Difference between revisions of "Team:CPU CHINA/Contribution"

Line 98: Line 98:
 
             <div class="section" id="section1">
 
             <div class="section" id="section1">
 
                 <h2 id='overview-1'><span>OVERVIEW</span></h2>
 
                 <h2 id='overview-1'><span>OVERVIEW</span></h2>
                 <p><span> </span><span>Hoping to make a useful contribution for future iGEM teams, we completed the
+
                 <p>&#x200B; Hoping to make a <strong>useful contribution</strong> for future iGEM teams, we completed
                        experimental characterization of an existing part </span><strong><span>Ethanol regulated
+
                    the
                            promoter
+
                    experimental characterization of an existing part <strong>Ethanol regulated promoter
                            AOX1</span></strong>(<a href='http://parts.igem.org/Part:BBa_I764001' target='_blank'
+
                        AOX1</strong>(<a href="http://parts.igem.org/Part:BBa_I764001">BBa_I764001</a>) and
                        class='url'>BBa_I764001</a>)<span> and provided new data for it.
+
                    provided new data for it.</p>
                    </span>
+
                </p>
+
 
                 <figure>
 
                 <figure>
 
                     <table>
 
                     <table>
Line 124: Line 122:
 
                     </table>
 
                     </table>
 
                 </figure>
 
                 </figure>
                 <p><span>The details are in the part registrations page. </span></p>
+
                 <p>The <strong>details</strong> are in the part registrations page.</p>
 
             </div>
 
             </div>
 
             <div class="section" id="section2">
 
             <div class="section" id="section2">
 
                 <h2 id='contribution-2'><span>CONTRIBUTION</span></h2>
 
                 <h2 id='contribution-2'><span>CONTRIBUTION</span></h2>
                 <p><strong><span>P</span><sub><span>AOX1</span></sub></strong></p>
+
                 <p><strong>P<sub>AOX1</sub></strong></p>
                 <p><span> </span><span>The AOX1 promoter(P</span><sub><span>AOX1</span></sub><span>) region from
+
                 <p>&#x200B; The <strong>AOX1 promoter</strong>&#xFF08;P<sub>AOX1</sub>&#xFF09; region from <em>Pichia
                    </span><em><span>Pichia pastoris</span></em><span>. It was first registered in 2007 and used as a
+
                        pastoris</em>.
                        strong
+
                    It was first registered in 2007 and used as a strong promoter in <em>Pichia pastoris</em>. A complex
                        promoter in </span><em><span>Pichia pastoris</span></em><span>. A complex pathway for the
+
                    pathway for
                        metabolism
+
                    the metabolism of methanol exists within some species of the <em>Komagataella</em> genus.
                        of methanol exists within some species of the </span><em><span>Komagataella</span></em><span>
+
                    <strong>Alcohol oxidase
                        genus.
+
                        (AO)</strong> appears to be the first and major enzyme produced in this metabolic pathway.
                        Alcohol oxidase (AO) appears to be the first and major enzyme produced in this metabolic
+
                    Transcribed from its
                        pathway.
+
                    gene (AOX1), AO converts <strong>methanol to formaldehyde</strong> within the yeast&apos;s
                        Transcribed from its gene (AOX1), AO converts methanol to formaldehyde within the yeast&#39;s
+
                    peroxisome.</p>
                        peroxisome.</span></p>
+
                 <p>&#x200B; In order to test the function of P<sub>AOX1</sub>, we construct
                 <p><span> </span><span>In order to test the function of P</span><sub><span>AOX1</span></sub><span>, we
+
                    &quot;<strong>P<sub>AOX1</sub>-&#x3B1;-factor-sfGFP-AOX1
                        construct
+
                        terminator&quot;(<a href="http://parts.igem.org/Part:BBa_K383050">BBa_K383050</a>)</strong>. If
                        &quot;</span><strong><span>P</span><sub><span>AOX1</span></sub><span>-α-factor-sfGFP-AOX1
+
                    P<sub>AOX1</sub> is functional, we
                            terminator&quot;(<a href="http://parts.igem.org/Part:BBa_K3853050"
+
                    can test the <strong>fluorescence intensity</strong> of sfGFP in <strong>supernatant
                                target='_blank'>BBa_K3853050</a>)</span></strong><span>. If
+
                        samples</strong> obtained
                        P</span><sub><span>AOX1</span></sub><span> is functional, we can test the fluorescence intensity
+
                    from the culture of recombinant <em>P.pastoris</em> GS115 strain.</p>
                        of
+
                 <p>&#x200B; Our results matched the general expected trend (Fig 1). After fermentation experiment in
                        sfGFP in supernatant samples obtained from the culture of recombinant
+
                    BMMY medium
                    </span><em><span>P.pastoris</span></em><span> GS115 strain.</span></p>
+
                    containing 0.5% methanol. The <strong>fluorescence intensity</strong> of the supernatant samples of
                 <p>&nbsp;</p>
+
                    recombinant
                <p><span> </span><span>Our results matched the general expected trend (Fig 1). After fermentation
+
                    <em>P.pastoris</em> GS115 containing the sfGFP gene gradually <strong>increased over time</strong>,
                        experiment
+
                    while that of
                        in BMMY medium containing 0.5% methanol. The fluorescence intensity of the supernatant samples
+
                    wild-type <em>P.pastoris</em> GS115 remained <strong>basically unchanged</strong>, which is in line
                        of
+
                    with
                        recombinant </span><em><span>P.pastoris</span></em><span> GS115 containing the sfGFP gene
+
                    literature description<sup>[1]</sup>. SDS-PAGE results (Fig 2) also verified this phenomenon, almost
                        gradually
+
                    no protein
                        increased over time, while that of wild-type </span><em><span>P.pastoris</span></em><span> GS115
+
                    band before 36 h could be seen. The corresponding protein band <strong>began to appear</strong> at
                        remained basically unchanged, which is in line with literature
+
                    36 h, and the
                        description</span><sup><span>[1]</span></sup><span>. SDS-PAGE results (Fig 2) also verified this
+
                    clarity and width of the protein band gradually increased over time, which means the AOX1 promoter
                        phenomenon, almost no protein band before 36 h could be seen. The corresponding protein band
+
                    can
                        began
+
                    continuously induce the expression of the protein. At the same time, by measuring <strong>the growth
                        to appear at 36 h, and the clarity and width of the protein band gradually increased over time,
+
                        curve</strong> of the strains (Fig 3), we observed that the OD<sub>600</sub> of the recombinant
                        which means the AOX1 promoter can continuously induce the expression of the protein. At the same
+
                     <em>P.pastoris</em> GS115 containing the sfGFP gene was <strong>slightly lower</strong> than the
                        time, by measuring the growth curve of the strains (Fig 3), we observed that the
+
                    wild-type
                        OD</span><sub><span>600</span></sub><span> of the recombinant
+
                    <em>P.pastoris</em> GS115 , the phenomenon of which may be attributed to the expression of sfGFP.
                     </span><em><span>P.pastoris</span></em><span>  GS115 containing the sfGFP gene was slightly lower
+
                    The results
                        than
+
                    showed that the expression of foreign genes would <strong>partly inhibit cell growth</strong>, but
                        the wild-type </span><em><span>P.pastoris</span></em><span> GS115 , the phenomenon of which may
+
                    not in an
                        be
+
                    intensive manner.
                        attributed to the expression of sfGFP. The results showed that the expression of foreign genes
+
                </p>
                        would
+
                        partly inhibit cell growth, but not in an intensive manner.</span></p>
+
 
                 <p><img src="https://static.igem.org/mediawiki/2021/7/72/T--CPU_CHINA--Parts--Contributions--fig1.png"
 
                 <p><img src="https://static.igem.org/mediawiki/2021/7/72/T--CPU_CHINA--Parts--Contributions--fig1.png"
 
                         referrerpolicy="no-referrer"></p>
 
                         referrerpolicy="no-referrer"></p>
 
                 <p class="imgdescribe"><span>Fig. 1 Fluorescence intensity of supernatant samples obtained at
 
                 <p class="imgdescribe"><span>Fig. 1 Fluorescence intensity of supernatant samples obtained at
                            different time points from
+
                        different time points from
                            the
+
                        the
                            culture of wild-type <em>P.pastoris</em> GS115 and corresponding recombinant <em>P.pastoris</em> GS115
+
                        culture of wild-type <em>P.pastoris</em> GS115 and corresponding recombinant <em>P.pastoris</em>
                            containing
+
                        GS115
                            sfGFP gene.</span></p>
+
                        containing
 +
                        sfGFP gene.</span></p>
 
                 <p><img src="https://static.igem.org/mediawiki/2021/f/f2/T--CPU_CHINA--Parts--Contributions--fig2.png"
 
                 <p><img src="https://static.igem.org/mediawiki/2021/f/f2/T--CPU_CHINA--Parts--Contributions--fig2.png"
 
                         referrerpolicy="no-referrer"></p>
 
                         referrerpolicy="no-referrer"></p>
 
                 <p class="imgdescribe"><span>Fig. 2 SDS-PAGE gel analysis of supernatant samples of the recombinant
 
                 <p class="imgdescribe"><span>Fig. 2 SDS-PAGE gel analysis of supernatant samples of the recombinant
                    <em>P.pastoris</em> GS115
+
                        <em>P.pastoris</em> GS115
                            containing the sfGFP gene during the fermentation</span></p>
+
                        containing the sfGFP gene during the fermentation</span></p>
 
                 <p>&nbsp;</p>
 
                 <p>&nbsp;</p>
 
                 <p><img src="https://static.igem.org/mediawiki/2021/4/44/T--CPU_CHINA--Parts--Contributions--fig3.png"
 
                 <p><img src="https://static.igem.org/mediawiki/2021/4/44/T--CPU_CHINA--Parts--Contributions--fig3.png"
 
                         referrerpolicy="no-referrer"></p>
 
                         referrerpolicy="no-referrer"></p>
 
                 <p class="imgdescribe"><span>Fig. 3 OD</span><sub><span>600</span></sub><span> absorbance obtained at
 
                 <p class="imgdescribe"><span>Fig. 3 OD</span><sub><span>600</span></sub><span> absorbance obtained at
                            different time
+
                        different time
                            points
+
                        points
                            from the culture of wild-type <em>P.pastoris</em> GS115 and recombinant <em>P.pastoris</em> GS115 that
+
                        from the culture of wild-type <em>P.pastoris</em> GS115 and recombinant <em>P.pastoris</em>
                            contains
+
                        GS115 that
                            sfGFP gene</span><span>.</span></p>
+
                        contains
 +
                        sfGFP gene</span><span>.</span></p>
 
                 <p><strong><span>Reference</span></strong></p>
 
                 <p><strong><span>Reference</span></strong></p>
 
                 <p class="reference"><span>[1] Xuan, Y. </span><em><span>et al.</span></em><span> An upstream activation
 
                 <p class="reference"><span>[1] Xuan, Y. </span><em><span>et al.</span></em><span> An upstream activation

Revision as of 16:04, 9 October 2021

OVERVIEW

​ Hoping to make a useful contribution for future iGEM teams, we completed the experimental characterization of an existing part Ethanol regulated promoter AOX1(BBa_I764001) and provided new data for it.

Biobricks codes in the lab Quantitative Characterization
BBa_I764001 promoter fluorescence intensity

The details are in the part registrations page.

CONTRIBUTION

PAOX1

​ The AOX1 promoter(PAOX1) region from Pichia pastoris. It was first registered in 2007 and used as a strong promoter in Pichia pastoris. A complex pathway for the metabolism of methanol exists within some species of the Komagataella genus. Alcohol oxidase (AO) appears to be the first and major enzyme produced in this metabolic pathway. Transcribed from its gene (AOX1), AO converts methanol to formaldehyde within the yeast's peroxisome.

​ In order to test the function of PAOX1, we construct "PAOX1-α-factor-sfGFP-AOX1 terminator"(BBa_K383050). If PAOX1 is functional, we can test the fluorescence intensity of sfGFP in supernatant samples obtained from the culture of recombinant P.pastoris GS115 strain.

​ Our results matched the general expected trend (Fig 1). After fermentation experiment in BMMY medium containing 0.5% methanol. The fluorescence intensity of the supernatant samples of recombinant P.pastoris GS115 containing the sfGFP gene gradually increased over time, while that of wild-type P.pastoris GS115 remained basically unchanged, which is in line with literature description[1]. SDS-PAGE results (Fig 2) also verified this phenomenon, almost no protein band before 36 h could be seen. The corresponding protein band began to appear at 36 h, and the clarity and width of the protein band gradually increased over time, which means the AOX1 promoter can continuously induce the expression of the protein. At the same time, by measuring the growth curve of the strains (Fig 3), we observed that the OD600 of the recombinant P.pastoris GS115 containing the sfGFP gene was slightly lower than the wild-type P.pastoris GS115 , the phenomenon of which may be attributed to the expression of sfGFP. The results showed that the expression of foreign genes would partly inhibit cell growth, but not in an intensive manner.

Fig. 1 Fluorescence intensity of supernatant samples obtained at different time points from the culture of wild-type P.pastoris GS115 and corresponding recombinant P.pastoris GS115 containing sfGFP gene.

Fig. 2 SDS-PAGE gel analysis of supernatant samples of the recombinant P.pastoris GS115 containing the sfGFP gene during the fermentation

 

Fig. 3 OD600 absorbance obtained at different time points from the culture of wild-type P.pastoris GS115 and recombinant P.pastoris GS115 that contains sfGFP gene.

Reference

[1] Xuan, Y. et al. An upstream activation sequence controls the expression of AOX1 gene in Pichia pastoris. FEMS yeast research, 1271-1282, doi:10.1111/j.1567-1364.2009.00571.x (2009).