Difference between revisions of "Team:Vilnius-Lithuania/Partnership"

Line 1: Line 1:
 +
<!DOCTYPE html>
 
<html>
 
<html>
 
  <head>
 
  <head>
Line 13: Line 14:
 
   <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/button-pill&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
 
   <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/button-pill&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
 
   <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/footer&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
 
   <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/footer&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
 +
  <link href="https://2021.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/styles/table&amp;action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
 
  </head>
 
  </head>
 
  <body>
 
  <body>
Line 43: Line 45:
 
     <div class="app-content-text">
 
     <div class="app-content-text">
 
     <div class="content-page-container">
 
     <div class="content-page-container">
        <h3 class="index-headline">
+
      <h3 class="index-headline">
            Introduction
+
      Getting acquainted
        </h3>
+
      </h3>
        <p>
+
      <p>
            Last year the world faced an unpredicted mass pandemic which has already caused more than 4.4 million deaths, according to WHO (World Health Organization) . However, it is not the only disease that is encroaching on human lives. Over the last 30 years, the world has faced at least 30 new infectious diseases, including Swine flu, well-known Ebola, SARS, etc. There are beneficial conditions for that - favorable climate and weather, ecosystem changes, human susceptibility to infections, international trade, and travel, or even lack of public health services. All factors sum up and contribute to the excellent environment for the new emerging or reemerging infectious diseases.
+
      In June, we found on Slack that our and TU Delft teams are working              with aptamers this year. Therefore we decided to arrange a meeting              to brainstorm how our teams could work together. We had our first              online call on the 2nd of July. After this meeting, we decided to               orientate our partnership in the
 
+
      <b>
        </p>
+
        dry lab
        <p>
+
      </b>
            One of the examples - amoebiasis, an infectious disease caused mostly by Entamoeba histolytica. E. histolytica (Amebos paveikslėlis) cysts enter the human body orally through contaminated food, water or human to human contact. For this reason, this infection mainly affects the developing world in tropical and subtropical regions where there are poor sanitation, lack of publicly available health care, favorable climate for pathogens propagation, lack of knowledge about food processing and keeping conditions, defecation into water sources such as rivers, and being near animals. (Vizualas: ikonėlės atliepiančios amebiazės plitimo priežastis). After exposure to E. histolytica cysts, excystation occurs in the small intestine with the release of motile trophozoites. Trophozoites then migrate to the large intestine where they mature and begin encystation. There are two possible pathogenesis pathways. First, trophozoites stay in the large intestine, proliferate, do not cause any symptoms, and leave the intestine as newly formed cysts.  In this case, an infected person becomes an infection carrier. Second, trophozoites might proliferate if the infected faces stress or microbiota disruptions. In this case, trophozoites adhere to the colonic epithelium by Gal/GalNac lectin, secrete proteolytic enzymes, amebaphores, causing cell lysis, or conduct contact-dependent target cells lysis. It leads to the destruction of the protective mucous barrier, surrounding cells fagocytation.
+
      .
        </p>
+
      </p>
        <p>
+
      <p>
            Symptoms of intestinal amoebiasis include abdominal pain, ulcerative colitis with mucus and blood, bloody diarrhea which later on progresses to raspberry-jelly-like stool, appendicitis, and ulcers. However, in more progressed inflammation, trophozoites from the intestine travel through the portal vein into the liver and cause an amoebic liver abscess, or less frequently lung, brain abscess, or skin infection. (Proceso iliustracija: žmogus (žemiau pateiktas paveikslėlio pvz), jame gif formatu pavaizduota histolytica kelionė (per burną, į žarnyną, kur iš rutuliuko virsta į banguojačią dėmelę, per vartų veną į kepenis ir vėliau į plaučius, smegenis nukeliauja).
+
      At the time our dry lab team was in the
        </p>
+
      <b>
        <div class="figure-container">
+
        design stage
            <img alt="" src="https://static.igem.org/mediawiki/2021/d/de/T--Vilnius-Lithuania--placeholder.png"/>
+
      </b>
            <div>
+
      of the                 software development. One of the ideas was to run M.A.W.S. (making                aptamers without SELEX), program originally created by Heidelberg                iGEM 2015 team[1], update and potentially improve it. Apparently,                 TU Delft team was also interested in running this program. Since                our teams found mutual interest, our dry lab team set ourselves                the task to
              <b>
+
      <b>
              Fig 1
+
        plan
              </b>
+
      </b>
              <b>
+
      the potential collaboration regarding this                  idea. In general, we initially suggested that our teams                would
               .
+
      <b>
               </b>
+
        collaborate
               Aprasymas
+
      </b>
            </div>
+
      on improving the program.
        </div>
+
      </p>
        <h3 class="index-headline">
+
      <div class="figure-container">
            Antraste 2
+
      <img alt="" id="Figure1" src="https://static.igem.org/mediawiki/2021/5/5b/T--Vilnius-Lithuania--first_meeting_with_TU_Delft.png"/>
        </h3>
+
      <div>
        <a  
+
        <b>
        href="https://static.igem.org/mediawiki/2021/5/58/T--Vilnius-Lithuania--Prokaryote_genome_quality_assessment.pdf"
+
        Figure 1.
        download
+
        </b>
         >
+
        The first online meeting with TU Delft team
            Supplementary data
+
      </div>
        </a>
+
      </div>
        <p>
+
      <h3 class="index-headline">
            <i>Italics tekstas</i>Cras [1] ultrices eu massa vitae congue. Vestibulum arcu enim, congue              id lacus at, laoreet fringilla tortor. Praesent libero nunc,             maximus vel suscipit nec, fringilla sed augue. Praesent porttitor              vehicula efficitur. Aenean ac bibendum lectus. Praesent vestibulum              velit ut nunc accumsan, non molestie erat pretium. In a ante              vulputate, semper sapien at, tristique erat. Morbi vitae euismod              eros, at pulvinar erat. Vivamus auctor arcu sed tellus egestas,             vitae imperdiet eros viverra. Nulla molestie sapien vitae ipsum              pulvinar dictum. Sed sit amet dolor a neque dictum malesuada et              nec lectus. Aenean tristique ornare nisl, at imperdiet magna              placerat eget. Suspendisse ut blandit elit, sit amet iaculis ex.              Nam vel varius velit. Aenean pretium scelerisque enim, quis mollis              nunc finibus eu.
+
      Collaboration brainstorming
        </p>
+
      </h3>
        <p>
+
      <p>
            <i>Italics tekstas</i>Cras [1] ultrices eu massa vitae congue. Vestibulum arcu enim, congue              id lacus at, laoreet fringilla tortor. Praesent libero nunc,              maximus vel suscipit nec, fringilla sed augue. Praesent porttitor              vehicula efficitur. Aenean ac bibendum lectus. Praesent vestibulum              velit ut nunc accumsan, non molestie erat pretium. In a ante              vulputate, semper sapien at, tristique erat. Morbi vitae euismod              eros, at pulvinar erat. Vivamus auctor arcu sed tellus egestas,              vitae imperdiet eros viverra. Nulla molestie sapien vitae ipsum              pulvinar dictum. Sed sit amet dolor a neque dictum malesuada et              nec lectus. Aenean tristique ornare nisl, at imperdiet magna              placerat eget. Suspendisse ut blandit elit, sit amet iaculis ex.              Nam vel varius velit. Aenean pretium scelerisque enim, quis mollis              nunc finibus eu.
+
      However, our initially suggested plan to focus on the software               was not suitable for the timetable of TU Delft’s dry lab team.              Due to this reason, we looked for other mutual spots to collaborate.              Since our projects include sequencing and data analysis, we came              up with an idea to apply each other’s chosen sequencing workflows              and compare the results. Our teams organized another meeting to
         </p>
+
      <b>
         <p>
+
        consider this idea
            <i>Italics tekstas</i>Cras [1] ultrices eu massa vitae congue. Vestibulum arcu enim, congue              id lacus at, laoreet fringilla tortor. Praesent libero nunc,              maximus vel suscipit nec, fringilla sed augue. Praesent porttitor              vehicula efficitur. Aenean ac bibendum lectus. Praesent vestibulum              velit ut nunc accumsan, non molestie erat pretium. In a ante              vulputate, semper sapien at, tristique erat. Morbi vitae euismod              eros, at pulvinar erat. Vivamus auctor arcu sed tellus egestas,             vitae imperdiet eros viverra. Nulla molestie sapien vitae ipsum              pulvinar dictum. Sed sit amet dolor a neque dictum malesuada et              nec lectus. Aenean tristique ornare nisl, at imperdiet magna              placerat eget. Suspendisse ut blandit elit, sit amet iaculis ex.              Nam vel varius velit. Aenean pretium scelerisque enim, quis mollis              nunc finibus eu.
+
      </b>
        </p>
+
      and get a better insight into our               sequencing analysis workflows. After the meeting we decided              that we cannot apply each other’s analysis, thus we
        <ul>
+
      <b>
            <li>Item 1</li>
+
        rejected
            <li>Item 2</li>
+
      </b>
            <li>Item 3</li>
+
      this conception.
         </ul>
+
      </p>
         <ol>
+
      <h3 class="index-headline">
            <li>Item 1</li>
+
      Designing the partnership
            <li>Item 2</li>
+
      </h3>
            <li>Item 3</li>
+
      <p>
         </ol>
+
      Both meetings that we organized were indeed enjoyable and              fruitful, hence we were interested in continuing our cooperation.              Since we had several interactions, we thought that our communication              might grow into a
 +
      <b>
 +
        partnership
 +
      </b>
 +
      . Apparently, both we and TU              Delft team were interested in fulfilling the Gold criteria regarding              this subject.
 +
      </p>
 +
      <p>
 +
      In the end of July, we had
 +
      <b>
 +
        one complete engineering cycle
 +
      </b>
 +
      ,              regarding software,
 +
      <b>
 +
        passed
 +
      </b>
 +
      : we designed the implementation of              the program, the implementation was performed, and first results              (aptamer sequences for our target protein EhPPDK) were validated using              aptamer affinity evaluation
 +
      <i>
 +
        in silico
 +
      </i>
 +
      modeling flow. The results              of docking showed that our software generates aptamers of length N that              are more affine than random aptamers of the same length N.
 +
      </p>
 +
      <div class="figure-container">
 +
      <img alt="" id="Figure2" src="https://static.igem.org/mediawiki/2021/e/ea/T--Vilnius-Lithuania--engineering_cycle_unit_circle.png"/>
 +
      <div>
 +
        <b>
 +
         Figure 2.
 +
        </b>
 +
        The engineering cycle
 +
      </div>
 +
      </div>
 +
      <p>
 +
      We contacted TU Delft with the question regarding the potential partnership              when we were at the point of the completed second “Build” stage. Our dry              lab team was looking for ways to enter the
 +
      <b>
 +
        testing
 +
      </b>
 +
      stage -
 +
      <b>
 +
        validating
 +
      </b>
 +
      the software. Meanwhile, TU Delft team was interested              in getting an aptamer sequence for their vitamin detection using an
 +
      <b>
 +
        alternative
 +
      </b>
 +
      approach more
 +
      <b>
 +
        optimized
 +
      </b>
 +
      than DRIVER. Finally,               we found a
 +
      <b>
 +
        mutual spot
 +
      </b>
 +
      for a meaningful partnership where both              teams would
 +
      <b>
 +
        benefit.
 +
      </b>
 +
      </p>
 +
      <p>
 +
      In order to plan our partnership, we organized another call, in which we              discussed the details about aptamer generation.
 +
      </p>
 +
      <h3 class="index-headline">
 +
      Cooperation
 +
      </h3>
 +
      <p>
 +
      At first, TU Delft team requested to generate aptamers for vitamins B9,               B12, and B1. Although even after introducing adjustments to the program              to take vitamin molecules as input, the program
 +
      <b>
 +
        did not generate
 +
      </b>
 +
      affine aptamer sequences for the mentioned vitamins. Unexpectedly, this              brought our software development through testing and learning stages.               After designing, building and testing several methods to tackle the              problem, we
 +
      <b>
 +
        learned
 +
      </b>
 +
      that our software has the
 +
      <b>
 +
        limitation
 +
      </b>
 +
      to take only protein molecules as targets.
 +
      </p>
 +
      <p>
 +
      Eventually, we decided to address the issue of the small targets by              arranging another call. We explained that the program works properly              only for protein targets, and we asked whether, by chance, there would              be a
 +
      <b>
 +
        protein structure
 +
      </b>
 +
      for which they would require an aptamer              sequence. TU Delft team decided to devote some time for a literature              analysis about proteins related to vitamins, and eventually, they              reached out to us with positive news. They announced that they found              a
 +
      <b>
 +
        retinol-binding protein (RBP4)
 +
      </b>
 +
      that binds to vitamin A,               which they would be interested in detecting using aptamers. By              including this protein, they would
 +
      <b>
 +
        expand their project
 +
      </b>
 +
      ,              and we could
 +
      <b>
 +
        validate our software
 +
      </b>
 +
      .
 +
      </p>
 +
      <p>
 +
      We settled down with the protein, and in a couple of days, we prepared              single-stranded DNA aptamer sequences 21 and 30 nucleotides long, scored              them using aptamer docking flow, and sent them to our colleagues from              the Netherlands. The scores of the sequences are given in table 1. Mfold              score stands for evaluation of aptamer’s stability of its secondary              structure in regards to Gibbs energy. Meanwhile HDOCK score is a score              of docking which stands for aptamer’s affinity to the target. Both of              these scores are considered the smaller the better.
 +
      </p>
 +
      <div class="table-container">
 +
      <div class="table-headline">
 +
        <b>
 +
        Table 1.
 +
        </b>
 +
        Secondary structure and docking scores of single-stranded DNA sequences
 +
      </div>
 +
      <table class="table table-bordered table-hover table-condensed">
 +
        <thead>
 +
         <tr>
 +
          <th title="Field #1">
 +
          Aptamer
 +
          </th>
 +
          <th title="Field #2">
 +
          Sequence
 +
          </th>
 +
          <th title="Field #3">
 +
          Mfold score
 +
          </th>
 +
          <th title="Field #4">
 +
          HDOCK score
 +
          </th>
 +
         </tr>
 +
        </thead>
 +
        <tbody>
 +
        <tr>
 +
          <td>
 +
          initial_RBP4_21
 +
          </td>
 +
          <td>
 +
          GTTGATTGTTATGTTTAGTGA
 +
          </td>
 +
          <td align="right">
 +
          1.25
 +
          </td>
 +
          <td align="right">
 +
          -317.59
 +
          </td>
 +
        </tr>
 +
        <tr>
 +
          <td>
 +
          random_21
 +
          </td>
 +
          <td>
 +
          GGCAGGTCAATTCGCACTGTG
 +
          </td>
 +
          <td align="right">
 +
          -0.40
 +
          </td>
 +
          <td align="right">
 +
          -320.05
 +
          </td>
 +
        </tr>
 +
        <tr>
 +
          <td>
 +
          RBP4_30
 +
          </td>
 +
          <td>
 +
          GTTGATTGTTATGTTTAGTGACGGGTTCCC
 +
          </td>
 +
          <td align="right">
 +
          0.78
 +
          </td>
 +
          <td align="right">
 +
          -363.45
 +
          </td>
 +
        </tr>
 +
        <tr>
 +
          <td>
 +
          random_30
 +
          </td>
 +
          <td>
 +
          AGGGTCACATGGGCGTTTGGCACTACCGAC
 +
          </td>
 +
          <td align="right">
 +
          -1.22
 +
          </td>
 +
          <td align="right">
 +
          -356.26
 +
          </td>
 +
        </tr>
 +
        </tbody>
 +
      </table>
 +
      </div>
 +
      <p>
 +
      After several days, TU Delft team wrote us a letter inviting us to              have a call before setting up an order. Eventually, to keep the              expenses reasonable,, we adjusted the agreement for the partnership              that they would order
 +
      <b>
 +
        three
 +
      </b>
 +
      sequences:
 +
      </p>
 +
      <ul>
 +
      <li>
 +
        The first sequence would be
 +
        <b>
 +
        DNA
 +
        </b>
 +
        (30 nucleotides long) aptamer for our software
 +
        <b>
 +
        validation.
 +
        </b>
 +
      </li>
 +
      <li>
 +
        The second sequence would be an
 +
        <b>
 +
        RNA
 +
        </b>
 +
        (30 nucleotides long) aptamer on its own                to
 +
        <b>
 +
        validate
 +
        </b>
 +
        how our software predicts affine RNA aptamers.
 +
      </li>
 +
      <li>
 +
        Additionally, they would order the same RNA sequence incorporated into the
 +
        <b>
 +
        ribozyme
 +
        </b>
 +
        that would be the TU Delft project’s
 +
        <b>
 +
         extension
 +
        </b>
 +
        .
 +
      </li>
 +
      </ul>
 +
      <p>
 +
      This agreement briefly brought our software development to the building stage,              in which we adjusted the program to make RNA aptamers as well. After evaluation              of the aptamers
 +
      <i>
 +
        in silico
 +
      </i>
 +
      we sent the additional sequences for our              colleagues from TU Delft.
 +
      </p>
 +
      <div class="table-container">
 +
      <div class="table-headline">
 +
        <b>
 +
         Table 2.
 +
        </b>
 +
        Scores of the final set of single-stranded DNA and RNA sequences
 +
      </div>
 +
      <table class="table table-bordered table-hover table-condensed">
 +
        <thead>
 +
        <tr>
 +
          <th title="Field #1">
 +
          Aptamer
 +
          </th>
 +
          <th title="Field #2">
 +
          Sequence
 +
          </th>
 +
          <th title="Field #3">
 +
          Mfold score
 +
          </th>
 +
          <th title="Field #4">
 +
          HDOCK score
 +
          </th>
 +
        </tr>
 +
        </thead>
 +
        <tbody>
 +
        <tr>
 +
          <td>
 +
          RBP4_RNA_30
 +
          </td>
 +
          <td>
 +
          GUCCCCCGCCCGUGUCCCGCUAGCCCCGCG
 +
          </td>
 +
          <td align="right">
 +
          -1.6
 +
          </td>
 +
          <td align="right">
 +
          -376.82
 +
          </td>
 +
        </tr>
 +
        <tr>
 +
          <td>
 +
          random_RNA_30_1
 +
          </td>
 +
          <td>
 +
          CUGUUUUCGAAAUUACCCUUUAAGCGCGGG
 +
          </td>
 +
          <td align="right">
 +
          -2.20
 +
          </td>
 +
          <td align="right">
 +
          -305.81
 +
          </td>
 +
         </tr>
 +
        </tbody>
 +
      </table>
 +
      </div>
 +
      <p>
 +
      Also, since the partnership required a certain amount of expenses, we decided to
 +
      <b>
 +
        split
 +
      </b>
 +
      them in half. We arranged another brief call to settle the details.
 +
      </p>
 +
      <h3 class="index-headline">
 +
      Results
 +
      </h3>
 +
      <h3 class="index-headline">
 +
      Conclusions
 +
      </h3>
 
     </div>
 
     </div>
 
     <div class="references-wrapper">
 
     <div class="references-wrapper">
Line 108: Line 409:
 
       </div>
 
       </div>
 
       <div>
 
       <div>
         Trundle, K. Teaching Science During the Early Childhood Years. National Geographic Learning (2010).
+
         M.A.W.S., iGEM Team Heidelberg, 2015,
 +
        <a href="https://2015.igem.org/Team:Heidelberg/software/maws">
 +
        To the Wiki
 +
        </a>
 
       </div>
 
       </div>
 
       </div>
 
       </div>

Revision as of 08:22, 2 October 2021

<!DOCTYPE html>

PARTNERSHIP

Header

Getting acquainted

In June, we found on Slack that our and TU Delft teams are working with aptamers this year. Therefore we decided to arrange a meeting to brainstorm how our teams could work together. We had our first online call on the 2nd of July. After this meeting, we decided to orientate our partnership in the dry lab .

At the time our dry lab team was in the design stage of the software development. One of the ideas was to run M.A.W.S. (making aptamers without SELEX), program originally created by Heidelberg iGEM 2015 team[1], update and potentially improve it. Apparently, TU Delft team was also interested in running this program. Since our teams found mutual interest, our dry lab team set ourselves the task to plan the potential collaboration regarding this idea. In general, we initially suggested that our teams would collaborate on improving the program.

Figure 1. The first online meeting with TU Delft team

Collaboration brainstorming

However, our initially suggested plan to focus on the software was not suitable for the timetable of TU Delft’s dry lab team. Due to this reason, we looked for other mutual spots to collaborate. Since our projects include sequencing and data analysis, we came up with an idea to apply each other’s chosen sequencing workflows and compare the results. Our teams organized another meeting to consider this idea and get a better insight into our sequencing analysis workflows. After the meeting we decided that we cannot apply each other’s analysis, thus we rejected this conception.

Designing the partnership

Both meetings that we organized were indeed enjoyable and fruitful, hence we were interested in continuing our cooperation. Since we had several interactions, we thought that our communication might grow into a partnership . Apparently, both we and TU Delft team were interested in fulfilling the Gold criteria regarding this subject.

In the end of July, we had one complete engineering cycle , regarding software, passed : we designed the implementation of the program, the implementation was performed, and first results (aptamer sequences for our target protein EhPPDK) were validated using aptamer affinity evaluation in silico modeling flow. The results of docking showed that our software generates aptamers of length N that are more affine than random aptamers of the same length N.

Figure 2. The engineering cycle

We contacted TU Delft with the question regarding the potential partnership when we were at the point of the completed second “Build” stage. Our dry lab team was looking for ways to enter the testing stage - validating the software. Meanwhile, TU Delft team was interested in getting an aptamer sequence for their vitamin detection using an alternative approach more optimized than DRIVER. Finally, we found a mutual spot for a meaningful partnership where both teams would benefit.

In order to plan our partnership, we organized another call, in which we discussed the details about aptamer generation.

Cooperation

At first, TU Delft team requested to generate aptamers for vitamins B9, B12, and B1. Although even after introducing adjustments to the program to take vitamin molecules as input, the program did not generate affine aptamer sequences for the mentioned vitamins. Unexpectedly, this brought our software development through testing and learning stages. After designing, building and testing several methods to tackle the problem, we learned that our software has the limitation to take only protein molecules as targets.

Eventually, we decided to address the issue of the small targets by arranging another call. We explained that the program works properly only for protein targets, and we asked whether, by chance, there would be a protein structure for which they would require an aptamer sequence. TU Delft team decided to devote some time for a literature analysis about proteins related to vitamins, and eventually, they reached out to us with positive news. They announced that they found a retinol-binding protein (RBP4) that binds to vitamin A, which they would be interested in detecting using aptamers. By including this protein, they would expand their project , and we could validate our software .

We settled down with the protein, and in a couple of days, we prepared single-stranded DNA aptamer sequences 21 and 30 nucleotides long, scored them using aptamer docking flow, and sent them to our colleagues from the Netherlands. The scores of the sequences are given in table 1. Mfold score stands for evaluation of aptamer’s stability of its secondary structure in regards to Gibbs energy. Meanwhile HDOCK score is a score of docking which stands for aptamer’s affinity to the target. Both of these scores are considered the smaller the better.

Table 1. Secondary structure and docking scores of single-stranded DNA sequences
Aptamer Sequence Mfold score HDOCK score
initial_RBP4_21 GTTGATTGTTATGTTTAGTGA 1.25 -317.59
random_21 GGCAGGTCAATTCGCACTGTG -0.40 -320.05
RBP4_30 GTTGATTGTTATGTTTAGTGACGGGTTCCC 0.78 -363.45
random_30 AGGGTCACATGGGCGTTTGGCACTACCGAC -1.22 -356.26

After several days, TU Delft team wrote us a letter inviting us to have a call before setting up an order. Eventually, to keep the expenses reasonable,, we adjusted the agreement for the partnership that they would order three sequences:

  • The first sequence would be DNA (30 nucleotides long) aptamer for our software validation.
  • The second sequence would be an RNA (30 nucleotides long) aptamer on its own to validate how our software predicts affine RNA aptamers.
  • Additionally, they would order the same RNA sequence incorporated into the ribozyme that would be the TU Delft project’s extension .

This agreement briefly brought our software development to the building stage, in which we adjusted the program to make RNA aptamers as well. After evaluation of the aptamers in silico we sent the additional sequences for our colleagues from TU Delft.

Table 2. Scores of the final set of single-stranded DNA and RNA sequences
Aptamer Sequence Mfold score HDOCK score
RBP4_RNA_30 GUCCCCCGCCCGUGUCCCGCUAGCCCCGCG -1.6 -376.82
random_RNA_30_1 CUGUUUUCGAAAUUACCCUUUAAGCGCGGG -2.20 -305.81

Also, since the partnership required a certain amount of expenses, we decided to split them in half. We arranged another brief call to settle the details.

Results

Conclusions

References

1.
M.A.W.S., iGEM Team Heidelberg, 2015, To the Wiki