In-vitro SELEX protocol Troubleshooting guide

Library preparation

- 1. Let ssDNA pool denature by heating at 95°C for 5 min
- 2. Dissolve 20pmol naive ssDNA library in 500µl binding buffer (BB)
 - \geq 20 µL of 1 µM library in 500 µL BB.
- 3. Cool on ice for 10 min \rightarrow Formation of stable tertiary structure

Stop point

Negative selection → don't do in the first SELEX round

- 4. Wash BSA coated cell culture plate $2x\ 10$ min with $500\ \mu l$ Wash buffer (WB) by using a shaker
- 5. Wash BSA coated cell culture plate 1x 10 min with 500 μl BB by using a shaker
- 6. Incubate ssDNA library with bacteria 10^7 CFU in 1mL BB for 30min on orbital shaker at 4° C
 - Supernatant contains unbound DNA sequences

Positive selection

- 7. Spin down 0.4 mg beads from stock solution at 1200g for 10 min
 - > stock 10 mg/ml
 - > take 40μl and add 500μl MES buffer
- 8. Wash beads 2x with 500µl WB at 1200g for 10 min
- 9. Wash beads 1x with 500µl BB at 1200g for 10 min
- 10. Resuspend beads in 500 μL BB
- 11. Mix dissolved library (500 μ L) together with resuspended beads \rightarrow in total 1mL
- 12. Incubate for 1h on orbital shaker at 4°C
 - \rightarrow Place orbital shaker in the fridge
- 13. Centrifuge at 1200 g for 10 min
- 14. Wash 1x with 500µl WB at 1200 g for 10 min
 - \rightarrow in later rounds: increase number of washing steps by one more wash and one more minute \rightarrow until you reached 5 minutes of washing time

Elution of bound aptamers

- 15. Resuspend in 500μL BB
- 16. Heat at 95°C for 15min
- 17. Cool on ice for 5 min
- 18. Centrifuge at 14,000 rpm for 2 min \rightarrow Supernatant contains aptamers

Freeze point

DNA precipitation

- 19. Add 0.1V x 3M Sodium acetate
 - > 50μL 3M Sodium acetate for 500μL

- 20. Add 100μg/mL glycoblue to solution
 - > 5μL glycoblue for 500μL
- 21. Add 2.5V 95 99% cold (- 20 °C) EtOH $\Rightarrow 1.375$ mL EtOH for 500μ L

Alt. a. 1h at -20°C

Alt. b. O/N at -80°C

- 22. Centrifuge at 10 000 g for 30 min at 4°C
- 23. Remove supernatant
- 24. Wash in 50 μ L 70%ethanol \rightarrow just to cover the pellet
- 25. Take as much supernatant as possible and let dry
 - María: You shouldn't be able to smell EtOH anymore. Shouldn't look glossy. Don't let it dry too much either otherwise pellet resuspension becomes harder.
- 26. Resuspend in 30 µL of nuclease free water (Ambion, 100 mL bottle)
- 27. Measure with Nanodrop

Freeze Point

Working conc. / amount

Aptamer library amplification

- A) Library pre-amplification
- 28. Prepare $1 \times 50 \mu L$ PCR tube:

- $5 \mu L$ of each primer (10 μM) $1 \mu M / 50 pmol$ 5 μL of dNTP Mix (2.5 mM each) 0.25 mM each

- 1 μ L DNA Template (~100 ng/ μ L) 100 ng 5 μL 10X polymerase buffer 1 X 0.25 μL of DNA polymerase (5 U/μl) 1.25 U

- $28.75 \mu L$ NF-H₂O to adjust total volume to $50 \mu L$

A Keep tubes on ice.

Add polymerase last.

29. PCR for Library pre-amplification:

- o Initial denaturation 95^aC 3'
- o Denaturation 95°C 30"
- o Annealing 55^oC 30" × 6 Cycles
- Elongation 72°C 30"
- Final elongation 72°C 3'
- ➤ Now we have a new library!!!
- B) <u>Library amplification</u>
- 30. Prepare $4 \times 50 \mu$ L PCR tube:

 $1 \mu M / 50 pmol$ - 5 μL of each primer (10 μM) - 5 μL of dNTP Mix (2.5 mM each) 0.25 mM each

- 1 μ L DNA Template (~100 ng/ μ L) 100 ng - 5 μL 10X polymerase buffer 1 X

Working conc. / amount

- 0.25 μL of DNA polymerase (5 U/μl)
- 28.75 μL NF-H₂O to adjust total volume to 50 μL

⚠ Keep tubes on ice.⚠ Add polymerase last.

- 31. PCR for Library amplification:
 - o Initial denaturation 95^aC 3'
 - Denaturation 95°C 30"
 - o Annealing 57.5°C 30"

× 35 Cycles

1.25 U

- Elongation 72°C 30"
- Final elongation 72°C 3'
- * Take out one tube after: 25, 30 and 35 cycles
- 4 tubes = 3 for the cycle testing (above) + 1 NTC (Non Template Control) (0 μL template, 29.75 μL NF-H₂O)
- 32. Run 2µL of each PCR product on a 2% agarose, 120V for 15 min
 - 2% agarose gel: 1g agarose, 50mL 1% TBE, 5μL SybrSafe
 - o Low range ladder: 2 μL Ladder (ready to use, dye not needed), 4 μL ddH20
 - O Samples: 2 μL sample, 1 μL 6X DNA dye (Ladder kit), 3 μL ddH2O
 - > Decide the optimal PCR cycle number based on laddering in the gel:
 - 6 cycles (from pre-amplification) + ??? cycles (from amplification)
- 33. Repeat PCR library amplification with the determined number of cycles

Separation of sense and antisense ssDNA

- 34. Add 50 μ l of Dynabeads to bind antisense ssDNA \rightarrow separation from sense ssDNA
- 35. Add the magnets and discard the supernatant
- 36. Wash the beads + bound sequences with 500 µL WB
- 37. Elute the ssDNA from the beads by melting in a 0.1M NaOH solution 5'
- 38. Add the magnets and recover supernatant (try to keep under 600µl)
- 39. Desalt by using GE healthcare Cytiva illustra NAP column NAP-5
 - > Run the protocol as given in this kit to filter out the NaOH
 - > Recover the flow through

Flow cytometry and yield evaluation

- 40. Repeat binding step (Positive selection)
- 41. Flow cytometry to assess library enrichment after the SELEX round
- ➤ SELEX cycle 1 finished !!!
- ➤ Repeat until flow cytometry shows plateau → send "plateau" library for sequencing

Buffers

Wash Buffer (WB)

• PBS (1X)

- BSA (1 mg/mL)
- 5mM MgCl2

Binding Buffer (BB)

• yeast tRNA (0.1mg/mL) in WB