                         ΔΔG were selected for stability verification (</span><b><span>Table 1</span></b><span>). We
+
                         ΔΔG were selected for stability verification (</span><strong><span>Table 1</span></strong><span>). We
 
                         applied
 
                         applied
 
                         site-directed mutagenesis (<a
 
                         site-directed mutagenesis (<a
Line 221: Line 221:
 
                         monitoring the oxidation of 2,6-dimethoxyphenol (2,6-DMP) at 469 nm. After comparison, we found
 
                         monitoring the oxidation of 2,6-dimethoxyphenol (2,6-DMP) at 469 nm. After comparison, we found
 
                         that
 
                         that
                     </span><b><span>mutant 2</span><sup><span>#</span></sup><span> performed
+
                     </span><strong><span>mutant 2</span><sup><span>#</span></sup><span> performed
                             outstandingly</span></b><span>.
+
                             outstandingly</span></strong><span>.
 
                     </span></p>
 
                     </span></p>
 
                 <img src="https://static.igem.org/mediawiki/2021/6/6d/T--CPU_CHINA--Part-improvement--Fig_1.png"
 
                 <img src="https://static.igem.org/mediawiki/2021/6/6d/T--CPU_CHINA--Part-improvement--Fig_1.png"
Line 232: Line 232:
 
                 <img src="https://static.igem.org/mediawiki/2021/1/15/T--CPU_CHINA--Part-improvement--Fig_2.png"
 
                 <img src="https://static.igem.org/mediawiki/2021/1/15/T--CPU_CHINA--Part-improvement--Fig_2.png"
 
                     referrerpolicy="no-referrer">
 
                     referrerpolicy="no-referrer">
                 <p class="imgdescribe"><b><span>Fig. 2 Effect of temperature on the stability of mutant
+
                 <p class="imgdescribe"><strong><span>Fig. 2 Effect of temperature on the stability of mutant
 
                             2</span><sup><span>#</span></sup><span>
 
                             2</span><sup><span>#</span></sup><span>
                             and wtMnP after 6 h incubation.</span></b><span> </span><i><span>The initial MnP activity
+
                             and wtMnP after 6 h incubation.</span></strong><span> </span><i><span>The initial MnP activity
 
                             before
 
                             before
 
                             incubation was set as 100%. r.t. refers to room
 
                             incubation was set as 100%. r.t. refers to room
Line 240: Line 240:
 
                         </span><sup><span>*</span><span>*</span></sup><span>P &lt; 0.01.</span></i></p>
 
                         </span><sup><span>*</span><span>*</span></sup><span>P &lt; 0.01.</span></i></p>
 
                 <p><span> </span><span>Firstly, we detected the changes in the stability of mutant
 
                 <p><span> </span><span>Firstly, we detected the changes in the stability of mutant
                         2</span><sup><span>#</span></sup><span> over time at different temperatures (</span><b><span>Fig
+
                         2</span><sup><span>#</span></sup><span> over time at different temperatures (</span><strong><span>Fig
                             1</span></b><span>). After 2 h incubation, the enzyme activities of mutant
+
                             1</span></strong><span>). After 2 h incubation, the enzyme activities of mutant
 
                         2</span><sup><span>#</span></sup><span> incubated at different temperatures reduced to varying
 
                         2</span><sup><span>#</span></sup><span> incubated at different temperatures reduced to varying
 
                         degrees. It is worth noting that in the subsequent incubation, </span><strong><span>mutant
 
                         degrees. It is worth noting that in the subsequent incubation, </span><strong><span>mutant
 
                             2</span><sup><span>#</span></sup><span> enzyme activity at 37℃ was
 
                             2</span><sup><span>#</span></sup><span> enzyme activity at 37℃ was
                             improved.</span></strong><span> Compared with wtMnP, </span><b><span>the stability of mutant
+
                             improved.</span></strong><span> Compared with wtMnP, </span><strong><span>the stability of mutant
 
                             2</span><sup><span>#</span></sup><span> at r.t., 50℃, and 60℃ has been significantly
 
                             2</span><sup><span>#</span></sup><span> at r.t., 50℃, and 60℃ has been significantly
 
                             improved
 
                             improved
                             (Fig 2).</span></b></p>
+
                             (Fig 2).</span></strong></p>
 
                 <img src="https://static.igem.org/mediawiki/2021/c/c5/T--CPU_CHINA--Part-improvement--Fig_3.png"
 
                 <img src="https://static.igem.org/mediawiki/2021/c/c5/T--CPU_CHINA--Part-improvement--Fig_3.png"
 
                     referrerpolicy="no-referrer">
 
                     referrerpolicy="no-referrer">
                 <p class="imgdescribe"><b><span>Fig. 3 Effect of pH on the stability of mutant 2</span><sup><span>#</span></sup><span> and
+
                 <p class="imgdescribe"><strong><span>Fig. 3 Effect of pH on the stability of mutant 2</span><sup><span>#</span></sup><span> and
 
                             wtMnP
 
                             wtMnP
                             after 12 h incubation.</span></b><span> </span><i><span>The initial MnP activity before
+
                             after 12 h incubation.</span></strong><span> </span><i><span>The initial MnP activity before
 
                             incubation was set as 100%. </span><sup><span>**</span></sup><span>P &lt; 0.01.</span></i>
 
                             incubation was set as 100%. </span><sup><span>**</span></sup><span>P &lt; 0.01.</span></i>
 
                 </p>
 
                 </p>
Line 260: Line 260:
 
                 <p><span> After incubation, the stability of mutant 2</span><sup><span>#</span></sup><span> and wtMnP
 
                 <p><span> After incubation, the stability of mutant 2</span><sup><span>#</span></sup><span> and wtMnP
 
                         under
 
                         under
                         different pH condition displayed similar tendencies (</span><b><span>Fig 3</span></b><span>). At
+
                         different pH condition displayed similar tendencies (</span><strong><span>Fig 3</span></strong><span>). At
 
                         pH
 
                         pH
 
                         = 4, the stability between the two enzyme showed a significant difference as mutant
 
                         = 4, the stability between the two enzyme showed a significant difference as mutant
Line 266: Line 266:
 
                 <p><span> </span><span>All in all, we screened single point mutations of manganese peroxidase. Mutant
 
                 <p><span> </span><span>All in all, we screened single point mutations of manganese peroxidase. Mutant
 
                         2</span><sup><span>#</span></sup><span> outcompetes other screened mutants, displayed a
 
                         2</span><sup><span>#</span></sup><span> outcompetes other screened mutants, displayed a
                     </span><b><span>significant improvement regarding thermostability</span></b><span>, and was
+
                     </span><strong><span>significant improvement regarding thermostability</span></strong><span>, and was
 
                         basically
 
                         basically
 
                         consistent with wtMnP in other aspects. In conclusion, mutant
 
                         consistent with wtMnP in other aspects. In conclusion, mutant
                         2</span><sup><span>#</span></sup><span> is more </span><b><span>suitable</span></b><span> for
+
                         2</span><sup><span>#</span></sup><span> is more </span><strong><span>suitable</span></strong><span> for
 
                         use in
 
                         use in
                     </span><b><span>higher temperature environments</span></b><span> than wtMnP, while its applications
+
                     </span><strong><span>higher temperature environments</span></strong><span> than wtMnP, while its applications
 
                         under other physiochemical conditions will not be impaired.</span></p>
 
                         under other physiochemical conditions will not be impaired.</span></p>
 
             </div>
 
             </div>

Revision as of 17:32, 19 October 2021

BACKGROUND

As mentioned in our design page, as the most critical enzyme in our multi-enzyme complex, manganese peroxidase plays a very important role. However, during our experiments, we found that the stability of wild-type MnP (wtMnP, BBa_K500001) was not good enough. Therefore, we tried to enhance its stability through directed evolution.

DESIGN

We made rational designs based on thermostability. By introducing parameters including salt bridge, secondary structure, RMSF, RMSD, protein gyration radius (GYRATE), hydrogen bond number, solvent accessibility surface area (SASA) and so forth, comprehensive analysis of these datas, we established a single point mutation database (File 1) based on FoldX, also we established a multifunctional enzyme library (File 2) based on Rosetta and Funclib for activity analysis. It is expected that manganese peroxidase with higher temperature stability can be obtained.

Table 1 Mutation sites of ten mutants with the smallest ΔΔG according to computational simulation.

Mutant No. Position of amino acids Mutation ΔΔG(kcal/mol)
1# 74 E-P -2.255
2# 74 E-M -2.059
3# 182 D-I -1.711
4# 182 D-V -1.637
5# 182 D-T -1.544
6# 232 S-P -1.306
7# 74 E-L -1.239
8# 78 S-P -1.173
9# 183 Q-P -1.079
10# 182 D-C -0.9288

By analyzing the established single mutation library, ten mutants with the smallest ΔΔG were selected for stability verification (Table 1). We applied site-directed mutagenesis ( click here to see primer sequence) to construct our Manganese peroxidase mutants.

RESULT

Finally, mutants 1#, 2#, 5#, 6#, 7#, and 8# were successfully expressed in Pichia pastoris. The enzyme activity of the mutants and wtMnP was compared by monitoring the oxidation of 2,6-dimethoxyphenol (2,6-DMP) at 469 nm. After comparison, we found that mutant 2# performed outstandingly.

Fig. 1 Thermostability of mutant 2#. The initial MnP activity before incubation was set as 100%.

Fig. 2 Effect of temperature on the stability of mutant 2# and wtMnP after 6 h incubation. The initial MnP activity before incubation was set as 100%. r.t. refers to room temperature. *P < 0.05, **P < 0.01.

Firstly, we detected the changes in the stability of mutant 2# over time at different temperatures (Fig 1). After 2 h incubation, the enzyme activities of mutant 2# incubated at different temperatures reduced to varying degrees. It is worth noting that in the subsequent incubation, mutant 2# enzyme activity at 37℃ was improved. Compared with wtMnP, the stability of mutant 2# at r.t., 50℃, and 60℃ has been significantly improved (Fig 2).

Fig. 3 Effect of pH on the stability of mutant 2# and wtMnP after 12 h incubation. The initial MnP activity before incubation was set as 100%. **P < 0.01.

Considering that manganese peroxidase may be applied under various complex environments in reality, we subsequently tested its pH stability.

After incubation, the stability of mutant 2# and wtMnP under different pH condition displayed similar tendencies (Fig 3). At pH = 4, the stability between the two enzyme showed a significant difference as mutant 2# demonstrates an improved activity.

All in all, we screened single point mutations of manganese peroxidase. Mutant 2# outcompetes other screened mutants, displayed a significant improvement regarding thermostability, and was basically consistent with wtMnP in other aspects. In conclusion, mutant 2# is more suitable for use in higher temperature environments than wtMnP, while its applications under other physiochemical conditions will not be impaired.