Fusion Protein Modeling Supplementary Data

Fig. 1. 4CL2 from *Glycine max* (**pink**) with 4CL2 from *Nicotiana tabacum* (**electric**)

Fig. 2. CHS catalyzed reaction

Fig. 3. Active site residues of CHS

Linker	Lengt h	Flexibilit y	Hydrophobicity	Sensitivity to proteases	Secondary structure
GSG	3	Flexible	Neutral	-	Flexible
GGGGS	5	Flexible	Neutral	-	Flexible
(GGGGS)2	10	Flexible	Neutral	-	Flexible
(GGGGS)3	15	Flexible	Neutral		Flexible
ΕΑΑΑΚ	5	Rigid	60% hydrophobic 20% acidic 20% basic	Glutamyl endopeptidase LysC LysN Proteinase K Staphylococcal peptidase I Thermolysin Trypsin	a -helical
(EAAAK)2	10	Rigid	60% hydrophobic 20% acidic 20% basic	Asp-N endopeptidase + N-terminal Glu Glutamyl endopeptidase LysC LysN Proteinase K Staphylococcal peptidase I Thermolysin Trypsin	a -helical
(EAAAK)3	15	Rigid	60% hydrophobic 20% acidic 20% basic	Asp-N endopeptidase + N-terminal Glu Glutamyl endopeptidase LysC LysN Proteinase K Staphylococcal peptidase I Thermolysin Trypsin	a -helical

Table 1. Characterisation of linkers

Fig. 4. Modelled 4CL (**pink**) overlay with monomeric enzymes 4CL and STS (PDB 3TSY, **electric**), disordered domain (**light pink**)

Fig. 5. Modeled 4CL:GSG:CHS (fusion - **electric**, linker - **cyan**) overlay with template structures of enzymes 4CL (**pink**) with disordered domain (**light pink**) and CHS (**dark green**)

Table 2. Evaluating 4CL:GSG:CHS structure that was modeled using homology-based method SWISS-MODEL

SWISS-MODEL					
Model	Template	Sequence identity	QMEAN	QMEANDisC o	VoroMQA
model_1.pd b	3TSY	66.42%	-2.19	0.71	0.504224
model_2.pd b	3TSY	69.36%	-2.41	0.71	0.496802

Table 3. Review of the scoring functions to evaluate modeled protein structures

Scoring	Description
VoroMQA[10]	The method is based on partitioning space into Voronoi cells. Two adjacent Voronoi cells share a set of points that form a surface called a Voronoi face , which can be viewed as a geometric representation of contact between two atoms.
	VoroMQA determines the quality of protein structural models using inter-atomic and solvent contact areas, including the knowledge-based statistical potential.
ProSA[11]	This program uses knowledge-based potentials of mean force to evaluate the accuracy of the input model.
	The structure's energy is evaluated using a distance-based pair potential and a potential that captures the solvent exposure of protein residues. From these energies, two characteristics are derived: a <i>z</i> -score and a plot of its residue energies.
	The <i>z</i> -score indicates overall model quality and measures the structure's total energy deviation concerning an energy distribution derived from random conformations . <i>Z</i> -scores outside a range characteristic determined by structures of native proteins indicate errors and low quality of the model that is being evaluated.
TM-Score[12]	Template modeling score is a variation of the Levitt-Gerstein (LG) score, which weights shorter distances between corresponding residues more strongly than longer distances.
	This function requires template - experimental structure as a mandatory input.
TM-align[46]	The algorithm employs TM-Score and dynamic programming to generate the best structural alignment between two protein structures. This function requires two input structures.
CAD-Score[13]	The definition of CAD-score is based on the three
	considerations:

	 contacts in the model should be evaluated according to the contacts in the reference structure (target); any missing residues in the model should be treated in the same way as if none of their contacts were correctly predicted; strong over-prediction (nonphysical overlap) of a particular contact should be equivalent to missing that contact entirely (in other words, there should be no false-positive predictions in terms of contact). This function requires two input structures: model and target.
QMEAN[48]	 QMEAN is an acronym for Qualitative Model Energy ANalysis. There are five different descriptors used for this evaluation approach, which are: Torsion angle potential Distance-dependent pairwise residue potential Solvation potential The term describing agreement of predicted and calculated secondary structure The term describing solvent accessibility
QMEANDisCo[14]	In addition to QMEAN composite scoring, QMEANDisCo introduces a new distance constraint (DisCo) that evaluates the agreement of pairwise distances and constraints taken from homologous experimentally determined protein structures.
ProQ3D[15]	 ProQ3D is a single-model quality estimation program. ProQ estimated the quality of the whole model using a machine learning approach - support-vector machine - by summing up the predicted qualities for each residue. ProQ2 included profile weights to improve the predictions. ProQ3 included energy terms calculated from Rosetta. Overall, ProQ3D uses the same inputs as in ProQ3. Although, a neural network is used to assess the quality of the protein structure instead of a support

	vector machine.
--	-----------------

Table 4. Adjustments to the molecular dynamics simulation steps

Before consultation	After consultation	Command	
Preparing protein file by removing atoms	`grep`		
Converting protein's PDB file to Gr	`pdb2gmx`		
Choosing force-field CHARMM27	Choosing force-field AMBER94		
Choosing water model SPC	Choosing water model TIP3		
Defining a box with 2 Å distance between protein each wall of the dodecahedron type box	Defining a box with 1.2 Å distance between protein and each wall of the dodecahedron type box	`editconf`	
Solvating protein		`solvate`	
Adding ions to neutralize the system, selecting group SOL	Adding ions to neutralize the system	`grompp`, `genion`	
	Adding ions to simulate water with dissolved salt (concentration 150 mM)		
Energy minimization step to reach maximum force to be less than 100	`grompp`, `mdrun`, `energy`		
Temperature equilibration for 100	`grompp`,`mdru n` `energy`		
Pressure equilibration for 100 ps, 3	`grompp`,`mdru n` `energy`		
Production run for 1 ns	Production run for 1 ns Production run for 100 ns		

Table 5. Evaluation of 4CL modeled structures

trRosetta				
Model	QMEAN4	QMEANDisCo	VoroMQA score	
4CL.sqit.pdb	-0.94	0.67	0.478739	

SWISS-MODEL				
Model	QMEAN4	QMEANDisCo	VoroMQA score	
4CL_1.pdb	-0.73	0.84	0.541558	
4CL_2.pdb	-0.61	0.82	0.519713	
4CL_3.pdb	-0.34	0.85	0.549002	

RoseTTAFold (without MSA)					
Model	QMEAN4	QMEANDisCo	VoroMQA score		
MODEL_1_4CL2_S OYBN.pdb	1.71	0.77	0.540512		
MODEL_5_4CL2_S OYBN.pdb	1.44	0.77	0.540305		
MODEL_2_4CL2_S OYBN.pdb	1.6	0.76	0.539742		
MODEL_3_4CL2_S OYBN.pdb	1.61	0.77	0.533458		
MODEL_4_4CL2_S OYBN.pdb	1.79	0.76	0.530254		

Table 6. Evaluation of 4CL modeled using RoseTTAFold with MSA structures

RoseTTAFold (with MSA)					
Model	QMEAN4	QMEANDisCo	VoroMQA score		
MODEL_1_4CL_MSA.p db	1.88	0.77	0.541581		
MODEL_2_4CL_MSA. pdb	1.12	0.75	0.526281		
MODEL_3_4CL_MSA. pdb	1.09	0.76	0.529501		
MODEL_4_4CL_MSA. pdb	0.95	0.76	0.534835		
MODEL_5_4CL_MSA. pdb	1.41	0.76	0.529382		

Table 7. Evaluation	of 4CL modeled	using AlphaFold2

AlphaFold2					
Model	QMEAN4	QMEANDisCo	VoroMQA score	average pIDDT	
4CL_unrelaxed_ model_1.pdb	-0.62	0.79	0.546974	89.651979	
4CL_unrelaxed_ model_2.pdb	-1.01	0.79	0.549646	89.276523	
4CL_unrelaxed_ model_3.pdb	-1.02	0.79	0.546767	88.780811	
4CL_relaxed_m odel_1.pdb	0.13	0.8	0.551421	-	
4CL_relaxed_mo del_2.pdb	0.3	0.8	0.552571	-	
4CL_relaxed_mo del_3.pdb	-0.86	0.8	0.549808	-	

Fig. 6. Coverage and predicted IDDT per position of 4CL structure modeled with AlphaFold2

Fig. 7. Predicted alignment error of 4CL structure modeled with AlphaFold2

Fig. 8. 4CL structures modeled with SWISS-MODEL (left) and AlphaFold2 (right). The darker shade of blue indicates higher structure determination quality (B-factor spectrum)

Fig. 9. Disordered region of 4CL structure modeled with AlphaFold2 (**electric**) overlay with SWISS-MODEL model (**pink**)

Table 8. Evaluation of CHS modelled using AlphaFold2

AlphaFold2				
Model	QMEAN4	QMEANDisCo	VoroMQA score	average pIDDT
CHS_unrelaxed_ model_1.pdb	0.08	0.85	0.535824	96.86796
CHS_unrelaxed_ model_2.pdb	-0.13	0.85	0.542367	96.62286
CHS_unrelaxed_ model_3.pdb	-0.45	0.84	0.536282	96.34417
CHS_relaxed_m odel_1.pdb	0.2	0.86	0.542643	-
CHS_relaxed_m odel_2.pdb	0.21	0.86	0.539895	-
CHS_relaxed_m odel_3.pdb	0.2	0.86	0.540226	-

Fig. 10. Coverage and predicted IDDT per position of CHS structure modelled with AlphaFold2

Fig. 11. Predicted alignment error of CHS structure modelled with AlphaFold2

Experimental structure	Modeled structure	
7-8	1-8	
67	-	
83-84	-	
208-209	210-212	
271-276	-	
295-299	-	
327-328	-	

Table 9. Inaccurate residues according to PyMOL B-factor coloring

Fig. 12. B-factor coloring for CHS experimental structure front (left) and back (right)

Fig. 13. B-factor coloring for CHS structure modeled with AlphaFold2

Fig. 14. Structural differences between experimental CHS structure and the best model of AlphaFold2

Initial modeling of linker GSG case

Table	10.	VoroMQA	evaluation	of	trRosetta	modelled	4CL:GSG:CHS
structi	Jres	5					

trRosetta				
Model	VoroMQA score	Z-score (ProSA)		
model1.pdb	0.408	-14.35		
model2.pdb	0.390	-12.04		
model3.pdb	0.374	-12.17		
model4.pdb	0.357	-11.13		
model5.pdb	0.378	-11.1		

Table 11. VoroMQA evaluation of RoseTTAFold modelled 4CL:GSG:CHS structures

RoseTTAFold				
Model	VoroMQA score	Z-score (ProSA)		
model01.pdb	0.512065	-16.07		
model02.pdb	0.511473	-16.01		
model03.pdb	0.50706	-16.17		
model04.pdb	0.516429	-16.18		
model05.pdb	0.513875	-15.75		

Fig. 15. Structural alignment using PyMOL of 4CL:GSG:CHS structures before (electric) and after (pink) energy minimization with Yasara

Fig. 16. xmgrace energy graph of 4CL:GSG:CHS structure after molecular dynamics (energy minimization) simulation

GROMACS Energies

Fig. 17. xmgrace energy graph of 4CL:GSG:CHS structure after molecular dynamics temperature equilibration

Fig. 18. xmgrace energy graph of 4CL:GSG:CHS structure after molecular dynamics pressure equilibration simulation

Fig. 19. xmgrace energy graph of 4CL:GSG:CHS structure after molecular dynamics (production run) simulation

Fig. 20. 4CL:GSG:CHS model structural alignment before (**electric**) MD and after (**pink**)

Fig. 21. Ramachandran plot of the best model of 4CL:GSG:CHS before MD

Fig. 22. Ramachandran plot of the best model of 4CL:GSG:CHS after $\ensuremath{\mathsf{MD}}$

Fig. 23. Disordered domain of 4CL:GSG:CHS domain in modeled structure (**pink**), domain in reference structure of 4CL (**electric**), GSG linker (**cyan**).

Fig. 24. Modeled CHS:GSG:4CL (fusion - **electric**, linker - **cyan**) overlay with template structures of enzymes 4CL (**pink**) with disordered domain (**light pink**) and CHS (**dark green**)

Table 12. Evaluation of CHS:GSG:4CL structures

RoseTTAFold			
Model	VoroMQA score		
MODEL_1_CHS_GSG_4CL.pdb	0.487163		
MODEL_2_CHS_GSG_4CL.pdb	0.487654		
MODEL_3_CHS_GSG_4CL.pdb	0.490014		
MODEL_4_CHS_GSG_4CL.pdb	0.469502		
MODEL_5_CHS_GSG_4CL.pdb	0.448322		

Fig. 25. Modeled 4CL:EAAAK (**electric**) and EAAAK:CHS (**pink**) overlay (EAAAK colored **cyan**)

Table 13. Evaluation of 4CL:EAAAK structures

RoseTTAFold			
Model	VoroMQA score		
MODEL_1_4CL_EAAAK.pdb	0.535044		
MODEL_2_4CL_EAAAK.pdb	0.530567		
MODEL_3_4CL_EAAAK.pdb	0.532237		
MODEL_4_4CL_EAAAK.pdb	0.53092		
MODEL_5_4CL_EAAAK.pdb	0.530439		

Table 14. Evaluation of EAAAK:CHS structures

RoseTTAFold			
Model	VoroMQA score		
MODEL_1_EAAAK_CHS.pdb	0.517958		
MODEL_2_EAAAK_CHS.pdb	0.531011		
MODEL_3_EAAAK_CHS.pdb	0.51568		
MODEL_4_EAAAK_CHS.pdb	0.512811		
MODEL_5_EAAAK_CHS.pdb	0.516752		

Results of modeling approach with MSA

Linker GSG

Robetta's confidence score was **0.8**. The higher angstroms error estimate is observed in the N terminal of the complex and the linker region (**532-666**).

Table 15. Evaluation of 4CL:GSG:CHS structures that were modeled with provided MSA

RoseTTAFold			
Model	QMEAN	QMEANDisCo	VoroMQA score
MODEL_1_4CL_GS G_CHS_MSA.pdb	1.15	0.71	0.50925
MODEL_2_4CL_GS G_CHS_MSA.pdb	0.7	0.71	0.499289
MODEL_3_4CL_GS G_CHS_MSA.pdb	0.87	0.71	0.505087
MODEL_4_4CL_GS G_CHS_MSA.pdb	0.93	0.71	0.511291
MODEL_5_4CL_GS G_CHS_MSA.pdb	0.89	0.71	0.494692

Linker EAAAK

Robetta's confidence score is **0.8**. The higher angstroms error estimate is observed in the N terminal of the complex and the linker region (**549 - 664**).

Table 16. Evaluation of 4CL:EAAAK:CHS structures that were modeled with provided MSA

RoseTTAFold			
Model	QMEAN	QMEANDisCo	VoroMQA score
MODEL_1_4CL_EA AAK_CHS_MSA.pd b	0.95	0.72	0.509592
MODEL_2_4CL_EA AAK_CHS_MSA.pd b	0.85	0.72	0.50054
MODEL_3_4CL_EA AAK_CHS_MSA.pd b	1.31	0.72	0.507024
MODEL_4_4CL_EA AAK_CHS_MSA.pd b	0.58	0.71	0.502846
MODEL_5_4CL_EA AAK_CHS_MSA.pd b	1.34	0.72	0.49208

Fig. 26. Measured distance between active sites of 4CL:EAAAK:CHS (4CL on the left, CHS on the right)

Linker (EAAAK)2

Robetta's confidence score is **0.81**. The higher angstroms error estimate is observed in the N terminal of the complex and the linker region (**530 - 674**).

Table 17. Evaluation of 4CL:(EAAAK)2:CHS structures that were modeled with provided MSA

RoseTTAFold			
Model	QMEAN	QMEANDisCo	VoroMQA score
MODEL_1_4CL_EA AAK_2_CHS.pdb	1.01	0.72	0.51103
MODEL_2_4CL_EA AAK_2_CHS.pdb	1.39	0.72	0.501628
MODEL_3_4CL_EA AAK_2_CHS.pdb	0.67	0.71	0.50042
MODEL_4_4CL_EA AAK_2_CHS.pdb	1.03	0.72	0.504132
MODEL_5_4CL_EA AAK_2_CHS.pdb	0.76	0.71	0.508873

Fig. 27. Measured distance between active sites of 4CL:(EAAAK)2:CHS (4CL on the left of each picture, CHS on the right of each picture)

Linker (EAAAK)3

Robetta's confidence score is **0.79**. The higher angstroms error estimate is observed in the N terminal of the complex and the linker region (**553 - 702**).

Table 18. Evaluation of 4CL:(EAAAK)3:CHS structures that were modeled with provided MSA

RoseTTAFold			
Model	QMEAN	QMEANDisCo	VoroMQA score
MODEL_1_4CL_EA AAK_3_CHS.pdb	1.39	0.72	0.491909
MODEL_2_4CL_EA AAK_3_CHS.pdb	0.9	0.71	0.500159
MODEL_3_4CL_EA AAK_3_CHS.pdb	1.13	0.72	0.494661
MODEL_4_4CL_EA AAK_3_CHS.pdb	0.72	0.71	0.487712
MODEL_5_4CL_EA AAK_3_CHS.pdb	0.87	0.71	0.503178

Fig. 28. Measured distance between active sites of 4CL:(EAAAK)3:CHS before structure refinement with molecular dynamics (4CL on the left, CHS on the right)

Linker GGGGS

Robetta's confidence score is **0.81**. The higher angstroms error estimate is observed in the N terminal of the complex and the linker region (**535-668**).

Table 19. Evaluation of 4CL:GGGGS:CHS structures that were modeled with provided MSA

RoseTTAFold	RoseTTAFold							
Model	QMEAN	QMEANDisCo	VoroMQA score					
MODEL_1_4CL_GG GGS_CHS_MSA.pd b	1.23	0.72	0.509968					
MODEL_2_4CL_GG GGS_CHS_MSA.pd b	1.25	0.72	0.506824					
MODEL_3_4CL_GG GGS_CHS_MSA.pd b	1.22	0.72	0.503358					
MODEL_4_4CL_GG GGS_CHS_MSA.pd b	0.73	0.72	0.510973					
MODEL_5_4CL_GG GGS_CHS_MSA.pd b	0.53	0.71	0.508495					

Linker (GGGGS)2

Robetta's confidence score is **0.78**. The higher angstroms error estimate is observed in the N terminal of the complex and the linker region (**552 - 670**).

Table 20. Evaluation of 4CL:(GGGGS)2:CHS structures that were modeled with provided MSA

RoseTTAFold							
Model	QMEAN	QMEANDisCo	VoroMQA score				
MODEL_1_4CL_GG GGS_2_CHS_MSA. pdb	0.97	0.71	0.509898				
MODEL_2_4CL_GG GGS_2_CHS_MSA. pdb	0.86	0.71	0.490104				
MODEL_3_4CL_GG GGS_2_CHS_MSA. pdb	0.95	0.71	0.495492				
MODEL_4_4CL_GG GGS_2_CHS_MSA. pdb	0.5	0.72	0.500793				
MODEL_5_4CL_GG GGS_2_CHS_MSA. pdb	0.22	0.71	0.49708				

Linker (GGGGS)3

Robetta's confidence score is **0.79**. The higher angstroms error estimate is observed in the N terminal of the complex and the linker region (**535-679**).

Table	21.	Evaluation	of	4CL:(GGGGS)3:CHS	structures	that	were
model	ed w	ith provided	MS	A			

RoseTTAFold	RoseTTAFold							
Model	QMEAN	QMEANDisCo	VoroMQA score					
MODEL_1_4CL_GG GGS_3_CHS_MSA. pdb	0.65	0.71	0.502113					
MODEL_2_4CL_G GGGS_3_CHS_MS A.pdb	1.58	0.72	0.494236					
MODEL_3_4CL_GG GGS_3_CHS_MSA. pdb	0.25	0.71	0.497905					
MODEL_4_4CL_GG GGS_3_CHS_MSA. pdb	0.64	0.71	0.495384					
MODEL_5_4CL_GG GGS_3_CHS_MSA. pdb	0.65	0.71	0.488994					

Modeling with AlphaFold2

Linker GSG

Table 22. Evaluation of 4CL:GSG:CHS structures modeled with AlphaFold2

AlphaFold2								
Model	QMEAN	QMEAN DisCo	VoroMQ A	ProQ2D	ProQRos CenD	ProQRos FAD	ProQ3D	
4CL_GSG _CHS_unr elaxed_m odel_1.pd b	-1.01	0.78	0.539915	0.709	0.625	0.807	0.705	
4CL_GSG_ CHS_unrel axed_mod el_2.pdb	-1.18	0.77	0.537669	0.701	0.633	0.801	0.721	

Fig. 29. Coverage and predicted IDDT per position of 4CL:GSG:CHS structure modeled with AlphaFold2

Fig. 30. Predicted alignment error of 4CL:GSG:CHS structure modeled with AlphaFold2

Fig. 31. Ramachandran plot of the best 4CL:GSG:CHS structure modeled with AlphaFold2

Fig. 32. Illustrating distance between 4CL:GSG:CHS active sites

Linker EAAAK

Table	23.	Evaluation	of	4CL:EAAAK:CHS	structures	modeled	with
Alphal	-old	2					

AlphaFold2								
Model	QMEAN	QMEAN DisCo	VoroMQ A	ProQ2D	ProQRos CenD	ProQRos FAD	ProQ3D	
4CL_EA AAK_CH S_unrel axed_m odel_1.p db	-0.69	0.79	0.54207 7	0.708	0.624	0.794	0.710	
4CL_EA AAK_CH S_unrela xed_mo del_2.pd b	-1.03	0.79	0.536476	0.7	0.63	0.798	0.717	

Fig. 33. Coverage and predicted IDDT per position of 4CL:EAAAK:CHS structure modeled with AlphaFold2

Fig. 34. Predicted alignment` error of 4CL:EAAAK:CHS structure modeled with AlphaFold2

Fig. 35. Ramachandran plot of the best 4CL:EAAAK:CHS structure modeled with AlphaFold2

Fig. 36. Illustrating distance between 4CL:EAAAK:CHS active sites

Linker (EAAAK)2

Table	24.	Evaluation	of	4CL:(EAAAK)2:CHS	structures	modeled	with
Alpha	Fold	2					

AlphaFold2								
Model	QMEAN	QMEAN DisCo	VoroMQ A	ProQ2D	ProQRos CenD	ProQRos FAD	ProQ3D	
4CL_EA AAK_2_ CHS_un relaxed _model _1.pdb	-0.78	0.79	0.541834	0.69	0.638	0.81	0.718	
4CL_EA AAK_2_ CHS_unr elaxed_ model_2 .pdb	-1.16	0.78	0.536158	0.693	0.616	0.789	0.691	

Fig. 37. Coverage and predicted IDDT per position of 4CL:(EAAAK)2:CHS structure modeled with AlphaFold2

Fig. 38. Predicted alignment error of 4CL:(EAAAK)2:CHS structure modeled with AlphaFold2

Fig. 39. Ramachandran plot of the best 4CL:(EAAAK)2:CHS structure modeled with AlphaFold2

Fig. 40. Illustrating distance between 4CL:(EAAAK)2:CHS active sites

Linker (EAAAK)3

Table	25.	Evaluation	of	4CL:(EAAAK)3:CHS	structures	modeled	with
Alpha	Fold	2					

AlphaFold2								
Model	QMEAN	QMEAN DisCo	VoroMQ A	ProQ2D	ProQRos CenD	ProQRos FAD	ProQ3D	
4CL_EA AAK_3_ CHS_un relaxed _model _1.pdb	-1.36	0.78	0.53796 9	0.693	0.617	0.795	0.697	
4CL_EA AAK_3_ CHS_unr elaxed_ model_2 .pdb	-1.38	0.77	0.533997	0.693	0.634	0.803	0.713	

Fig. 41. Coverage and predicted IDDT per position of 4CL:(EAAAK)3:CHS structure modeled with AlphaFold2

Fig. 42. Predicted alignment error of 4CL:(EAAAK)3:CHS structure modeled with AlphaFold2

Fig. 43. Ramachandran plot of the best 4CL:(EAAAK)3:CHS structure modeled with AlphaFold2

Fig. 44. Illustrating distance between 4CL:(EAAAK)3:CHS active sites

Linker GGGGS

Table	26.	Evaluation	of	4CL:GGGGS:CHS	structures	modeled	with
Alphal	-old2	2					

AlphaFold2								
Model	QMEAN	QMEAN DisCo	VoroMQ A	ProQ2D	ProQRos CenD	ProQRos FAD	ProQ3D	
4CL_GG GGS_CH S_unrel axed_m odel_1.p db	-0.75	0.78	0.542	0.691	0.617	0.779	0.698	
4CL_GG GGS_CH S_unrela xed_mo del_2.pd b	-1.16	0.77	0.536974	0.691	0.640	0.809	0.725	

Fig. 45. Coverage and predicted IDDT per position of 4CL:GGGGS:CHS structure modeled with AlphaFold2

Fig. 46. Predicted alignment error of 4CL:GGGGS:CHS structure modeled with AlphaFold2

Fig. 47. Ramachandran plot of the best 4CL:GGGGS:CHS structure modeled with AlphaFold2

Fig. 48. Illustrating distance (38.8 Å) between 4CL:GGGGS:CHS active sites

Linker (GGGGS)2

Table	27.	Evaluation	of	4CL:(GGGGS)2:CHS	structures	modeled	with
Alpha	Folc	12					

AlphaFold2							
Model	QMEAN	QMEAN DisCo	VoroMQ A	ProQ2D	ProQRos CenD	ProQRos FAD	ProQ3D
4CL_GG GGS_2_ CHS_un relaxed _model _1.pdb	-1.02	0.78	0.54066 7	0.697	0.635	0.807	0.716
4CL_GG GGS_2_ CHS_unr elaxed_ model_2 .pdb	-0.9	0.78	0.532784	0.697	0.629	0.802	0.725

Fig. 49. Coverage and predicted IDDT per position of 4CL:(GGGGS)2:CHS structure modeled with AlphaFold2

Fig. 50. Predicted alignment error of 4CL:(GGGGS)2:CHS structure modeled with AlphaFold2

Fig. 51. Ramachandran plot of the best 4CL:(GGGGS)2:CHS structure modeled with AlphaFold2

Fig. 52. Illustrating distance (39.4 Å) between 4CL:(GGGGS)2:CHS active sites

Linker (GGGGS)3

Table	28.	Evaluation	of	4CL:(GGGGS)3:CHS	structures	modeled	with
Alpha	Fold	2					

AlphaFold2							
Model	QMEAN	QMEAN DisCo	VoroMQ A	ProQ2D	ProQRos CenD	ProQRos FAD	ProQ3D
4CL_GG GGS_3_ CHS_un relaxed _model _1.pdb	-1.25	0.78	0.54056 8	0.696	0.627	0.801	0.707
4CL_GG GGS_3_ CHS_unr elaxed_ model_2 .pdb	-1.36	0.77	0.531981	0.687	0.626	0.804	0.719

Fig. 53. Coverage and predicted IDDT per position of 4CL:(GGGGS)3:CHS structure modeled with AlphaFold2

Fig. 54. Predicted alignment error of 4CL:(GGGGS)3:CHS structure modeled with AlphaFold2

Fig. 55. Ramachandran plot of the best 4CL:(GGGGS)3:CHS structure modeled with AlphaFold2

Fig. 56. Illustrating distance (39.2 Å) between 4CL:(GGGGS)3:CHS active sites

Conclusions

Table 29. Summary of distance between active sites and naringenin concentration

Linker	Distance between active sites (Å)	Naringenin concentration
GSG	40.1	
GGGGS	38.8	
(GGGGS)2	39.4	
(GGGGS)3	39.2	
ЕАААК	42.7	
(ЕАААК)2	42.7	
(EAAAK)3	47.6	

Modeling linkers as unknown amino acids

Fig. 57. Fusion protein structures modeled with 3 (upper left), 5 (upper right), 10 (lower left), 15 (lower right) unknown amino acids, 4CL (**pink**), CHS (**dark green**) with their distances